Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34078666

RESUMO

Intrinsic mechanisms such as temporal series of transcription factors orchestrate neurogenesis from a limited number of neural progenitors in the brain. Extrinsic regulations, however, remain largely unexplored. Here we describe a two-step glia-derived signal that regulates neurogenesis in the Drosophila mushroom body (MB). In a temporal manner, glial-specific ubiquitin ligase dSmurf activates non-cell-autonomous Hedgehog signaling propagation by targeting the receptor Patched to suppress and promote the exit of MB neuroblast (NB) proliferation, thereby specifying the correct α/ß cell number without affecting differentiation. Independent of NB proliferation, dSmurf also stabilizes the expression of the cell-adhesion molecule Fasciclin II (FasII) via its WW domains and regulates FasII homophilic interaction between glia and MB axons to refine α/ß-lobe integrity. Our findings provide insights into how extrinsic glia-to-neuron communication coordinates with NB proliferation capacity to regulate MB neurogenesis; glial proteostasis is likely a generalized mechanism in orchestrating neurogenesis.


Assuntos
Comunicação Celular , Proliferação de Células , Corpos Pedunculados/embriologia , Neurogênese , Neuroglia/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster
2.
Open Biol ; 10(12): 200295, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33321059

RESUMO

The FoxP family of transcription factors is necessary for operant self-learning, an evolutionary conserved form of motor learning. The expression pattern, molecular function and mechanisms of action of the Drosophila FoxP orthologue remain to be elucidated. By editing the genomic locus of FoxP with CRISPR/Cas9, we find that the three different FoxP isoforms are expressed in neurons, but not in glia and that not all neurons express all isoforms. Furthermore, we detect FoxP expression in, e.g. the protocerebral bridge, the fan-shaped body and in motor neurons, but not in the mushroom bodies. Finally, we discover that FoxP expression during development, but not adulthood, is required for normal locomotion and landmark fixation in walking flies. While FoxP expression in the protocerebral bridge and motor neurons is involved in locomotion and landmark fixation, the FoxP gene can be excised from dorsal cluster neurons and mushroom-body Kenyon cells without affecting these behaviours.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Locomoção , Animais , Animais Geneticamente Modificados , Comportamento Animal , Drosophila/embriologia , Desenvolvimento Embrionário/genética , Imunofluorescência , Técnicas de Inativação de Genes , Imuno-Histoquímica , Locomoção/genética , Família Multigênica , Corpos Pedunculados/embriologia , Corpos Pedunculados/metabolismo , Neurônios/citologia , Neurônios/metabolismo
3.
Dev Cell ; 47(1): 38-52.e6, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30300589

RESUMO

Developmental neuronal remodeling is an evolutionarily conserved mechanism required for precise wiring of nervous systems. Despite its fundamental role in neurodevelopment and proposed contribution to various neuropsychiatric disorders, the underlying mechanisms are largely unknown. Here, we uncover the fine temporal transcriptional landscape of Drosophila mushroom body γ neurons undergoing stereotypical remodeling. Our data reveal rapid and dramatic changes in the transcriptional landscape during development. Focusing on DNA binding proteins, we identify eleven that are required for remodeling. Furthermore, we sequence developing γ neurons perturbed for three key transcription factors required for pruning. We describe a hierarchical network featuring positive and negative feedback loops. Superimposing the perturbation-seq on the developmental expression atlas highlights a framework of transcriptional modules that together drive remodeling. Overall, this study provides a broad and detailed molecular insight into the complex regulatory dynamics of developmental remodeling and thus offers a pipeline to dissect developmental processes via RNA profiling.


