Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 34(11): 108871, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33730583

RESUMO

The formation and consolidation of memories are complex phenomena involving synaptic plasticity, microcircuit reorganization, and the formation of multiple representations within distinct circuits. To gain insight into the structural aspects of memory consolidation, we focus on the calyx of the Drosophila mushroom body. In this essential center, essential for olfactory learning, second- and third-order neurons connect through large synaptic microglomeruli, which we dissect at the electron microscopy level. Focusing on microglomeruli that respond to a specific odor, we reveal that appetitive long-term memory results in increased numbers of precisely those functional microglomeruli responding to the conditioned odor. Hindering memory consolidation by non-coincident presentation of odor and reward, by blocking protein synthesis, or by including memory mutants suppress these structural changes, revealing their tight correlation with the process of memory consolidation. Thus, olfactory long-term memory is associated with input-specific structural modifications in a high-order center of the fly brain.


Assuntos
Drosophila melanogaster/fisiologia , Consolidação da Memória/fisiologia , Corpos Pedunculados/inervação , Rede Nervosa/fisiologia , Animais , Axônios/efeitos dos fármacos , Axônios/fisiologia , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/ultraestrutura , Consolidação da Memória/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Corpos Pedunculados/efeitos dos fármacos , Corpos Pedunculados/ultraestrutura , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/ultraestrutura , Plasticidade Neuronal/efeitos dos fármacos , Odorantes , Ácidos Oleicos/farmacologia , Feromônios/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Sinapses/ultraestrutura
2.
Nat Commun ; 12(1): 628, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504795

RESUMO

Consolidated memory can be preserved or updated depending on the environmental change. Although such conflicting regulation may happen during memory updating, the flexibility of memory updating may have already been determined in the initial memory consolidation process. Here, we explored the gating mechanism for activity-dependent transcription in memory consolidation, which is unexpectedly linked to the later memory updating in Drosophila. Through proteomic analysis, we discovered that the compositional change in the transcriptional repressor, which contains the histone deacetylase Rpd3 and CoRest, acts as the gating mechanism that opens and closes the time window for activity-dependent transcription. Opening the gate through the compositional change in Rpd3/CoRest is required for memory consolidation, but closing the gate through Rpd3/CoRest is significant to limit future memory updating. Our data indicate that the flexibility of memory updating is determined through the initial activity-dependent transcription, providing a mechanism involved in defining memory state.


Assuntos
Proteínas Correpressoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Histona Desacetilase 1/metabolismo , Memória/fisiologia , Transcrição Gênica , Acetilação , Animais , Comportamento Animal , Encéfalo/fisiologia , Loci Gênicos , Corpos Pedunculados/inervação , Ligação Proteica , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Mol Neurobiol ; 58(1): 143-155, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32909149

RESUMO

Many different cellular systems and molecular processes become compromised in Alzheimer's disease (AD) including proteostasis, autophagy, inflammatory responses, synapse and neuronal circuitry, and mitochondrial function. We focused in this study on mitochondrial dysfunction owing to the toxic neuronal environment produced by expression of Aß42, and its relationship to other pathologies found in AD including increased neuronal apoptosis, plaque deposition, and memory impairment. Using super-resolution microscopy, we have assayed mitochondrial status in the three distinct neuronal compartments (somatic, dendritic, axonal) of mushroom body neurons of Drosophila expressing Aß42. The mushroom body neurons comprise a major center for olfactory memory formation in insects. We employed calcium imaging to measure mitochondrial function, immunohistochemical and staining techniques to measure apoptosis and plaque formation, and olfactory classical conditioning to measure learning. We found that mitochondria become fragmented at a very early age along with decreased function measured by mitochondrial calcium entry. Increased apoptosis and plaque deposition also occur early, yet interestingly, a learning impairment was found only after a much longer period of time-10 days, which is a large fraction of the fly's lifespan. This is similar to the pronounced delay between cellular pathologies and the emergence of a memory dysfunction in humans. Our studies are consistent with the model that mitochondrial dysfunction and/or other cellular pathologies emerge at an early age and lead to much later learning impairments. The results obtained further develop this Drosophila model as a useful in vivo system for probing the mechanisms by which Aß42 produces mitochondrial and other cellular toxicities that produce memory dysfunction.


