Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.087
Filtrar
1.
Nat Commun ; 15(1): 5033, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866783

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease due to gradual motoneurons (MN) degeneration. Among the processes associated to ALS pathogenesis, there is the formation of cytoplasmic inclusions produced by aggregation of mutant proteins, among which the RNA binding protein FUS. Here we show that, in neuronal cells and in iPSC-derived MN expressing mutant FUS, such inclusions are significantly reduced in number and dissolve faster when the RNA m6A content is diminished. Interestingly, stress granules formed in ALS conditions showed a distinctive transcriptome with respect to control cells, which reverted to similar to control after m6A downregulation. Notably, cells expressing mutant FUS were characterized by higher m6A levels suggesting a possible link between m6A homeostasis and pathological aggregates. Finally, we show that FUS inclusions are reduced also in patient-derived fibroblasts treated with STM-2457, an inhibitor of METTL3 activity, paving the way for its possible use for counteracting aggregate formation in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Neurônios Motores , Proteína FUS de Ligação a RNA , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Humanos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Grânulos Citoplasmáticos/metabolismo , Fibroblastos/metabolismo , Adenosina/metabolismo , Adenosina/análogos & derivados , Metiltransferases/metabolismo , Metiltransferases/genética , Mutação , Corpos de Inclusão/metabolismo , Grânulos de Estresse/metabolismo , Transcriptoma
2.
Neuromolecular Med ; 26(1): 23, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861223

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a severe neurodegenerative disease affecting motor neurons. Pathological forms of Tar-DNA binding protein-43 (TDP-43), involving its mislocalisation to the cytoplasm and the formation of misfolded inclusions, are present in almost all ALS cases (97%), and ~ 50% cases of the related condition, frontotemporal dementia (FTD), highlighting its importance in neurodegeneration. Previous studies have shown that endoplasmic reticulum protein 57 (ERp57), a member of the protein disulphide isomerase (PDI) family of redox chaperones, is protective against ALS-linked mutant superoxide dismutase (SOD1) in neuronal cells and transgenic SOD1G93A mouse models. However, it remains unclear whether ERp57 is protective against pathological TDP-43 in ALS. Here, we demonstrate that ERp57 is protective against key features of TDP-43 pathology in neuronal cells. ERp57 inhibited the mislocalisation of TDP-43M337V from the nucleus to the cytoplasm. In addition, ERp57 inhibited the number of inclusions formed by ALS-associated variant TDP-43M337V and reduced the size of these inclusions. ERp57 was also protective against ER stress and induction of apoptosis. Furthermore, ERp57 modulated the steady-state expression levels of TDP-43. This study therefore demonstrates a novel mechanism of action of ERp57 in ALS. It also implies that ERp57 may have potential as a novel therapeutic target to prevent the TDP-43 pathology associated with neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA , Corpos de Inclusão , Isomerases de Dissulfetos de Proteínas , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/genética , Animais , Camundongos , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Superóxido Dismutase-1/genética , Mutação
3.
Neurobiol Dis ; 198: 106551, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38839023

RESUMO

Multiple system atrophy (MSA) is characterized by glial cytoplasmic inclusions (GCIs) containing aggregated α-synuclein (α-syn) in oligodendrocytes. The origin of α-syn accumulation in GCIs is unclear, in particular whether abnormal α-syn aggregates result from the abnormal elevation of endogenous α-syn expression in MSA or ingested from the neuronal source. Tubulin polymerization promoting protein (TPPP) has been reported to play a crucial role in developing GCI pathology. Here, the total cell body, nucleus, and cytoplasmic area density of SNCA and TPPP transcripts in neurons and oligodendrocytes with and without various α-syn pathologies in the pontine base in autopsy cases of MSA (n = 4) and controls (n = 2) were evaluated using RNAscope with immunofluorescence. Single-nucleus RNA-sequencing data for TPPP was evaluated using control frontal cortex (n = 3). SNCA and TPPP transcripts were present in the nucleus and cytoplasm of oligodendrocytes in both controls and diseased, with higher area density in GCIs and glial nuclear inclusions in MSA. Area densities of SNCA and TPPP transcripts were lower in neurons showing cytoplasmic inclusions in MSA. Indeed, TPPP transcripts were unexpectedly found in neurons, while the anti-TPPP antibody failed to detect immunoreactivity. Single-nucleus RNA-sequencing revealed significant TPPP transcript expression predominantly in oligodendrocytes, but also in excitatory and inhibitory neurons. This study addressed the unclear origin of accumulated α-syn in GCIs, proposing that the elevation of SNCA transcripts may supply templates for misfolded α-syn. In addition, the parallel behavior of TPPP and SNCA transcripts in GCI development highlights their potential synergistic contribution to inclusion formation. In conclusion, this study advances our understanding of MSA pathogenesis, offers insights into the dynamics of SNCA and TPPP transcripts in inclusion formation, and proposes regulating their transcripts for future molecular therapy to MSA.