Assuntos
Corpos Pedunculados/embriologia , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Animais , Axônios/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Metamorfose Biológica/fisiologia , Corpos Pedunculados/metabolismo , Neurônios/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo , Transcriptoma
4.
Dev Biol ; 419(2): 237-249, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27634569

RESUMO

MicroRNAs are small non-coding RNAs that inhibit protein expression post-transcriptionally. They have been implicated in many different physiological processes, but little is known about their individual involvement in learning and memory. We recently identified several miRNAs that either increased or decreased intermediate-term memory when inhibited in the central nervous system, including miR-iab8-3p. We report here a new developmental role for this miRNA. Blocking the expression of miR-iab8-3p during the development of the organism leads to hypertrophy of individual mushroom body neuron soma, a reduction in the field size occupied by axonal projections, and adult intellectual disability. We further identified four potential mRNA targets of miR-iab8-3p whose inhibition modulates intermediate-term memory including ceramide phosphoethanolamine synthase, which may account for the behavioral effects produced by miR-iab8-3p inhibition. Our results offer important new information on a microRNA required for normal neurodevelopment and the capacity to learn and remember normally.


Assuntos
Aprendizagem da Esquiva/fisiologia , Condicionamento Clássico/fisiologia , Drosophila melanogaster/embriologia , Memória/fisiologia , MicroRNAs/antagonistas & inibidores , Corpos Pedunculados/fisiologia , Neurônios/ultraestrutura , Olfato/fisiologia , Animais , Animais Geneticamente Modificados , Tamanho Celular , Sinais (Psicologia) , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Eletrochoque , Feminino , Masculino , MicroRNAs/genética , MicroRNAs/fisiologia , Corpos Pedunculados/embriologia , Corpos Pedunculados/crescimento & desenvolvimento , Corpos Pedunculados/ultraestrutura , Neurópilo/ultraestrutura , Odorantes , RNA/antagonistas & inibidores , Interferência de RNA
5.
Genetics ; 202(3): 1135-51, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26801180

RESUMO

The noncanonical Frizzled/planar cell polarity (PCP) pathway regulates establishment of polarity within the plane of an epithelium to generate diversity of cell fates, asymmetric, but highly aligned structures, or to orchestrate the directional migration of cells during convergent extension during vertebrate gastrulation. In Drosophila, PCP signaling is essential to orient actin wing hairs and to align ommatidia in the eye, in part by coordinating the movement of groups of photoreceptor cells during ommatidial rotation. Importantly, the coordination of PCP signaling with changes in the cytoskeleton is essential for proper epithelial polarity. Formins polymerize linear actin filaments and are key regulators of the actin cytoskeleton. Here, we show that the diaphanous-related formin, Frl, the single fly member of the FMNL (formin related in leukocytes/formin-like) formin subfamily affects ommatidial rotation in the Drosophila eye and is controlled by the Rho family GTPase Cdc42. Interestingly, we also found that frl mutants exhibit an axon growth phenotype in the mushroom body, a center for olfactory learning in the Drosophila brain, which is also affected in a subset of PCP genes. Significantly, Frl cooperates with Cdc42 and another formin, DAAM, during mushroom body formation. This study thus suggests that different formins can cooperate or act independently in distinct tissues, likely integrating various signaling inputs with the regulation of the cytoskeleton. It furthermore highlights the importance and complexity of formin-dependent cytoskeletal regulation in multiple organs and developmental contexts.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Olho/embriologia , Proteínas Fetais/fisiologia , Proteínas dos Microfilamentos/fisiologia , Corpos Pedunculados/embriologia , Proteínas Nucleares/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Axônios/fisiologia , Polaridade Celular , Citoesqueleto/fisiologia , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas Fetais/genética , Forminas , Proteínas de Ligação ao GTP/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Proteínas dos Microfilamentos/genética , Corpos Pedunculados/citologia , Proteínas Nucleares/genética , Organogênese , Rotação
6.
Izv Akad Nauk Ser Biol ; (5): 495-502, 2015.
Artigo em Russo | MEDLINE | ID: mdl-26638237

RESUMO

It is revealed that the larval brain of Pterostichus niger, an active predator with well-developed long-distance sense organs (the set of antennal sensilla and lateral ocelli, or stemmata) at hatching already contains optic lobes, which include two groups of optic neuropils and complex antennal lobes of glomerular neuropil. It is shown that the central complex of the protocerebrum is represented by a bipartite protocerebral bridge and the upper part of the central body and the mushroom bodies include, numerous Kenyon cells, a well-developed calyx, a peduncular apparatus, and numerous neuroblasts.


Assuntos
Besouros/ultraestrutura , Corpos Pedunculados/ultraestrutura , Animais , Besouros/embriologia , Larva/fisiologia , Larva/ultraestrutura , Corpos Pedunculados/embriologia
7.
PLoS One ; 10(8): e0136610, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26313745

RESUMO

RNA binding proteins assemble on mRNAs to control every single step of their life cycle, from nuclear splicing to cytoplasmic localization, stabilization or translation. Consistent with an essential role of RNA binding proteins in neuronal maturation and function, mutations in this class of proteins, in particular in members of the hnRNP family, have been associated with neurological diseases. To date, however, the physiological function of hnRNPs during in vivo neuronal development has remained poorly explored. Here, we have investigated the role of Drosophila Hrp48, a fly homologue of mammalian hnRNP A2/B1, during central nervous system development. Using a combination of mutant conditions, we showed that hrp48 is required for the formation, growth and guidance of axonal branches in Mushroom Body neurons. Furthermore, our results revealed that hrp48 inactivation induces an overextension of Mushroom Body dorsal axonal branches, with a significantly higher penetrance in females than in males. Finally, as demonstrated by immunolocalization studies, Hrp48 is confined to Mushroom Body neuron cell bodies, where it accumulates in the cytoplasm from larval stages to adulthood. Altogether, our data provide evidence for a crucial in vivo role of the hnRNP Hrp48 in multiple aspects of axon guidance and branching during nervous system development. They also indicate cryptic sex differences in the development of sexually non-dimorphic neuronal structures.


Assuntos
Axônios/metabolismo , Proteínas de Drosophila/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Corpos Pedunculados/embriologia , Mutação , Penetrância , Caracteres Sexuais , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Ribonucleoproteínas Nucleares Heterogêneas/genética , Masculino , Corpos Pedunculados/citologia
8.
J Neurosci ; 35(28): 10154-67, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26180192

RESUMO

Recent studies established that the planar cell polarity (PCP) pathway is critical for various aspects of nervous system development and function, including axonal guidance. Although it seems clear that PCP signaling regulates actin dynamics, the mechanisms through which this occurs remain elusive. Here, we establish a functional link between the PCP system and one specific actin regulator, the formin DAAM, which has previously been shown to be required for embryonic axonal morphogenesis and filopodia formation in the growth cone. We show that dDAAM also plays a pivotal role during axonal growth and guidance in the adult Drosophila mushroom body, a brain center for learning and memory. By using a combination of genetic and biochemical assays, we demonstrate that Wnt5 and the PCP signaling proteins Frizzled, Strabismus, and Dishevelled act in concert with the small GTPase Rac1 to activate the actin assembly functions of dDAAM essential for correct targeting of mushroom body axons. Collectively, these data suggest that dDAAM is used as a major molecular effector of the PCP guidance pathway. By uncovering a signaling system from the Wnt5 guidance cue to an actin assembly factor, we propose that the Wnt5/PCP navigation system is linked by dDAAM to the regulation of the growth cone actin cytoskeleton, and thereby growth cone behavior, in a direct way.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Axônios/fisiologia , Polaridade Celular/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Corpos Pedunculados , Transdução de Sinais/genética , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Geneticamente Modificados , Proteínas Desgrenhadas , Drosophila , Proteínas de Drosophila/genética , Embrião não Mamífero , Cones de Crescimento/fisiologia , Imunoprecipitação , Corpos Pedunculados/citologia , Corpos Pedunculados/embriologia , Corpos Pedunculados/crescimento & desenvolvimento , Mutação/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Proteínas Wnt/metabolismo , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo
9.
Arch Insect Biochem Physiol ; 89(3): 169-80, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25781424

