Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 845368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433503

RESUMO

Coronaviruses are the etiologic agents of several diseases. Coronaviruses of critical medical importance are characterized by highly inflammatory pathophysiology, involving severe pulmonary impairment and infection of multiple cell types within the body. Here, we discuss the interplay between coronaviruses and autophagy regarding virus life cycle, cell resistance, and inflammation, highlighting distinct mechanisms by which autophagy restrains inflammatory responses, especially those involved in coronavirus pathogenesis. We also address different autophagy modulators available and the rationale for drug repurposing as an attractive adjunctive therapy. We focused on pharmaceuticals being tested in clinical trials with distinct mechanisms but with autophagy as a common target. These autophagy modulators act in cell resistance to virus infection and immunomodulation, providing a double-strike to prevent or treat severe disease development and death from coronaviruses diseases.


Assuntos
Infecções por Coronavirus , Coronavirus , Autofagia/fisiologia , Coronavirus/fisiologia , Infecções por Coronavirus/patologia , Humanos , Inflamação , Carga Viral , Replicação Viral/fisiologia
2.
Arch Immunol Ther Exp (Warsz) ; 69(1): 25, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34529143

RESUMO

The term host defense peptides arose at the beginning to refer to those peptides that are part of the host's immunity. Because of their broad antimicrobial capacity and immunomodulatory activity, nowadays, they emerge as a hope to combat resistant multi-drug microorganisms and emerging viruses, such as the case of coronaviruses. Since the beginning of this century, coronaviruses have been part of different outbreaks and a pandemic, and they will be surely part of the next pandemics, this review analyses whether these peptides and their derivatives are ready to be part of the treatment of the next coronavirus pandemic.


Assuntos
Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Antivirais/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Pandemias , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/imunologia , Anti-Inflamatórios/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/imunologia , Antivirais/síntese química , Antivirais/imunologia , Ensaios Clínicos como Assunto , Coronavirus/efeitos dos fármacos , Coronavirus/fisiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Humanos , Imunomodulação , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia
3.
Virus Res ; 297: 198382, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33705799

RESUMO

Coronaviruses are a large group of RNA viruses that infect a wide range of animal species. The replication strategy of coronaviruses involves recombination and mutation events that lead to the possibility of cross-species transmission. The high plasticity of the viral receptor due to a continuous modification of the host species habitat may be the cause of cross-species transmission that can turn into a threat to other species including the human population. The successive emergence of highly pathogenic coronaviruses such as the Severe Acute Respiratory Syndrome (SARS) in 2003, the Middle East Respiratory Syndrome Coronavirus in 2012, and the recent SARS-CoV-2 has incentivized a number of studies on the molecular basis of the coronavirus and its pathogenesis. The high degree of interrelatedness between humans and wild and domestic animals and the modification of animal habitats by human urbanization, has favored new viral spreads. Hence, knowledge on the main clinical signs of coronavirus infection in the different hosts and the distinctive molecular characteristics of each coronavirus is essential to prevent the emergence of new coronavirus diseases. The coronavirus infections routinely studied in veterinary medicine must be properly recognized and diagnosed not only to prevent animal disease but also to promote public health.


Assuntos
Infecções por Coronavirus , Coronavirus , Especificidade de Hospedeiro , Zoonoses Virais , Animais , Coronavirus/química , Coronavirus/genética , Coronavirus/fisiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Genoma Viral , Humanos , Fases de Leitura Aberta , RNA Viral , Proteínas Virais , Estruturas Virais , Transcrição Viral , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Montagem de Vírus , Replicação Viral
5.
PLoS One ; 9(11): e113570, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25412469

RESUMO

Viruses are the most frequent cause of respiratory disease in children. However, despite the advanced diagnostic methods currently in use, in 20 to 50% of respiratory samples a specific pathogen cannot be detected. In this work, we used a metagenomic approach and deep sequencing to examine respiratory samples from children with lower and upper respiratory tract infections that had been previously found negative for 6 bacteria and 15 respiratory viruses by PCR. Nasal washings from 25 children (out of 250) hospitalized with a diagnosis of pneumonia and nasopharyngeal swabs from 46 outpatient children (out of 526) were studied. DNA reads for at least one virus commonly associated to respiratory infections was found in 20 of 25 hospitalized patients, while reads for pathogenic respiratory bacteria were detected in the remaining 5 children. For outpatients, all the samples were pooled into 25 DNA libraries for sequencing. In this case, in 22 of the 25 sequenced libraries at least one respiratory virus was identified, while in all other, but one, pathogenic bacteria were detected. In both patient groups reads for respiratory syncytial virus, coronavirus-OC43, and rhinovirus were identified. In addition, viruses less frequently associated to respiratory infections were also found. Saffold virus was detected in outpatient but not in hospitalized children. Anellovirus, rotavirus, and astrovirus, as well as several animal and plant viruses were detected in both groups. No novel viruses were identified. Adding up the deep sequencing results to the PCR data, 79.2% of 250 hospitalized and 76.6% of 526 ambulatory patients were positive for viruses, and all other children, but one, had pathogenic respiratory bacteria identified. These results suggest that at least in the type of populations studied and with the sampling methods used the odds of finding novel, clinically relevant viruses, in pediatric respiratory infections are low.


Assuntos
Vírus de DNA/fisiologia , Vírus de RNA/fisiologia , Infecções Respiratórias/virologia , Criança , Criança Hospitalizada , Pré-Escolar , Coronavirus/genética , Coronavirus/fisiologia , Vírus de DNA/classificação , Vírus de DNA/genética , DNA Viral/análise , Feminino , Humanos , Lactente , Masculino , Nasofaringe/virologia , Filogenia , Pneumonia/diagnóstico , Pneumonia/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , RNA Viral/análise , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/fisiologia , Infecções Respiratórias/patologia , Rhinovirus/genética , Rhinovirus/fisiologia , Análise de Sequência de DNA , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA