Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Gen Virol ; 99(7): 908-912, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29786498

RESUMO

Human coronavirus 229E (HCoV-229E) is responsible for common colds. Like other coronaviruses, HCoV-229E exploits cellular proteases to activate fusion mediated by the spike protein. We analysed the proteolytic processing of the HCoV-229E spike protein by trypsin-like serine proteases leading to activation of the fusion process. Unlike in other coronaviruses, HCoV-229E fusion activation appears to be a one-step process. Indeed, cleavage of the S1/S2 interface does not seem to be a prerequisite, and the fusion activation is highly reliant on the S2' region, with arginine residue 683 acting as the recognition site.


Assuntos
Coronavirus Humano 229E/genética , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Proteínas do Core Viral/genética , Proteínas Virais de Fusão/química , Coronavirus Humano 229E/química , Infecções por Coronavirus , Células HEK293 , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Proteínas Virais de Fusão/genética
2.
Biochem Biophys Res Commun ; 497(2): 705-712, 2018 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-29458023

RESUMO

HCoV-229E spike (S) protein mediates virion attachment to cells and subsequent fusion of the viral and cellular membranes. This protein is composed of an N-terminal receptor-binding domain (S1) and a C-terminal trans-membrane fusion domain (S2). S2 contains a highly conserved heptad repeat 1 and 2 (HR1 and HR2). In this study, the HRs sequences were designed and connected with a flexible linker. The recombinant fusion core protein was crystallized and its structure was solved at a resolution of 2.45 Å. Then we characterized the binding of HR1s and HR2s via both sequence alignment and structural analysis. The overall structures, especially the residues in some positions of HR2 are highly conserved. Fourteen hydrophobic and three polar residues from each HR1 peptide are packed in layers at the coiled-coil interface. These core amino acids can be grouped into seven heptad repeats. Analysis of hydrophobic and hydrophilic interactions between HR2 helix and HR1 helices, shows that the HR1 and HR2 polypeptides are highly complementary in both shape and chemical properties. Furthermore, the available knowledge concerning HCoV-229E fusion core may make it possible to design small molecule or polypeptide drugs targeting membrane fusion, a crucial step of HCoV-229E infection.


Assuntos
Coronavirus Humano 229E/química , Infecções por Coronavirus/virologia , Glicoproteína da Espícula de Coronavírus/química , Sequência de Aminoácidos , Clonagem Molecular , Coronavirus Humano 229E/genética , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/genética
3.
Nucleic Acids Res ; 44(6): e52, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26657632

RESUMO

Stable isotope labeling is central to NMR studies of nucleic acids. Development of methods that incorporate labels at specific atomic positions within each nucleotide promises to expand the size range of RNAs that can be studied by NMR. Using recombinantly expressed enzymes and chemically synthesized ribose and nucleobase, we have developed an inexpensive, rapid chemo-enzymatic method to label ATP and GTP site specifically and in high yields of up to 90%. We incorporated these nucleotides into RNAs with sizes ranging from 27 to 59 nucleotides using in vitro transcription: A-Site (27 nt), the iron responsive elements (29 nt), a fluoride riboswitch from Bacillus anthracis(48 nt), and a frame-shifting element from a human corona virus (59 nt). Finally, we showcase the improvement in spectral quality arising from reduced crowding and narrowed linewidths, and accurate analysis of NMR relaxation dispersion (CPMG) and TROSY-based CEST experiments to measure µs-ms time scale motions, and an improved NOESY strategy for resonance assignment. Applications of this selective labeling technology promises to reduce difficulties associated with chemical shift overlap and rapid signal decay that have made it challenging to study the structure and dynamics of large RNAs beyond the 50 nt median size found in the PDB.


Assuntos
Trifosfato de Adenosina/síntese química , Guanosina Trifosfato/síntese química , Marcação por Isótopo/métodos , Nucleotídeos/síntese química , Bacillus anthracis/química , Bacillus anthracis/genética , Isótopos de Carbono , Coronavirus Humano 229E/química , Coronavirus Humano 229E/genética , Creatina Quinase/química , Creatina Quinase/genética , Espectroscopia de Ressonância Magnética , Pentosiltransferases/química , Pentosiltransferases/genética , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Elementos de Resposta , Ribose/química , Ribose-Fosfato Pirofosfoquinase/química , Ribose-Fosfato Pirofosfoquinase/genética , Riboswitch , Transcrição Gênica
4.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 9): 1156-60, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26323302

RESUMO

Nonstructural protein 15 (nsp15), also called endoribonuclease, is a gene product of open reading frame 1b (ORF 1b) in coronaviruses. It is an important enzyme in the transcription/replication process involved in discontinuous negative-strand RNA synthesis. In this work, mutants of nsp15 from Human coronavirus 229E (HCoV-229E) were made based on structural analysis of the homologous nsp15s in Severe acute respiratory syndrome coronavirus (SARS-CoV) and Mouse hepatitis virus (MHV). The I26A/N52A mutant of nsp15 was overexpressed, purified and crystallized, and this mutant led to a trimeric form rather than hexamers or monomers. Crystals of trimeric nsp15 were obtained by the hanging-drop vapour-diffusion method using polyethylene glycol as a precipitant and diffracted to 2.5 Šresolution. The crystals belonged to space group C2221, with unit-cell parameters a = 85.9, b = 137.5, c = 423.1 Å, α = ß = γ = 90°.