RESUMO

Despite numerous studies on late embryogenesis abundant (LEA) proteins, their functions, roles, and localizations during developmental stages in arthropods remain unknown. LEA proteins protect crucial proteins against osmotic stress during the development and growth of various organisms. Thus, in this study, fluorescence in situ hybridization was used to determine the crucial regions protected against osmotic stress as well as the distinctive localization of group 3 (G3) LEA(+) cells during brine shrimp development. Several cell types were found to synthesize G3 LEA RNA, including neurons, muscular cells, APH-1(+) cells, and renal cells. The G3 LEA(+) neuronal cell bodies outside of the mushroom body projected their axonal bundles to the central body, but those inside the mushroom body projected their axonal bundles toward the deutocerebrum without innervating the central body. The cell bodies inside the mushroom body received axons of the G3 LEA(+) sensory cells at the medial ventral cup of the nauplius eye. Several glands were found to synthesize G3 LEA RNA during the nauplius stages of brine shrimp, including the sinus, antennal I and II, salt, and three ectodermal glands. This study provides the first demonstration of the formation of G3 LEA(+) sinus glands at the emergence stages of brine shrimp. These results suggest that G3 LEA protein is synthesized in several cell types. In particular, specific glands play crucial roles during the emergence and nauplius stages of brine shrimp.


Assuntos
Artemia/embriologia , Animais , Artemia/metabolismo , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Corpos Pedunculados/embriologia , Neurônios/metabolismo , Pressão Osmótica , Estresse Fisiológico
10.
Biochim Biophys Acta ; 1849(2): 217-23, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24953188

RESUMO

The unfulfilled gene of Drosophila encodes a member of the NR2E subfamily of nuclear receptors. Like related members of the NR2E subfamily, UNFULFILLED is anticipated to function as a dimer, binding to DNA response elements and regulating the expression of target genes. The UNFULFILLED protein may be regulated by ligand-binding and may also be post-transcriptionally modified by sumoylation and phosphorylation. unfulfilled mutants display a range of aberrant phenotypes, problems with eclosion and post-eclosion behaviors, compromised fertility, arrhythmicity, and a lack of all adult mushroom body lobes. The locus of the fertility problem has not been determined. The behavioral arrhythmicity is due to the unfulfilled-dependent disruption of gene expression in a set of pacemaker neurons. The eclosion and the mushroom body lobe phenotypes of unfulfilled mutants are the result of developmental problems associated with failures in axon pathfinding or re-extension. Interest in genes that act downstream of unfulfilled has resulted in the identification of a growing number of unfulfilled interacting loci, providing the first glimpse into the composition of unfulfilled-dependent gene networks. This article is part of a Special Issue entitled: Nuclear receptors in animal development.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Sistema Nervoso/embriologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Dados de Sequência Molecular , Corpos Pedunculados/embriologia , Neurogênese/genética , Fenótipo , Receptores Citoplasmáticos e Nucleares/genética
11.
Genetics ; 198(4): 1571-86, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25326235

RESUMO

Disruption of epigenetic gene control mechanisms in the brain causes significant cognitive impairment that is a debilitating hallmark of most neurodegenerative disorders, including Alzheimer's disease (AD). Histone acetylation is one of the best characterized of these epigenetic mechanisms that is critical for regulating learning- and memory- associated gene expression profiles, yet the specific histone acetyltransferases (HATs) that mediate these effects have yet to be fully characterized. Here, we investigate an epigenetic role for the HAT Tip60 in learning and memory formation using the Drosophila CNS mushroom body (MB) as a well-characterized cognition model. We show that Tip60 is endogenously expressed in the Kenyon cells, the intrinsic neurons of the MB, and in the MB axonal lobes. Targeted loss of Tip60 HAT activity in the MB causes thinner and shorter axonal lobes while increasing Tip60 HAT levels cause no morphological defects. Functional consequences of both loss and gain of Tip60 HAT levels in the MB are evidenced by defects in immediate-recall memory. Our ChIP-Seq analysis reveals that Tip60 target genes are enriched for functions in cognitive processes, and, accordingly, key genes representing these pathways are misregulated in the Tip60 HAT mutant fly brain. Remarkably, we find that both learning and immediate-recall memory deficits that occur under AD-associated, amyloid precursor protein (APP)-induced neurodegenerative conditions can be effectively rescued by increasing Tip60 HAT levels specifically in the MB. Together, our findings uncover an epigenetic transcriptional regulatory role for Tip60 in cognitive function and highlight the potential of HAT activators as a therapeutic option for neurodegenerative disorders.