Assuntos
Corpos de Inclusão , Atrofia de Múltiplos Sistemas , Proteínas do Tecido Nervoso , Oligodendroglia , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/patologia , Atrofia de Múltiplos Sistemas/metabolismo , Humanos , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Corpos de Inclusão/genética , Idoso , Feminino , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Idoso de 80 Anos ou mais
4.
Nat Commun ; 15(1): 3727, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697982

RESUMO

We report the de novo design of small (<20 kDa) and highly soluble synthetic intrinsically disordered proteins (SynIDPs) that confer solubility to a fusion partner with minimal effect on the activity of the fused protein. To identify highly soluble SynIDPs, we create a pooled gene-library utilizing a one-pot gene synthesis technology to create a large library of repetitive genes that encode SynIDPs. We identify three small (<20 kDa) and highly soluble SynIDPs from this gene library that lack secondary structure and have high solvation. Recombinant fusion of these SynIDPs to three known inclusion body forming proteins rescue their soluble expression and do not impede the activity of the fusion partner, thereby eliminating the need for removal of the SynIDP tag. These findings highlight the utility of SynIDPs as solubility tags, as they promote the soluble expression of proteins in E. coli and are small, unstructured proteins that minimally interfere with the biological activity of the fused protein.


Assuntos
Escherichia coli , Proteínas Intrinsicamente Desordenadas , Proteínas Recombinantes de Fusão , Solubilidade , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/química , Escherichia coli/genética , Escherichia coli/metabolismo , Biblioteca Gênica , Corpos de Inclusão/metabolismo
5.
Methods Mol Biol ; 2808: 129-140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743367

RESUMO

Many negative-sense single-stranded RNA viruses within the order Mononegavirales harm humans. A common feature shared among cells infected by these viruses is the formation of subcellular membraneless structures called biomolecular condensates, also known as inclusion bodies (IBs), that form through a process called liquid-liquid phase separation (LLPS). Like many other membraneless organelles, viral IBs enrich a specific subset of viral and host proteins involved in the formation of viral particles. Elucidation of the properties and regulation of these IBs as they mature throughout the viral replication process are important for our understanding of viral replication, which may also lead to the development of alternative antiviral treatments. The protocol outlined in this chapter aims to characterize the intrinsic properties of LLPS within the measles virus (MeV, a member of Mononegavirales) IBs by using an imaging approach that fluorescently tags an IB-associated host protein. This method uses common laboratory techniques and is generalizable to any host factors as well as other viral systems.


Assuntos
Recuperação de Fluorescência Após Fotodegradação , Corpos de Inclusão Viral , Vírus do Sarampo , Humanos , Corpos de Inclusão Viral/metabolismo , Recuperação de Fluorescência Após Fotodegradação/métodos , Vírus do Sarampo/fisiologia , Vírus do Sarampo/metabolismo , Replicação Viral , Corpos de Inclusão/metabolismo , Animais , Interações Hospedeiro-Patógeno , Separação de Fases
6.
Mol Brain ; 17(1): 28, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790036

RESUMO

The aggregated alpha-synuclein (αsyn) in oligodendrocytes (OLGs) is one of the pathological hallmarks in multiple system atrophy (MSA). We have previously reported that αsyn accumulates not only in neurons but also in OLGs long after the administration of αsyn preformed fibrils (PFFs) in mice. However, detailed spatial and temporal analysis of oligodendroglial αsyn aggregates was technically difficult due to the background neuronal αsyn aggregates. The aim of this study is to create a novel mouse that easily enables sensitive and specific detection of αsyn aggregates in OLGs and the comparable analysis of the cellular tropism of αsyn aggregates in MSA brains. To this end, we generated transgenic (Tg) mice expressing human αsyn-green fluorescent protein (GFP) fusion proteins in OLGs under the control of the 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) promoter (CNP-SNCAGFP Tg mice). Injection of αsyn PFFs in these mice induced distinct GFP-positive aggregates in the processes of OLGs as early as one month post-inoculation (mpi), and their number and size increased in a centripetal manner. Moreover, MSA-brain homogenates (BH) induced significantly more oligodendroglial αsyn aggregates than neuronal αsyn aggregates compared to DLB-BH in CNP-SNCAGFP Tg mice, suggestive of their potential tropism of αsyn seeds for OLGs. In conclusion, CNP-SNCAGFP Tg mice are useful for studying the development and tropism of αsyn aggregates in OLGs and could contribute to the development of therapeutics targeting αsyn aggregates in OLGs.


Assuntos
Modelos Animais de Doenças , Corpos de Inclusão , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas , Oligodendroglia , Agregados Proteicos , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Atrofia de Múltiplos Sistemas/patologia , Atrofia de Múltiplos Sistemas/metabolismo , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Humanos , Proteínas de Fluorescência Verde/metabolismo , Citoplasma/metabolismo , Camundongos , Encéfalo/patologia , Encéfalo/metabolismo , Agregação Patológica de Proteínas/metabolismo
8.
Protein Expr Purif ; 221: 106507, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38777308

RESUMO

Recombinant human interleukin-2 (rhIL-2) represents one of the most difficult-to-produce cytokines in E. coli due to its extreme hydrophobicity and high tendency to formation of inclusion bodies. Refolding of rhIL-2 inclusion bodies always represents cumbersome downstream processes and low production efficiency. Herein, we disclosed a fusion strategy for efficiently soluble expression and facile production of rhIL-2 in E. coli Origami B (DE3) host. A two-tandem SUMO fusion partner (His-2SUMO) with a unique SUMO protease cleavage site at C-terminus was devised to fuse with the N-terminus of rhIL-2 and the fusion protein (His-2SUMO-rhIL-2) was almost completely expressed in a soluble from. The fusion partner could be efficiently removed by Ulp1 cleavage and the rhIL-2 was simply produced by a two-step Ni-NTA affinity chromatography with a considerable purity and whole recovery. The eventually obtained rhIL-2 was well-characterized and the results showed that the purified rhIL-2 exhibits a compact and ordered structure. Although the finally obtained rhIL-2 exists in a soluble aggregates form and the aggregation probably has been occurred during expression stage, the soluble rhIL-2 aggregates remain exhibit comparable bioactivity with the commercially available rhIL-2 drug formulation.


Assuntos
Escherichia coli , Interleucina-2 , Proteínas Recombinantes de Fusão , Solubilidade , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Interleucina-2/genética , Interleucina-2/biossíntese , Interleucina-2/química , Interleucina-2/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Expressão Gênica , Cromatografia de Afinidade , Clonagem Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Corpos de Inclusão/química , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo
9.
J Neuroinflammation ; 21(1): 108, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664840

RESUMO

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by the presence of proteinaceous alpha-synuclein (α-syn) inclusions (Lewy bodies), markers of neuroinflammation and the progressive loss of nigrostriatal dopamine (DA) neurons. These pathological features can be recapitulated in vivo using the α-syn preformed fibril (PFF) model of synucleinopathy. We have previously determined that microglia proximal to PFF-induced nigral α-syn inclusions increase in soma size, upregulate major-histocompatibility complex-II (MHC-II) expression, and increase expression of a suite of inflammation-associated transcripts. This microglial response is observed months prior to degeneration, suggesting that microglia reacting to α-syn inclusion may contribute to neurodegeneration and could represent a potential target for novel therapeutics. The goal of this study was to determine whether colony stimulating factor-1 receptor (CSF1R)-mediated microglial depletion impacts the magnitude of α-syn aggregation, nigrostriatal degeneration, or the response of microglial in the context of the α-syn PFF model. METHODS: Male Fischer 344 rats were injected intrastriatally with either α-syn PFFs or saline. Rats were continuously administered Pexidartinib (PLX3397B, 600 mg/kg), a CSF1R inhibitor, to deplete microglia for a period of either 2 or 6 months. RESULTS: CSF1R inhibition resulted in significant depletion (~ 43%) of ionized calcium-binding adapter molecule 1 immunoreactive (Iba-1ir) microglia within the SNpc. However, CSF1R inhibition did not impact the increase in microglial number, soma size, number of MHC-II immunoreactive microglia or microglial expression of Cd74, Cxcl10, Rt-1a2, Grn, Csf1r, Tyrobp, and Fcer1g associated with phosphorylated α-syn (pSyn) nigral inclusions. Further, accumulation of pSyn and degeneration of nigral neurons was not impacted by CSF1R inhibition. Paradoxically, long term CSF1R inhibition resulted in increased soma size of remaining Iba-1ir microglia in both control and PFF rats, as well as expression of MHC-II in extranigral regions. CONCLUSIONS: Collectively, our results suggest that CSF1R inhibition does not impact the microglial response to nigral pSyn inclusions and that CSF1R inhibition is not a viable disease-modifying strategy for PD.


Assuntos
Microglia , Ratos Endogâmicos F344 , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , alfa-Sinucleína , Animais , Microglia/metabolismo , Microglia/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Ratos , Masculino , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Pirróis/farmacologia , Aminopiridinas/farmacologia , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Substância Negra/metabolismo , Substância Negra/patologia , Substância Negra/efeitos dos fármacos , Modelos Animais de Doenças
10.
Anal Bioanal Chem ; 416(12): 3019-3032, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38573344

RESUMO

Inclusion bodies (IBs) are protein aggregates formed as a result of overexpression of recombinant protein in E. coli. The formation of IBs is a valuable strategy of recombinant protein production despite the need for additional processing steps, i.e., isolation, solubilization and refolding. Industrial process development of protein refolding is a labor-intensive task based largely on empirical approaches rather than knowledge-driven strategies. A prerequisite for knowledge-driven process development is a reliable monitoring strategy. This work explores the potential of intrinsic tryptophan and tyrosine fluorescence for real-time and in situ monitoring of protein refolding. In contrast to commonly established process analytical technology (PAT), this technique showed high sensitivity with reproducible measurements for protein concentrations down to 0.01 g L - 1 . The change of protein conformation during refolding is reflected as a shift in the position of the maxima of the tryptophan and tyrosine fluorescence spectra as well as change in the signal intensity. The shift in the peak position, expressed as average emission wavelength of a spectrum, was correlated to the amount of folding intermediates whereas the intensity integral correlates to the extent of aggregation. These correlations were implemented as an observation function into a mechanistic model. The versatility and transferability of the technique were demonstrated on the refolding of three different proteins with varying structural complexity. The technique was also successfully applied to detect the effect of additives and process mode on the refolding process efficiency. Thus, the methodology presented poses a generic and reliable PAT tool enabling real-time process monitoring of protein refolding.


Assuntos
Corpos de Inclusão , Redobramento de Proteína , Espectrometria de Fluorescência , Corpos de Inclusão/química , Corpos de Inclusão/metabolismo , Espectrometria de Fluorescência/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Triptofano/química , Escherichia coli/metabolismo , Escherichia coli/química , Tirosina/química , Fluorescência , Dobramento de Proteína
11.
Neurobiol Dis ; 196: 106517, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38679111

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a relentlessly progressive and fatal disease, caused by the degeneration of upper and lower motor neurons within the brain and spinal cord in the ageing human. The dying neurons contain cytoplasmic inclusions linked to the onset and progression of the disease. Here, we use a Drosophila model of ALS8 (VAPP58S) to understand the modulation of these inclusions in the ageing adult brain. The adult VAPP58S fly shows progressive deterioration in motor function till its demise 25 days post-eclosion. The density of VAPP58S-positive brain inclusions is stable for 5-15 days of age. In contrast, adding a single copy of VAPWT to the VAPP58S animal leads to a large decrease in inclusion density with concomitant rescue of motor function and lifespan. ER stress, a contributing factor in disease, shows reduction with ageing for the disease model. Autophagy, rather than the Ubiquitin Proteasome system, is the dominant mechanism for aggregate clearance. We explored the ability of Drosophila Valosin-containing protein (VCP/TER94), the ALS14 locus, which is involved in cellular protein clearance, to regulate age-dependent aggregation. Contrary to expectation, TER94 overexpression increased VAPP58S punctae density, while its knockdown led to enhanced clearance. Expression of a dominant positive allele, TER94R152H, further stabilised VAPP58S puncta, cementing roles for an ALS8-ALS14 axis. Our results are explained by a mechanism where autophagy is modulated by TER94 knockdown. Our study sheds light on the complex regulatory events involved in the neuronal maintenance of ALS8 aggregates, suggesting a context-dependent switch between proteasomal and autophagy-based mechanisms as the larvae develop into an adult. A deeper understanding of the nucleation and clearance of the inclusions, which affect cellular stress and function, is essential for understanding the initiation and progression of ALS.


Assuntos
Envelhecimento , Esclerose Lateral Amiotrófica , Encéfalo , Proteínas de Drosophila , Corpos de Inclusão , Animais , Envelhecimento/metabolismo , Envelhecimento/patologia , Envelhecimento/fisiologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/genética , Animais Geneticamente Modificados , Autofagia/fisiologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Neurônios/metabolismo , Neurônios/patologia , Proteína com Valosina/metabolismo , Proteína com Valosina/genética
12.
J Cell Sci ; 137(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477372

RESUMO

Biogenesis of inclusion bodies (IBs) facilitates protein quality control (PQC). Canonical aggresomes execute degradation of misfolded proteins while non-degradable amyloids sequester into insoluble protein deposits. Lewy bodies (LBs) are filamentous amyloid inclusions of α-synuclein, but PQC benefits and drawbacks associated with LB-like IBs remain underexplored. Here, we report that crosstalk between filamentous LB-like IBs and aggresome-like IBs of α-synuclein (Syn-aggresomes) buffer the load, aggregation state, and turnover of the amyloidogenic protein in mouse primary neurons and HEK293T cells. Filamentous LB-like IBs possess unorthodox PQC capacities of self-quarantining α-synuclein amyloids and being degradable upon receding fresh amyloidogenesis. Syn-aggresomes equilibrate biogenesis of filamentous LB-like IBs by facilitating spontaneous degradation of α-synuclein and conditional turnover of disintegrated α-synuclein amyloids. Thus, both types of IB primarily contribute to PQC. Incidentally, the overgrown perinuclear LB-like IBs become degenerative once these are misidentified by BICD2, a cargo-adapter for the cytosolic motor-protein dynein. Microscopy indicates that microtubules surrounding the perinuclear filamentous inclusions are also distorted, misbalancing the cytoskeleton-nucleoskeleton tension leading to widespread lamina injuries. Together, nucleocytoplasmic mixing, DNA damage, and deregulated transcription of stress chaperones defeat the proteostatic purposes of the filamentous amyloids of α-synuclein.


Assuntos
Lâmina Nuclear , alfa-Sinucleína , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Células HEK293 , Corpos de Inclusão/metabolismo , Lâmina Nuclear/metabolismo , Lâmina Nuclear/patologia
13.
Microb Cell Fact ; 23(1): 48, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347541

RESUMO

BACKGROUND: The three-finger proteins are a collection of disulfide bond rich proteins of great biomedical interests. Scalable recombinant expression and purification of bioactive three-finger proteins is quite difficult. RESULTS: We introduce a working pipeline for expression, purification and validation of disulfide-bond rich three-finger proteins using E. coli as the expression host. With this pipeline, we have successfully obtained highly purified and bioactive recombinant α-Βungarotoxin, k-Bungarotoxin, Hannalgesin, Mambalgin-1, α-Cobratoxin, MTα, Slurp1, Pate B etc. Milligrams to hundreds of milligrams of recombinant three finger proteins were obtained within weeks in the lab. The recombinant proteins showed specificity in binding assay and six of them were crystallized and structurally validated using X-ray diffraction protein crystallography. CONCLUSIONS: Our pipeline allows refolding and purifying recombinant three finger proteins under optimized conditions and can be scaled up for massive production of three finger proteins. As many three finger proteins have attractive therapeutic or research interests and due to the extremely high quality of the recombinant three finger proteins we obtained, our method provides a competitive alternative to either their native counterparts or chemically synthetic ones and should facilitate related research and applications.


Assuntos
Escherichia coli , Corpos de Inclusão , Escherichia coli/metabolismo , Proteínas Recombinantes , Corpos de Inclusão/metabolismo , Dissulfetos/metabolismo
14.
Mov Disord ; 39(4): 723-728, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38357858

RESUMO

BACKGROUND: The architecture and composition of glial (GCI) and neuronal (NCI) α-synuclein inclusions observed in multiple system atrophy (MSA) remain to be precisely defined to better understand the disease. METHODS: Here, we used stochastic optical reconstruction microscopy (STORM) to characterize the nanoscale organization of glial (GCI) and neuronal (NCI) α-synuclein inclusions in cryopreserved brain sections from MSA patients. RESULTS: STORM revealed a dense cross-linked internal structure of α-synuclein in all GCI and NCI. The internal architecture of hyperphosphorylated α-synuclein (p-αSyn) inclusions was similar in glial and neuronal cells, suggesting a common aggregation mechanism. A similar sequence of p-αSyn stepwise intracellular aggregation was defined in oligodendrocytes and neurons, starting from the perinuclear area and growing inside the cells. Consistent with this hypothesis, we found a higher mitochondrial density in GCI and NCI compared to oligodendrocytes and neurons from unaffected donors (P < 0.01), suggesting an active recruitment of the organelles during the aggregation process. CONCLUSIONS: These first STORM images of GCI and NCI suggest stepwise α-synuclein aggregation in MSA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Corpos de Inclusão , Atrofia de Múltiplos Sistemas , Neurônios , alfa-Sinucleína , Humanos , Atrofia de Múltiplos Sistemas/patologia , Atrofia de Múltiplos Sistemas/metabolismo , alfa-Sinucleína/metabolismo , Corpos de Inclusão/patologia , Corpos de Inclusão/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Feminino , Idoso , Masculino , Pessoa de Meia-Idade , Encéfalo/patologia , Encéfalo/metabolismo , Neuroglia/metabolismo , Neuroglia/patologia , Oligodendroglia/patologia , Oligodendroglia/metabolismo , Microscopia/métodos
15.
PLoS Genet ; 20(2): e1011138, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315730

RESUMO

The presence of large protein inclusions is a hallmark of neurodegeneration, and yet the precise molecular factors that contribute to their formation remain poorly understood. Screens using aggregation-prone proteins have commonly relied on downstream toxicity as a readout rather than the direct formation of aggregates. Here, we combined a genome-wide CRISPR knockout screen with Pulse Shape Analysis, a FACS-based method for inclusion detection, to identify direct modifiers of TDP-43 aggregation in human cells. Our screen revealed both canonical and novel proteostasis genes, and unearthed SRRD, a poorly characterized protein, as a top regulator of protein inclusion formation. APEX biotin labeling reveals that SRRD resides in proximity to proteins that are involved in the formation and breakage of disulfide bonds and to intermediate filaments, suggesting a role in regulation of the spatial dynamics of the intermediate filament network. Indeed, loss of SRRD results in aberrant intermediate filament fibrils and the impaired formation of aggresomes, including blunted vimentin cage structure, during proteotoxic stress. Interestingly, SRRD also localizes to aggresomes and unfolded proteins, and rescues proteotoxicity in yeast whereby its N-terminal low complexity domain is sufficient to induce this affect. Altogether this suggests an unanticipated and broad role for SRRD in cytoskeletal organization and cellular proteostasis.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Filamentos Intermediários , Humanos , Filamentos Intermediários/genética , Filamentos Intermediários/metabolismo , Citoesqueleto/genética , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo
16.
Biotechnol Bioeng ; 121(2): 535-550, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37927002