Assuntos
Doença de Alzheimer/patologia , Drosophila melanogaster/fisiologia , Mitocôndrias/patologia , Envelhecimento/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Apoptose , Axônios/metabolismo , Transporte Biológico , Cálcio/metabolismo , Dendritos/metabolismo , Modelos Animais de Doenças , Aprendizagem , Corpos Pedunculados/inervação , Neurônios/metabolismo , Bulbo Olfatório/metabolismo , Placa Amiloide/patologia
4.
Elife ; 92020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33315010

RESUMO

Making inferences about the computations performed by neuronal circuits from synapse-level connectivity maps is an emerging opportunity in neuroscience. The mushroom body (MB) is well positioned for developing and testing such an approach due to its conserved neuronal architecture, recently completed dense connectome, and extensive prior experimental studies of its roles in learning, memory, and activity regulation. Here, we identify new components of the MB circuit in Drosophila, including extensive visual input and MB output neurons (MBONs) with direct connections to descending neurons. We find unexpected structure in sensory inputs, in the transfer of information about different sensory modalities to MBONs, and in the modulation of that transfer by dopaminergic neurons (DANs). We provide insights into the circuitry used to integrate MB outputs, connectivity between the MB and the central complex and inputs to DANs, including feedback from MBONs. Our results provide a foundation for further theoretical and experimental work.


Assuntos
Conectoma , Drosophila melanogaster/fisiologia , Corpos Pedunculados/fisiologia , Animais , Mapeamento Encefálico , Corpos Pedunculados/inervação
5.
Cell Rep ; 32(11): 108138, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937130

RESUMO

The patterns of neuronal connectivity underlying multisensory integration, a fundamental property of many brains, remain poorly characterized. The Drosophila melanogaster mushroom body-an associative center-is an ideal system to investigate how different sensory channels converge in higher order brain centers. The neurons connecting the mushroom body to the olfactory system have been described in great detail, but input from other sensory systems remains poorly defined. Here, we use a range of anatomical and genetic techniques to identify two types of input neuron that connect visual processing centers-the lobula and the posterior lateral protocerebrum-to the dorsal accessory calyx of the mushroom body. Together with previous work that described a pathway conveying visual information from the medulla to the ventral accessory calyx of the mushroom body, our study defines a second, parallel pathway that is anatomically poised to convey information from the visual system to the dorsal accessory calyx.


Assuntos
Drosophila melanogaster/fisiologia , Corpos Pedunculados/fisiologia , Vias Visuais/fisiologia , Animais , Animais Geneticamente Modificados , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Dendritos/fisiologia , Drosophila melanogaster/citologia , Corpos Pedunculados/citologia , Corpos Pedunculados/inervação , Especificidade de Órgãos
6.
Dis Model Mech ; 12(3)2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30923190

RESUMO

Technology has led to rapid progress in the identification of genes involved in neurodevelopmental disorders such as intellectual disability (ID), but our functional understanding of the causative genes is lagging. Here, we show that the SWI/SNF chromatin remodelling complex is one of the most over-represented cellular components disrupted in ID. We investigated the role of individual subunits of this large protein complex using targeted RNA interference in post-mitotic memory-forming neurons of the Drosophila mushroom body (MB). Knockdown flies were tested for defects in MB morphology, short-term memory and long-term memory. Using this approach, we identified distinct roles for individual subunits of the Drosophila SWI/SNF complex. Bap60, Snr1 and E(y)3 are required for pruning of the MBγ neurons during pupal morphogenesis, while Brm and Osa are required for survival of MBγ axons during ageing. We used the courtship conditioning assay to test the effect of MB-specific SWI/SNF knockdown on short- and long-term memory. Several subunits, including Brm, Bap60, Snr1 and E(y)3, were required in the MB for both short- and long-term memory. In contrast, Osa knockdown only reduced long-term memory. Our results suggest that individual components of the SWI/SNF complex have different roles in the regulation of structural plasticity, survival and functionality of post-mitotic MB neurons. This study highlights the many possible processes that might be disrupted in SWI/SNF-related ID disorders. Our broad phenotypic characterization provides a starting point for understanding SWI/SNF-mediated gene regulatory mechanisms that are important for development and function of post-mitotic neurons.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Drosophila melanogaster/metabolismo , Memória , Corpos Pedunculados/inervação , Corpos Pedunculados/metabolismo , Fatores de Transcrição/metabolismo , Envelhecimento/metabolismo , Animais , Corte , Proteínas de Drosophila/metabolismo , Feminino , Genes Dominantes , Deficiência Intelectual/genética , Masculino , Morfogênese , Plasticidade Neuronal
7.
Elife ; 72018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30346271

RESUMO

Lasting changes in gene expression are critical for the formation of long-term memories (LTMs), depending on the conserved CrebB transcriptional activator. While requirement of distinct neurons in defined circuits for different learning and memory phases have been studied in detail, only little is known regarding the gene regulatory changes that occur within these neurons. We here use the fruit fly as powerful model system to study the neural circuits of CrebB-dependent appetitive olfactory LTM. We edited the CrebB locus to create a GFP-tagged CrebB conditional knockout allele, allowing us to generate mutant, post-mitotic neurons with high spatial and temporal precision. Investigating CrebB-dependence within the mushroom body (MB) circuit we show that MB α/ß and α'/ß' neurons as well as MBON α3, but not in dopaminergic neurons require CrebB for LTM. Thus, transcriptional memory traces occur in different neurons within the same neural circuit.


Assuntos
Apetite/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Corpos Pedunculados/inervação , Corpos Pedunculados/metabolismo , Neurônios/metabolismo , Transativadores/metabolismo , Alelos , Animais , Técnicas de Inativação de Genes , Memória de Longo Prazo , Reprodutibilidade dos Testes
8.
Neural Dev ; 13(1): 18, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30103787

RESUMO

BACKGROUND: In an earlier study, we identified two neuronal populations, c673a and Fru-GAL4, that regulate fat storage in fruit flies. Both populations partially overlap with a structure in the insect brain known as the mushroom body (MB), which plays a critical role in memory formation. This overlap prompted us to examine whether the MB is also involved in fat storage homeostasis. METHODS: Using a variety of transgenic agents, we selectively manipulated the neural activity of different portions of the MB and associated neurons to decipher their roles in fat storage regulation. RESULTS: Our data show that silencing of MB neurons that project into the α'ß' lobes decreases de novo fatty acid synthesis and causes leanness, while sustained hyperactivation of the same neurons causes overfeeding and produces obesity. The α'ß' neurons oppose and dominate the fat regulating functions of the c673a and Fru-GAL4 neurons. We also show that MB neurons that project into the γ lobe also regulate fat storage, probably because they are a subset of the Fru neurons. We were able to identify input and output neurons whose activity affects fat storage, feeding, and metabolism. The activity of cholinergic output neurons that innervating the ß'2 compartment (MBON-ß'2mp and MBON-γ5ß'2a) regulates food consumption, while glutamatergic output neurons innervating α' compartments (MBON-γ2α'1 and MBON-α'2) control fat metabolism. CONCLUSIONS: We identified a new fat storage regulating center, the α'ß' lobes of the MB. We also delineated the neuronal circuits involved in the actions of the α'ß' lobes, and showed that food intake and fat metabolism are controlled by separate sets of postsynaptic neurons that are segregated into different output pathways.


Assuntos
Gorduras/metabolismo , Corpos Pedunculados/citologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Masculino , Corpos Pedunculados/inervação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Cell Rep ; 22(9): 2346-2358, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29490271

RESUMO

During olfactory associative learning in Drosophila, odors activate specific subsets of intrinsic mushroom body (MB) neurons. Coincident exposure to either rewards or punishments is thought to activate extrinsic dopaminergic neurons, which modulate synaptic connections between odor-encoding MB neurons and MB output neurons to alter behaviors. However, here we identify two classes of intrinsic MB γ neurons based on cAMP response element (CRE)-dependent expression, γCRE-p and γCRE-n, which encode aversive and appetitive valences. γCRE-p and γCRE-n neurons act antagonistically to maintain neutral valences for neutral odors. Activation or inhibition of either cell type upsets this balance, toggling odor preferences to either positive or negative values. The mushroom body output neurons, MBON-γ5ß'2a/ß'2mp and MBON-γ2α'1, mediate the actions of γCRE-p and γCRE-n neurons. Our data indicate that MB neurons encode valence information, as well as odor information, and this information is integrated through a process involving MBONs to regulate learning and memory.


Assuntos
Drosophila melanogaster/fisiologia , Memória/fisiologia , Olfato/fisiologia , Animais , Apetite , Cálcio/metabolismo , AMP Cíclico/metabolismo , Corpos Pedunculados/inervação , Corpos Pedunculados/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Elementos de Resposta/genética
10.
Dev Biol ; 421(2): 233-244, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27908785

RESUMO

Axonal branching is one of the key processes within the enormous complexity of the nervous system to enable a single neuron to send information to multiple targets. However, the molecular mechanisms that control branch formation are poorly understood. In particular, previous studies have rarely addressed the mechanisms underlying axonal bifurcation, in which axons form new branches via splitting of the growth cone. We demonstrate that DISCO Interacting Protein 2 (DIP2) is required for precise axonal bifurcation in Drosophila mushroom body (MB) neurons by suppressing ectopic bifurcation and regulating the guidance of sister axons. We also found that DIP2 localize to the plasma membrane. Domain function analysis revealed that the AMP-synthetase domains of DIP2 are essential for its function, which may involve exerting a catalytic activity that modifies fatty acids. Genetic analysis and subsequent biochemical analysis suggested that DIP2 is involved in the fatty acid metabolization of acyl-CoA. Taken together, our results reveal a function of DIP2 in the developing nervous system and provide a potential functional relationship between fatty acid metabolism and axon morphogenesis.


Assuntos
Orientação de Axônios , Axônios/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Corpos Pedunculados/inervação , Corpos Pedunculados/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Animais Geneticamente Modificados , Células Clonais , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Modelos Biológicos , Mutação/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Domínios Proteicos , Interferência de RNA , Deleção de Sequência , Homologia de Sequência de Aminoácidos
11.
Neuron ; 86(2): 343-5, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25905804

RESUMO

Olfactory memories can be very good-your mother's baking-or very bad-your father's cooking. We go through life forming these different associations with the smells we encounter. But what makes one association pleasant and another repulsive? Work in deep areas of the Drosophila brain has revealed the beginnings of an answer, as reported in this issue of Neuron by Owald et al. (2015).


Assuntos
Comportamento Apetitivo/fisiologia , Neurônios Dopaminérgicos/fisiologia , Drosophila/fisiologia , Corpos Pedunculados/inervação , Olfato/fisiologia , Animais
12.
Neuron ; 86(2): 417-27, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25864636

RESUMO

During olfactory learning in fruit flies, dopaminergic neurons assign value to odor representations in the mushroom body Kenyon cells. Here we identify a class of downstream glutamatergic mushroom body output neurons (MBONs) called M4/6, or MBON-ß2ß'2a, MBON-ß'2mp, and MBON-γ5ß'2a, whose dendritic fields overlap with dopaminergic neuron projections in the tips of the ß, ß', and γ lobes. This anatomy and their odor tuning suggests that M4/6 neurons pool odor-driven Kenyon cell synaptic outputs. Like that of mushroom body neurons, M4/6 output is required for expression of appetitive and aversive memory performance. Moreover, appetitive and aversive olfactory conditioning bidirectionally alters the relative odor-drive of M4ß' neurons (MBON-ß'2mp). Direct block of M4/6 neurons in naive flies mimics appetitive conditioning, being sufficient to convert odor-driven avoidance into approach, while optogenetically activating these neurons induces avoidance behavior. We therefore propose that drive to the M4/6 neurons reflects odor-directed behavioral choice.


Assuntos
Comportamento Apetitivo/fisiologia , Neurônios Dopaminérgicos/fisiologia , Drosophila/fisiologia , Corpos Pedunculados/inervação , Olfato/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Encéfalo/fisiologia , Proteínas de Drosophila/genética , Expressão Gênica , Neurônios/fisiologia , Fatores de Transcrição/genética
13.
Nature ; 519(7543): 358-61, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25739506

RESUMO

In Drosophila, rapid temperature changes are detected at the periphery by dedicated receptors forming a simple sensory map for hot and cold in the brain. However, flies show a host of complex innate and learned responses to temperature, indicating that they are able to extract a range of information from this simple input. Here we define the anatomical and physiological repertoire for temperature representation in the Drosophila brain. First, we use a photolabelling strategy to trace the connections that relay peripheral thermosensory information to higher brain centres, and show that they largely converge onto three target regions: the mushroom body, the lateral horn (both of which are well known centres for sensory processing) and the posterior lateral protocerebrum, a region we now define as a major site of thermosensory representation. Next, using in vivo calcium imaging, we describe the thermosensory projection neurons selectively activated by hot or cold stimuli. Fast-adapting neurons display transient ON and OFF responses and track rapid temperature shifts remarkably well, while slow-adapting cell responses better reflect the magnitude of simple thermal changes. Unexpectedly, we also find a population of broadly tuned cells that respond to both heating and cooling, and show that they are required for normal behavioural avoidance of both hot and cold in a simple two-choice temperature preference assay. Taken together, our results uncover a coordinated ensemble of neural responses to temperature in the Drosophila brain, demonstrate that a broadly tuned thermal line contributes to rapid avoidance behaviour, and illustrate how stimulus quality, temporal structure, and intensity can be extracted from a simple glomerular map at a single synaptic station.


Assuntos
Encéfalo/fisiologia , Drosophila melanogaster/fisiologia , Vias Neurais , Temperatura , Sensação Térmica/fisiologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/citologia , Mapeamento Encefálico , Cálcio/análise , Cálcio/metabolismo , Drosophila melanogaster/citologia , Corpos Pedunculados/inervação , Neurônios/metabolismo , Sinapses/metabolismo , Termorreceptores/metabolismo , Fatores de Tempo
14.
Elife ; 3: e04577, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25535793

RESUMO

We identified the neurons comprising the Drosophila mushroom body (MB), an associative center in invertebrate brains, and provide a comprehensive map describing their potential connections. Each of the 21 MB output neuron (MBON) types elaborates segregated dendritic arbors along the parallel axons of ∼2000 Kenyon cells, forming 15 compartments that collectively tile the MB lobes. MBON axons project to five discrete neuropils outside of the MB and three MBON types form a feedforward network in the lobes. Each of the 20 dopaminergic neuron (DAN) types projects axons to one, or at most two, of the MBON compartments. Convergence of DAN axons on compartmentalized Kenyon cell-MBON synapses creates a highly ordered unit that can support learning to impose valence on sensory representations. The elucidation of the complement of neurons of the MB provides a comprehensive anatomical substrate from which one can infer a functional logic of associative olfactory learning and memory.


Assuntos
Aprendizagem por Associação , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Lógica , Corpos Pedunculados/citologia , Corpos Pedunculados/inervação , Células Receptoras Sensoriais/fisiologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Compartimento Celular , Forma Celular , Dendritos/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Modelos Neurológicos , Neurotransmissores/metabolismo , Condutos Olfatórios/anatomia & histologia , Condutos Olfatórios/fisiologia , Olfato/fisiologia
15.
Elife ; 3: e04580, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25535794

RESUMO

Animals discriminate stimuli, learn their predictive value and use this knowledge to modify their behavior. In Drosophila, the mushroom body (MB) plays a key role in these processes. Sensory stimuli are sparsely represented by ∼2000 Kenyon cells, which converge onto 34 output neurons (MBONs) of 21 types. We studied the role of MBONs in several associative learning tasks and in sleep regulation, revealing the extent to which information flow is segregated into distinct channels and suggesting possible roles for the multi-layered MBON network. We also show that optogenetic activation of MBONs can, depending on cell type, induce repulsion or attraction in flies. The behavioral effects of MBON perturbation are combinatorial, suggesting that the MBON ensemble collectively represents valence. We propose that local, stimulus-specific dopaminergic modulation selectively alters the balance within the MBON network for those stimuli. Our results suggest that valence encoded by the MBON ensemble biases memory-based action selection.


Assuntos
Comportamento de Escolha , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Memória , Corpos Pedunculados/citologia , Corpos Pedunculados/inervação , Neurônios/fisiologia , Animais , Comportamento Apetitivo/efeitos da radiação , Aprendizagem por Associação/efeitos da radiação , Aprendizagem da Esquiva/efeitos da radiação , Comportamento Animal/efeitos da radiação , Comportamento de Escolha/efeitos da radiação , Luz , Memória/efeitos da radiação , Modelos Neurológicos , Corpos Pedunculados/efeitos da radiação , Neurônios/efeitos da radiação , Odorantes , Sono/efeitos da radiação , Fatores de Tempo , Visão Ocular
16.
Elife ; 3: e05580, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25537193

RESUMO

A detailed map of the neurons that carry information away from the mushroom bodies in the brains of fruit flies has improved our understanding of the ways in which experiences can modify behaviour.


Assuntos
Aprendizagem por Associação , Comportamento de Escolha , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Lógica , Memória , Corpos Pedunculados/citologia , Corpos Pedunculados/inervação , Neurônios/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais
17.
Nat Neurosci ; 17(11): 1536-42, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25262493

RESUMO

Drinking water is innately rewarding to thirsty animals. In addition, the consumed value can be assigned to behavioral actions and predictive sensory cues by associative learning. Here we show that thirst converts water avoidance into water-seeking in naive Drosophila melanogaster. Thirst also permitted flies to learn olfactory cues paired with water reward. Water learning required water taste and <40 water-responsive dopaminergic neurons that innervate a restricted zone of the mushroom body γ lobe. These water learning neurons are different from those that are critical for conveying the reinforcing effects of sugar. Naive water-seeking behavior in thirsty flies did not require water taste but relied on another subset of water-responsive dopaminergic neurons that target the mushroom body ß' lobe. Furthermore, these naive water-approach neurons were not required for learned water-seeking. Our results therefore demonstrate that naive water-seeking, learned water-seeking and water learning use separable neural circuitry in the brain of thirsty flies.


Assuntos
Drosophila melanogaster/fisiologia , Memória/fisiologia , Corpos Pedunculados/fisiologia , Recompensa , Sede/fisiologia , Água/fisiologia , Animais , Condicionamento Clássico/fisiologia , Neurônios Dopaminérgicos/metabolismo , Corpos Pedunculados/inervação , Reforço Psicológico
18.
Sleep ; 37(6): 1077-86, 1086A-1086D, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24882902

RESUMO

STUDY OBJECTIVES: The relationship between sleep and immune function is not well understood at a functional or molecular level. We therefore used a genetic approach in Drosophila to manipulate sleep and evaluated effects on the ability of flies to fight bacterial infection. SETTING: Laboratory. PARTICIPANTS: Drosophila melanogaster. METHODS AND RESULTS: We used a genetic approach to transiently alter neuronal excitability in the mushroom body, a region in the central brain that is known to regulate sleep. Flies with increased sleep for up to two days prior to a bacterial infection showed increased resistance to the infection and improved survival. These flies also had increased expression levels of a subset of anti-microbial peptide mRNA prior to infection, as well as increased NFκB activity during infection as indicated by in vivo luciferase reporter activity. In contrast, flies that experienced reduced sleep for up to two days prior to infection had no effect on survival or on NFκB activity during infection. However, flies with reduced sleep showed an altered defense mechanism, such that resistance to infection was increased, but at the expense of reduced tolerance. This effect was dependent on environmental condition. CONCLUSIONS: Increasing sleep enhanced activity of an NFκB transcription factor, increased resistance to infection, and strongly promoted survival. Together, these findings support the hypothesis that sleep is beneficial to the host by maintaining a robust immune system.