Assuntos
Coronavirus Humano 229E/química , Proteínas Mutantes/química , Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Cromatografia em Gel , Cristalização , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Peso Molecular , Ultracentrifugação
5.
Biochim Biophys Acta ; 1838(4): 1088-95, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23906728

RESUMO

In addition to a set of canonical genes, coronaviruses encode additional accessory proteins. A locus located between the spike and envelope genes is conserved in all coronaviruses and contains a complete or truncated open reading frame (ORF). Previously, we demonstrated that this locus, which contains the gene for accessory protein 3a from severe acute respiratory syndrome coronavirus (SARS-CoV), encodes a protein that forms ion channels and regulates virus release. In the current study, we explored whether the ORF4a protein of HCoV-229E has similar functions. Our findings revealed that the ORF4a proteins were expressed in infected cells and localized at the endoplasmic reticulum/Golgi intermediate compartment (ERGIC). The ORF4a proteins formed homo-oligomers through disulfide bridges and possessed ion channel activity in both Xenopus oocytes and yeast. Based on the measurement of conductance to different monovalent cations, the ORF4a was suggested to form a non-selective channel for monovalent cations, although Li(+) partially reduced the inward current. Furthermore, viral production decreased when the ORF4a protein expression was suppressed by siRNA in infected cells. Collectively, this evidence indicates that the HCoV-229E ORF4a protein is functionally analogous to the SARS-CoV 3a protein, which also acts as a viroporin that regulates virus production. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.


Assuntos
Coronavirus Humano 229E/fisiologia , Proteínas da Matriz Viral/fisiologia , Sequência de Aminoácidos , Coronavirus Humano 229E/química , Células HEK293 , Humanos , Dados de Sequência Molecular , Multimerização Proteica , Proteínas da Matriz Viral/química
6.
FEBS Lett ; 587(2): 120-7, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23178926

RESUMO

The coronavirus (CoV) N protein oligomerizes via its carboxyl terminus. However, the oligomerization mechanism of the C-terminal domains (CTD) of CoV N proteins remains unclear. Based on the protein disorder prediction system, a comprehensive series of HCoV-229E N protein mutants with truncated CTD was generated and systematically investigated by biophysical and biochemical analyses to clarify the role of the C-terminal tail of the HCoV-229E N protein in oligomerization. These results indicate that the last C-terminal tail plays an important role in dimer-dimer association. The C-terminal tail peptide is able to interfere with the oligomerization of the CTD of HCoV-229E N protein and performs the inhibitory effect on viral titre of HCoV-229E. This study may assist the development of anti-viral drugs against HCoV.


Assuntos
Coronavirus Humano 229E/química , Proteínas do Nucleocapsídeo/química , Linhagem Celular , Dicroísmo Circular , Coronavirus Humano 229E/genética , Proteínas do Nucleocapsídeo de Coronavírus , Humanos , Proteínas do Nucleocapsídeo/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
7.
J Gen Virol ; 92(Pt 8): 1899-1905, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21525212

RESUMO

Several plus-strand RNA viruses encode proteins containing macrodomains. These domains possess ADP-ribose-1″-phosphatase (ADRP) activity and/or bind poly(ADP-ribose), poly(A) or poly(G). The relevance of these activities in the viral life cycle has not yet been resolved. Here, we report that genetically engineered mutants of severe acute respiratory syndrome coronavirus (SARS-CoV) and human coronavirus 229E (HCoV-229E) expressing ADRP-deficient macrodomains displayed an increased sensitivity to the antiviral effect of alpha interferon compared with their wild-type counterparts. The data suggest that macrodomain-associated ADRP activities may have a role in viral escape from the innate immune responses of the host.