RESUMO

A new platform has been developed to facilitate the production of biologically active proteins and peptides in Escherichia coli. The platform includes an N-terminal self-associating L6 KD peptide fused to the SUMO protein (small ubiquitin-like protein modifier) from the yeast Saccharomyces cerevisiae, which is known for its chaperone activity. The target proteins are fused at the C termini of the L6 KD-SUMO fusions, and the resulting three-component fusion proteins are synthesized and self-assembled in E. coli into so-called active inclusion bodies (AIBs). In vivo, the L6 KD-SUMO platform facilitates the correct folding of the target proteins and directs them into AIBs, greatly simplifying their purification. In vitro, the platform facilitates the effective separation of AIBs by centrifugation and subsequent target protein release using SUMO-specific protease. The properties of the AIBs were determined using five proteins with different sizes, folding efficiencies, quaternary structure, and disulfide modifications. Electron microscopy shows that AIBs are synthesized in the form of complex fibrillar structures resembling "loofah sponges" with unusually thick filaments. The obtained results indicate that the new platform has promising features and could be developed to facilitate the synthesis and purification of target proteins and protein complexes without the use of renaturation.


Assuntos
Escherichia coli , Peptídeos , Escherichia coli/genética , Escherichia coli/metabolismo , Peptídeos/metabolismo , Dobramento de Proteína , Endopeptidases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
17.
J Biotechnol ; 379: 65-77, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38036002

RESUMO

A broad application spectrum ranging from clinical diagnostics to biosensors in a variety of sectors, makes the enzyme Lactate dehydrogenase (LDH) highly interesting for recombinant protein production. Expression of recombinant LDH is currently mainly carried out in uncontrolled shake-flask cultivations leading to protein that is mostly produced in its soluble form, however in rather low yields. Inclusion body (IB) processes have gathered a lot of attention due to several benefits like increased space-time yields and high purity of the target product. Thus, to investigate the suitability of this processing strategy for ldhL1 production, a fed-batch fermentation steering the production of IBs rather than soluble product formation was developed. It was shown that the space-time-yield of the fermentation could be increased almost 3-fold by increasing qs to 0.25 g g-1 h-1 which corresponds to 21% of qs,max, and keeping the temperature at 37°C after induction. Solubilization and refolding unit operations were developed to regain full bioactivity of the ldhL1. The systematic approach in screening for solubilization and refolding conditions revealed buffer compositions and processing strategies that ultimately resulted in 50% product recovery in the refolding step, revealing major optimization potential in the downstream processing chain. The recovered ldhL1 showed an optimal activity at pH 5.5 and 30∘C with a high catalytic activity and KM values of 0.46 mM and 0.18 mM for pyruvate and NADH, respectively. These features, show that the here produced LDH is a valuable source for various commercial applications, especially considering low pH-environments.


Assuntos
Corpos de Inclusão , L-Lactato Desidrogenase , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Proteínas Recombinantes/química , Corpos de Inclusão/metabolismo , Fermentação
18.
Ann Clin Transl Neurol ; 11(3): 577-592, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158701