Assuntos
Proteínas de Drosophila/genética , Drosophila/fisiologia , Epigênese Genética , Histona Acetiltransferases/genética , Aprendizagem , Memória , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Ativação Enzimática , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Histona Acetiltransferases/metabolismo , Corpos Pedunculados/embriologia , Corpos Pedunculados/metabolismo , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo
12.
G3 (Bethesda) ; 4(4): 693-706, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24558265

RESUMO

The mushroom body (MB) of Drosophila melanogaster is an organized collection of interneurons that is required for learning and memory. Each of the three subtypes of MB neurons, γ, α'/ß', and α/ß, branch at some point during their development, providing an excellent model in which to study the genetic regulation of axon branching. Given the sequential birth order and the unique patterning of MB neurons, it is likely that specific gene cascades are required for the different guidance events that form the characteristic lobes of the MB. The nuclear receptor UNFULFILLED (UNF), a transcription factor, is required for the differentiation of all MB neurons. We have developed and used a classical genetic suppressor screen that takes advantage of the fact that ectopic expression of unf causes lethality to identify candidate genes that act downstream of UNF. We hypothesized that reducing the copy number of unf-interacting genes will suppress the unf-induced lethality. We have identified 19 candidate genes that when mutated suppress the unf-induced lethality. To test whether candidate genes impact MB development, we performed a secondary phenotypic screen in which the morphologies of the MBs in animals heterozygous for unf and a specific candidate gene were analyzed. Medial MB lobes were thin, missing, or misguided dorsally in five double heterozygote combinations (;unf/+;axin/+, unf/+;Fps85D/+, ;unf/+;Tsc1/+, ;unf/+;Rheb/+, ;unf/+;msn/+). Dorsal MB lobes were missing in ;unf/+;DopR2/+ or misprojecting beyond the termination point in ;unf/+;Sytß double heterozygotes. These data suggest that unf and unf-interacting genes play specific roles in axon development in a branch-specific manner.


Assuntos
Axônios/metabolismo , Drosophila melanogaster/metabolismo , Corpos Pedunculados/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Genótipo , Heterozigoto , Imuno-Histoquímica , Corpos Pedunculados/embriologia , Corpos Pedunculados/crescimento & desenvolvimento , Neurônios/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
J Comp Neurol ; 521(16): 3716-40, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23749685

RESUMO

Olfactory processing has been intensively studied in Drosophila melanogaster. However, we still know little about the descending neural pathways from the higher order processing centers and how these connect with other neural circuits. Here we describe, in detail, the adult projections patterns that arise from a cluster of 78 neurons, defined by the expression of the Odd-skipped transcription factor. We term these neurons Odd neurons. By using expression of genetically encoded axonal and dendritic markers, we show that a subset of the Odd neurons projects dendrites into the calyx of the mushroom body (MB) and axons into the inferior protocerebrum. We exclude the possibility that the Odd neurons are part of the well-known Kenyon cells whose projections form the MB and conclude that the Odd neurons belong to a previously not described class of extrinsic MB neurons. In addition, three of the Odd neurons project into the lobula plate of the optic lobe, and two of these cells extend axons ipsi- and contralaterally in the brain. Anatomically, these cells do not resemble any previously described lobula plate tangential cells (LPTCs) in Drosophila. We show that the Odd neurons are predominantly cholinergic but also include a small number of γ-aminobutyric acid (GABA)ergic neurons. Finally, we provide evidence that the Odd neurons are a hemilineage, suggesting they are born from a defined set of neuroblasts. Our anatomical analysis hints at the possibility that subgroups of Odd neurons could be involved in olfactory and visual processing.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/anatomia & histologia , Corpos Pedunculados/citologia , Neurônios/fisiologia , Olfato/fisiologia , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Neurônios Colinérgicos/metabolismo , Proteínas de Ligação a DNA/genética , Dendritos/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/genética , Metamorfose Biológica/fisiologia , Corpos Pedunculados/embriologia , Corpos Pedunculados/crescimento & desenvolvimento , Neurônios/classificação , Neurônios/citologia , Neurotransmissores/metabolismo , Condutos Olfatórios/citologia , Condutos Olfatórios/embriologia , Condutos Olfatórios/crescimento & desenvolvimento , Lobo Óptico de Animais não Mamíferos/citologia , Lobo Óptico de Animais não Mamíferos/embriologia , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Olfato/genética , Fatores de Transcrição/genética , Vias Visuais/citologia
14.
Development ; 139(14): 2510-22, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22675205