Assuntos
Antivirais/imunologia , Coronavirus Humano 229E/enzimologia , Infecções por Coronavirus/imunologia , Interferon-alfa/imunologia , Monoéster Fosfórico Hidrolases/química , Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Proteínas Virais/química , Sequência de Aminoácidos , Linhagem Celular , Coronavirus Humano 229E/química , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/imunologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Humanos , Interferon-alfa/genética , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/imunologia , Estrutura Terciária de Proteína , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Alinhamento de Sequência , Síndrome Respiratória Aguda Grave/genética , Síndrome Respiratória Aguda Grave/virologia , Proteínas Virais/genética , Proteínas Virais/imunologia
8.
Protein Sci ; 18(1): 6-16, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19177346

RESUMO

The polyproteins of coronaviruses are cleaved by viral proteases into at least 15 nonstructural proteins (Nsps). Consisting of five domains, Nsp3 is the largest of these (180-210 kDa). Among these domains, the so-called X-domain is believed to act as ADP-ribose-1''-phosphate phosphatase or to bind poly(ADP-ribose). However, here we show that the X-domain of Infectious Bronchitis Virus (strain Beaudette), a Group-3 coronavirus, fails to bind ADP-ribose. This is explained on the basis of the crystal structure of the protein, determined at two different pH values. For comparison, we also describe the crystal structure of the homologous X-domain from Human Coronavirus 229E, a Group-1 coronavirus, which does bind ADP-ribose.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Coronavirus Humano 229E/química , Vírus da Bronquite Infecciosa/química , Proteínas não Estruturais Virais/química , Adenosina Difosfato Ribose/análogos & derivados , Adenosina Difosfato Ribose/química , Sequência de Aminoácidos , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/metabolismo , Cristalografia por Raios X , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Ligação Proteica/fisiologia , Conformação Proteica , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Alinhamento de Sequência , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
9.
J Virol ; 83(2): 1083-92, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18987156

RESUMO

The coronaviruses are a large family of plus-strand RNA viruses that cause a wide variety of diseases both in humans and in other organisms. The coronaviruses are composed of three main lineages and have a complex organization of nonstructural proteins (nsp's). In the coronavirus, nsp3 resides a domain with the macroH2A-like fold and ADP-ribose-1"-monophosphatase (ADRP) activity, which is proposed to play a regulatory role in the replication process. However, the significance of this domain for the coronaviruses is still poorly understood due to the lack of structural information from different lineages. We have determined the crystal structures of two viral ADRP domains, from the group I human coronavirus 229E and the group III avian infectious bronchitis virus, as well as their respective complexes with ADP-ribose. The structures were individually solved to elucidate the structural similarities and differences of the ADRP domains among various coronavirus species. The active-site residues responsible for mediating ADRP activity were found to be highly conserved in terms of both sequence alignment and structural superposition, whereas the substrate binding pocket exhibited variations in structure but not in sequence. Together with data from a previous analysis of the ADRP domain from the group II severe acute respiratory syndrome coronavirus and from other related functional studies of ADRP domains, a systematic structural analysis of the coronavirus ADRP domains was realized for the first time to provide a structural basis for the function of this domain in the coronavirus replication process.


Assuntos
Coronavirus Humano 229E/química , Vírus da Bronquite Infecciosa/química , Monoéster Fosfórico Hidrolases/química , Estrutura Quaternária de Proteína , Proteínas não Estruturais Virais/química , Adenosina Difosfato Ribose/química , Sequência de Aminoácidos , Animais , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
10.
J Vis Exp ; (14)2008 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19066576

RESUMO

Determination of infectious viral titers is a basic and essential experimental approach for virologists. Classical plaque assays cannot be used for viruses that do not cause significant cytopathic effects, which is the case for prototype strains 229E and OC43 of human coronavirus (HCoV).Therefore, an alternative indirect immunoperoxidase assay (IPA) was developed for the detection and titration of these viruses and is described herein. Susceptible cells are inoculated with serial logarithmic dilutions of virus-containing samples in a 96-well plate format. After viral growth,viral detection by IPA yields the infectious virus titer, expressed as 'Tissue Culture Infectious Dose 50 percent' (TCID50). This represents the dilution of a virus-containing sample at which half of a series of laboratory wells contain infectious replicating virus. This technique provides are liable method for the titration of HCoV-229E and HCoV-OC43 in biological samples such as cells, tissues and fluids [corrected].