RESUMO

OBJECTIVE: Multisystem proteinopathy type 3 (MSP3) is an inherited, pleiotropic degenerative disorder caused by a mutation in heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), which can affect the muscle, bone, and/or nervous system. This study aimed to determine detailed histopathological features and transcriptomic profile of HNRNPA1-mutated skeletal muscles to reveal the core pathomechanism of hereditary inclusion body myopathy (hIBM), a predominant phenotype of MSP3. METHODS: Histopathological analyses and RNA sequencing of HNRNPA1-mutated skeletal muscles harboring a c.940G > A (p.D314N) mutation (NM_031157) were performed, and the results were compared with those of HNRNPA1-unlinked hIBM and control muscle tissues. RESULTS: RNA sequencing revealed aberrant alternative splicing events that predominantly occurred in myofibril components and mitochondrial respiratory complex. Enrichment analyses identified the nuclear pore complex (NPC) and nucleocytoplasmic transport as suppressed pathways. These two pathways were linked by the hub genes NUP50, NUP98, NUP153, NUP205, and RanBP2. In immunohistochemistry, these nucleoporin proteins (NUPs) were mislocalized to the cytoplasm and aggregated mostly with TAR DNA-binding protein 43 kDa and, to a lesser extent, with hnRNPA1. Based on ultrastructural observation, irregularly shaped myonuclei with deep invaginations were frequently observed in atrophic fibers, consistent with the disorganization of NPCs. Additionally, regarding the expression profiles of overall NUPs, reduced expression of NUP98, NUP153, and RanBP2 was shared with HNRNPA1-unlinked hIBMs. INTERPRETATION: The shared subset of altered NUPs in amyotrophic lateral sclerosis (ALS), as demonstrated in prior research, HNRNPA1-mutated, and HNRNPA1-unlinked hIBM muscle tissues may provide evidence regarding the underlying common nuclear pore pathology of hIBM, ALS, and MSP.


Assuntos
Esclerose Lateral Amiotrófica , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B , Doenças Musculares , Humanos , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Esclerose Lateral Amiotrófica/genética , Poro Nuclear/metabolismo , Poro Nuclear/patologia , Músculo Esquelético/metabolismo , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Doenças Musculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
19.
Sci Adv ; 9(46): eadi8716, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976362

RESUMO

Recent studies have identified increasing levels of nanoplastic pollution in the environment. Here, we find that anionic nanoplastic contaminants potently precipitate the formation and propagation of α-synuclein protein fibrils through a high-affinity interaction with the amphipathic and non-amyloid component (NAC) domains in α-synuclein. Nanoplastics can internalize in neurons through clathrin-dependent endocytosis, causing a mild lysosomal impairment that slows the degradation of aggregated α-synuclein. In mice, nanoplastics combine with α-synuclein fibrils to exacerbate the spread of α-synuclein pathology across interconnected vulnerable brain regions, including the strong induction of α-synuclein inclusions in dopaminergic neurons in the substantia nigra. These results highlight a potential link for further exploration between nanoplastic pollution and α-synuclein aggregation associated with Parkinson's disease and related dementias.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Camundongos , Animais , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Microplásticos , Corpos de Inclusão/metabolismo , Neurônios Dopaminérgicos/metabolismo
20.
Mol Neurodegener ; 18(1): 80, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37940962

RESUMO

Peptides and their mimetics are increasingly recognised as drug-like molecules, particularly for intracellular protein-protein interactions too large for inhibition by small molecules, and inaccessible to larger biologics. In the past two decades, evidence associating the misfolding and aggregation of alpha-synuclein strongly implicates this protein in disease onset and progression of Parkinson's disease and related synucleinopathies. The subsequent formation of toxic, intracellular, Lewy body deposits, in which alpha-synuclein is a major component, is a key diagnostic hallmark of the disease. To reach their therapeutic site of action, peptides must both cross the blood-brain barrier and enter dopaminergic neurons to prevent the formation of these intracellular inclusions. In this review, we describe and summarise the current efforts made in the development of peptides and their mimetics to directly engage with alpha-synuclein with the intention of modulating aggregation, and importantly, toxicity. This is a rapidly expanding field with great socioeconomic impact; these molecules harbour significant promise as therapeutics, or as early biomarkers during prodromal disease stages, or both. As these are age-dependent conditions, an increasing global life expectancy means disease prevalence is rising. No current treatments exist to either prevent or slow disease progression. It is therefore crucial that drugs are developed for these conditions before health care and social care capacities become overrun.


Assuntos
Doença de Parkinson , Sinucleinopatias , Humanos , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Corpos de Inclusão/metabolismo , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...