Assuntos
Drosophila melanogaster/microbiologia , Drosophila melanogaster/fisiologia , Sono/fisiologia , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Feminino , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Corpos Pedunculados/imunologia , Corpos Pedunculados/inervação , Corpos Pedunculados/fisiologia , NF-kappa B/metabolismo , Sono/genética , Sono/imunologia , Canais de Sódio/genética , Canais de Sódio/metabolismo , Análise de Sobrevida
19.
Curr Biol ; 23(23): 2346-54, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24239122

RESUMO

BACKGROUND: Drosophila olfactory aversive conditioning produces two components of intermediate-term memory: anesthesia-sensitive memory (ASM) and anesthesia-resistant memory (ARM). Recently, the anterior paired lateral (APL) neuron innervating the whole mushroom body (MB) has been shown to modulate ASM via gap-junctional communication in olfactory conditioning. Octopamine (OA), an invertebrate analog of norepinephrine, is involved in appetitive conditioning, but its role in aversive memory remains uncertain. RESULTS: Here, we show that chemical neurotransmission from the APL neuron, after conditioning but before testing, is necessary for aversive ARM formation. The APL neurons are tyramine, Tßh, and OA immunopositive. An adult-stage-specific RNAi knockdown of Tßh in the APL neurons or Octß2R OA receptors in the MB α'ß' Kenyon cells (KCs) impaired ARM. Importantly, an additive ARM deficit occurred when Tßh knockdown in the APL neurons was in the radish mutant flies or in the wild-type flies with inhibited serotonin synthesis. CONCLUSIONS: OA released from the APL neurons acts on α'ß' KCs via Octß2R receptor to modulate Drosophila ARM formation. Additive effects suggest that two parallel ARM pathways, serotoninergic DPM-αß KCs and octopaminergic APL-α'ß' KCs, exist in the MB.


Assuntos
Condicionamento Psicológico/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Memória/fisiologia , Octopamina/metabolismo , Receptores Acoplados a Proteínas G/genética , Inibidores da Captação Adrenérgica/farmacologia , Agonistas alfa-Adrenérgicos/farmacologia , Anestesia , Animais , Animais Geneticamente Modificados , Condicionamento Clássico/fisiologia , Conexinas/genética , Dopamina/metabolismo , Proteínas de Drosophila/biossíntese , Glutamato Descarboxilase/genética , Oxigenases de Função Mista/genética , Corpos Pedunculados/inervação , Octopamina/biossíntese , Odorantes , Interferência de RNA , RNA Interferente Pequeno , Transmissão Sináptica , Fatores de Transcrição/biossíntese , Tiramina/metabolismo , Tirosina Descarboxilase , Ácido gama-Aminobutírico/biossíntese
20.
Cell Rep ; 5(4): 952-60, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24239353

RESUMO

Expression of the human Parkinson-disease-associated protein α-synuclein in all Drosophila neurons induces progressive locomotor deficits. Here, we identify a group of 15 dopaminergic neurons per hemisphere in the anterior medial region of the brain whose disruption correlates with climbing impairments in this model. These neurons selectively innervate the horizontal ß and ß' lobes of the mushroom bodies, and their connections to the Kenyon cells are markedly reduced when they express α-synuclein. Using selective mushroom body drivers, we show that blocking or overstimulating neuronal activity in the ß' lobe, but not the ß or γ lobes, significantly inhibits negative geotaxis behavior. This suggests that modulation of the mushroom body ß' lobes by this dopaminergic pathway is specifically required for an efficient control of startle-induced locomotion in flies.


Assuntos
Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Drosophila melanogaster/metabolismo , Locomoção/fisiologia , Doença de Parkinson/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Humanos , Canais Iônicos , Locomoção/genética , Corpos Pedunculados/inervação , Estresse Oxidativo , Doença de Parkinson/fisiopatologia , Reflexo de Sobressalto/genética , Reflexo de Sobressalto/fisiologia , Transdução de Sinais , Canal de Cátion TRPA1 , Canais de Cátion TRPC/metabolismo , alfa-Sinucleína/biossíntese , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...