RESUMO

Key to understanding the mechanisms that underlie the specification of divergent cell types in the brain is knowledge about the neurectodermal origin and lineages of their stem cells. Here, we focus on the origin and embryonic development of the four neuroblasts (NBs) per hemisphere in Drosophila that give rise to the mushroom bodies (MBs), which are central brain structures essential for olfactory learning and memory. We show that these MBNBs originate from a single field of proneural gene expression within a specific mitotic domain of procephalic neuroectoderm, and that Notch signaling is not needed for their formation. Subsequently, each MBNB occupies a distinct position in the developing MB cortex and expresses a specific combination of transcription factors by which they are individually identifiable in the brain NB map. During embryonic development each MBNB generates an individual cell lineage comprising different numbers of neurons, including intrinsic γ-neurons and various types of non-intrinsic neurons that do not contribute to the MB neuropil. This contrasts with the postembryonic phase of MBNB development during which they have been shown to produce identical populations of intrinsic neurons. We show that different neuron types are produced in a lineage-specific temporal order and that neuron numbers are regulated by differential mitotic activity of the MBNBs. Finally, we demonstrate that γ-neuron axonal outgrowth and spatiotemporal innervation of the MB lobes follows a lineage-specific mode. The MBNBs are the first stem cells of the Drosophila CNS for which the origin and complete cell lineages have been determined.


Assuntos
Drosophila/citologia , Corpos Pedunculados/citologia , Neurônios/citologia , Animais , Drosophila/embriologia , Drosophila/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Corpos Pedunculados/embriologia , Corpos Pedunculados/metabolismo , Placa Neural/citologia , Placa Neural/metabolismo , Neurônios/metabolismo
15.
Cold Spring Harb Protoc ; 2012(2): 231-4, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22301647

RESUMO

Chemical ablation is an effective tool for studying nervous system development and function in Drosophila. Hydroxyurea (HU) inhibits ribonucleotide reductase, blocking DNA synthesis, and killing dividing cells. The specificity of HU ablation is thus dependent on developmental events. In this respect, HU is useful in determining temporal patterns of neuroblast proliferation and the origins of neuronal elements in flies and other insects. In Drosophila, an especially fortuitous time window occurs at the end of embryonic development. For the first 8-12 h after larval hatching, only five neuroblasts are proliferating in each brain hemisphere. Four of these are found in the dorsal protocerebrum and give rise to the intrinsic elements (Kenyon cells [KCs] and glia) of the mushroom bodies (MBs). The remaining single neuroblast has an anterolateral position in the brain and is the progenitor of local interneurons (LocI) in the antennal lobe (AL) and a subset of lateral relay interneurons (RIl) in the inner antennocerebral tract (iACT). Treating newly hatched larvae with HU results in adult flies with KCs and AL interneurons of embryonic origin only. This protocol describes methods for collecting newly hatched Drosophila larvae and treating them with HU.