Assuntos
Coronavirus Humano 229E/química , Coronavirus Humano OC43/química , Técnicas Imunoenzimáticas/métodos , Proteínas Virais/análise , Células Cultivadas , Resfriado Comum/patologia , Resfriado Comum/virologia , Coronavirus Humano 229E/isolamento & purificação , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Coronavirus Humano OC43/isolamento & purificação , Humanos , Reprodutibilidade dos Testes , Titulometria/métodos , Proteínas Virais/biossíntese
12.
Biochim Biophys Acta ; 1762(7): 693-703, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16842982

RESUMO

Peptides derived from the membrane proximal region of fusion proteins of human immunodeficiency viruses 1 and 2, Coronavirus 229 E, severe acute respiratory syndrome coronavirus and Ebola virus were all potent antagonists of the formyl peptide receptor expressed in Chinese hamster ovary cells. Binding of viral peptides was affected by the naturally occurring polymorphisms at residues 190 and 192, which are located at second extracellular loop-transmembrane helix 5 interface. Substitution of R190 with W190 enhanced the affinity for a severe acute respiratory syndrome coronavirus peptide 6 fold but reduced the affinity for N-formyl-Nle-Leu-Phe by 2.5 fold. A 12 mer peptide derived from coronavirus 229E (ETYIKPWWVWL) was the most potent antagonist of the formyl peptide receptor W190 with a K(i) of 230 nM. Fluorescently labeled ETYIKPWWVWL was effectively internalized by all three variants with EC(50) of approximately 25 nM. An HKU-1 coronavirus peptide, MYVKWPWYVWL, was a potent antagonist but N-formyl-MYVKWPWYVWL was a potent agonist. ETYIKPWWVWL did not stimulate GTPgammaS binding but inhibited the stimulation by formyl-NleLeuPhe. It also blocked beta arrestin translocation and receptor downregulation induced by formyl-Nle-Leu-Phe. This indicates that formyl peptide receptor may be important in viral infections and that variations in its sequence among individuals may affect their likelihood of viral and bacterial infections.


Assuntos
Coronavirus Humano 229E/química , Ebolavirus/química , HIV-1/química , HIV-2/química , Fragmentos de Peptídeos/metabolismo , Receptores de Formil Peptídeo/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Cricetinae , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Ligação Proteica , Conformação Proteica , Transfecção , Proteínas Virais/química , Proteínas Virais/metabolismo
13.
Acta Pharmacol Sin ; 24(6): 505-11, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12791175

RESUMO

AIM: To obtain the pure sample of SARS small envelope E protein (SARS E protein), study its properties and analyze its possible functions. METHODS: The plasmid of SARS E protein was constructed by the polymerase chain reaction (PCR), and the protein was expressed in the E coli strain. The secondary structure feature of the protein was determined by circular dichroism (CD) technique. The possible functions of this protein were annotated by bioinformatics methods, and its possible three-dimensional model was constructed by molecular modeling. RESULTS: The pure sample of SARS E protein was obtained. The secondary structure feature derived from CD determination is similar to that from the secondary structure prediction. Bioinformatics analysis indicated that the key residues of SARS E protein were much conserved compared to the E proteins of other coronaviruses. In particular, the primary amino acid sequence of SARS E protein is much more similar to that of murine hepatitis virus (MHV) and other mammal coronaviruses. The transmembrane (TM) segment of the SARS E protein is relatively more conserved in the whole protein than other regions. CONCLUSION: The success of expressing the SARS E protein is a good starting point for investigating the structure and functions of this protein and SARS coronavirus itself as well. The SARS E protein may fold in water solution in a similar way as it in membrane-water mixed environment. It is possible that beta-sheet I of the SARS E protein interacts with the membrane surface via hydrogen bonding, this beta-sheet may uncoil to a random structure in water solution.


Assuntos
Síndrome Respiratória Aguda Grave/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Proteínas do Envelope Viral/genética , Dicroísmo Circular , Biologia Computacional , Coronavirus Humano 229E/química , Coronavirus Bovino/química , Coronavirus Canino/química , Humanos , Modelos Moleculares , Vírus da Hepatite Murina/química , Conformação Proteica , Estrutura Secundária de Proteína , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/isolamento & purificação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/isolamento & purificação
14.
Peptides ; 24(12): 1837-45, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15127935

RESUMO

In this study, we analyzed the amino acid pairs affected by mutations in two spike proteins from human coronavirus strains 229E and OC43 by means of random analysis in order to gain some insight into the possible mutations in the spike protein from SARS-CoV. The results demonstrate that the randomly unpredictable amino acid pairs are more sensitive to the mutations. The larger is the difference between actual and predicted frequencies, the higher is the chance of mutation occurring. The effect induced by mutations is to reduce the difference between actual and predicted frequencies. The amino acid pairs whose actual frequencies are larger than their predicted frequencies are more likely to be targeted by mutations, whereas the amino acid pairs whose actual frequencies are smaller than their predicted frequencies are more likely to be formed after mutations. These findings are identical to our several recent studies, i.e. the mutations represent a process of degeneration inducing human diseases.


Assuntos
Aminoácidos/metabolismo , Coronavirus/química , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Mutação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Biologia Computacional , Coronavirus Humano 229E/química , Coronavirus Humano OC43/química , Humanos , Glicoproteína da Espícula de Coronavírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...