Assuntos
Técnicas de Ablação/métodos , Drosophila/embriologia , Drosophila/fisiologia , Hidroxiureia/metabolismo , Corpos Pedunculados/fisiologia , Animais , Drosophila/efeitos dos fármacos , Hidroxiureia/toxicidade , Larva/efeitos dos fármacos , Larva/fisiologia , Corpos Pedunculados/embriologia
16.
Development ; 139(1): 165-77, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22147954

RESUMO

Branching morphology is a hallmark feature of axons and dendrites and is essential for neuronal connectivity. To understand how this develops, I analyzed the stereotyped pattern of Drosophila mushroom body (MB) neurons, which have single axons branches that extend dorsally and medially. I found that components of the Wnt/Planar Cell Polarity (PCP) pathway control MB axon branching. frizzled mutant animals showed a predominant loss of dorsal branch extension, whereas strabismus (also known as Van Gogh) mutants preferentially lost medial branches. Further results suggest that Frizzled and Strabismus act independently. Nonetheless, branching fates are determined by complex Wnt/PCP interactions, including interactions with Dishevelled and Prickle that function in a context-dependent manner. Branching decisions are MB-autonomous but non-cell-autonomous as mutant and non-mutant neurons regulate these decisions collectively. I found that Wnt/PCP components do not need to be asymmetrically localized to distinct branches to execute branching functions. However, Prickle axonal localization depends on Frizzled and Strabismus.


Assuntos
Axônios/fisiologia , Drosophila melanogaster/embriologia , Corpos Pedunculados/citologia , Neurogênese/fisiologia , Via de Sinalização Wnt/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Polaridade Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Desgrenhadas , Proteínas de Drosophila/metabolismo , Receptores Frizzled/metabolismo , Imuno-Histoquímica , Proteínas com Domínio LIM/metabolismo , Proteínas de Membrana/metabolismo , Corpos Pedunculados/embriologia , Fosfoproteínas/metabolismo
17.
Izv Akad Nauk Ser Biol ; (1): 90-5, 2011.
Artigo em Russo | MEDLINE | ID: mdl-21442910

RESUMO

Neurogenesis in mushroom bodies is studied in 12 species of the highest dipterans. A substantial difference in the number of neuroblasts forming mushroom bodies is found. In the majority of species studied, Kenyon cells are formed by four single neuroblasts. Among six calliphorid species, the number of neuroblasts increases up to 10-15 (mean 12.6) in each mushroom body in Calliphora vicina only. In young pupae of Muscina stabulans and M. livida, four polyneuroblastic prolipherate centers formed instead of singular neuroblats. These centers disintegrate into numerous single neuroblasts. A hypothesis of the origin of the polyneuroblastic structure of mushroom bodies found in C. vicina and, earlier, in Musca domestica, is proposed.


Assuntos
Dípteros/embriologia , Corpos Pedunculados/embriologia , Animais , Dípteros/citologia , Larva/citologia , Larva/crescimento & desenvolvimento , Corpos Pedunculados/citologia
18.
J Neurosci ; 30(32): 10655-66, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20702697

RESUMO

Insect mushroom bodies are required for diverse behavioral functions, including odor learning and memory. Using the numerically simple olfactory pathway of the Drosophila melanogaster larva, we provide evidence that the formation of appetitive olfactory associations relies on embryonic-born intrinsic mushroom body neurons (Kenyon cells). The participation of larval-born Kenyon cells, i.e., neurons that become gradually integrated in the developing mushroom body during larval life, in this task is unlikely. These data provide important insights into how a small set of identified Kenyon cells can store and integrate olfactory information in a developing brain. To investigate possible functional subdivisions of the larval mushroom body, we anatomically disentangle its input and output neurons at the single-cell level. Based on this approach, we define 10 subdomains of the larval mushroom body that may be implicated in mediating specific interactions between the olfactory pathway, modulatory neurons, and neuronal output.


Assuntos
Comportamento Apetitivo/fisiologia , Larva/fisiologia , Memória/fisiologia , Corpos Pedunculados/citologia , Neurônios/fisiologia , Condutos Olfatórios/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Apetitivo/efeitos dos fármacos , Antígenos CD8/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Embrião não Mamífero , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hidroxiureia/farmacologia , Modelos Biológicos , Corpos Pedunculados/embriologia , Neurônios/efeitos dos fármacos , Condutos Olfatórios/efeitos dos fármacos , Olfato/efeitos dos fármacos , Olfato/genética , Olfato/fisiologia , Estatísticas não Paramétricas , Sinapses/metabolismo , Fatores de Transcrição/genética
19.
Cell Tissue Res ; 341(2): 259-77, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20571828

RESUMO

The central complex of the grasshopper Schistocerca gregaria develops to completion during embryogenesis. A major cellular contribution to the central complex is from the w, x, y, z lineages of the pars intercerebralis, each of which comprises over 100 cells, making them by far the largest in the embryonic protocerebrum. Our focus has been to find a cellular mechanism that allows such a large number of cell progeny to be generated within a restricted period of time. Immunohistochemical visualization of the chromosomes of mitotically active cells has revealed an almost identical linear array of proliferative cells present simultaneously in each w, x, y, z lineage at 50% of embryogenesis. This array is maintained relatively unchanged until almost 70% of embryogenesis, after which mitotic activity declines and then ceases. The array is absent from smaller lineages of the protocerebrum not associated with the central complex. The proliferative cells are located apically to the zone of ganglion mother cells and amongst the progeny of the neuroblast. Comparisons of cell morphology, immunoreactivity (horseradish peroxidase, repo, Prospero), location in lineages and spindle orientation have allowed us to distinguish the proliferative cells in an array from neuroblasts, ganglion mother cells, neuronal progeny and glia. Our data are consistent with the proliferative cells being secondary (amplifying) progenitors and originating from a specific subtype of ganglion mother cell. We propose a model of the way that neuroblasts, ganglion mother cells and secondary progenitors together produce the large cell numbers found in central complex lineages.


Assuntos
Gafanhotos/embriologia , Corpos Pedunculados/embriologia , Animais , Anticorpos Monoclonais , Linhagem da Célula/fisiologia , Proliferação de Células , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/embriologia , Gafanhotos/citologia , Gafanhotos/metabolismo , Histonas/imunologia , Imuno-Histoquímica , Neuroglia/citologia , Neurônios/citologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Células-Tronco/citologia
20.
J Comp Neurol ; 518(13): 2612-32, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20503430

RESUMO

Similarly to vertebrates, arthropod brains are compartmentalized into centers with specific neurological functions such as cognition, behavior, and memory. The centers can be further subdivided into smaller functional units. This raises the question of how these compartments are formed during development and how they are integrated into brain centers. We show here for the first time how the precheliceral neuroectoderm of the spider Cupiennius salei is compartmentalized to form the distinct brain centers of the visual system: the optic ganglia, the mushroom bodies, and the arcuate body. The areas of the visual brain centers are defined by the formation of grooves and vesicles and express the proneural gene CsASH1, followed by expression of the neural differentiation marker Prospero. Furthermore, the transcription factor dachshund, which is strongly enriched in the mushroom bodies and the outer optic ganglion of Drosophila, is expressed in the optic anlagen and the mushroom bodies of the spider. The developing brain centers are further subdivided into single neural precursor groups, which become incorporated into the grooves and vesicles but remain distinguishable throughout development, suggesting that they encode spatial information for neural subtype identity. Several molecular and morphological aspects of the development of the optic ganglia and the mushroom bodies are similar in the spider and in insects. Furthermore, we show that the primary engrailed head spot contributes neurons to the optic ganglia of the median eyes, whereas the secondary head spot, which has been associated with the optic ganglia in insects and crustaceans, is absent.


Assuntos
Gânglios dos Invertebrados/embriologia , Corpos Pedunculados/embriologia , Lobo Óptico de Animais não Mamíferos/embriologia , Aranhas/embriologia , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Gânglios dos Invertebrados/metabolismo , Gânglios Sensitivos/embriologia , Gânglios Sensitivos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Larva/metabolismo , Microscopia Confocal , Modelos Neurológicos , Placa Neural/embriologia , Placa Neural/metabolismo , Neurônios/metabolismo , Proteínas/metabolismo , Aranhas/genética , Aranhas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...