Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 61(24): 2791-2796, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36037062

RESUMO

Vitamin B12 (the cyanated form of cobalamin cofactors) is best known for its essential role in human health. In addition to its function in human metabolism, cobalamin also plays important roles in microbial metabolism and can impact microbial community function. Cobalamin is a member of the structurally diverse family of cofactors known as cobamides that are produced exclusively by certain prokaryotes. Cobamides are considered shared nutrients in microbial communities because the majority of bacteria that possess cobamide-dependent enzymes cannot synthesize cobamides de novo. Furthermore, different microbes have evolved metabolic specificity for particular cobamides, and therefore, the availability of cobamides in the environment is important for cobamide-dependent microbes. Determining the cobamides present in an environment of interest is essential for understanding microbial metabolic interactions. By examining the abundances of different cobamides in diverse environments, including 10 obtained in this study, we find that, contrary to its preeminence in human metabolism, cobalamin is relatively rare in many microbial habitats. Comparison of cobamide profiles of mammalian gastrointestinal samples and wood-feeding insects reveals that host-associated cobamide abundances vary and that fecal cobamide profiles differ from those of their host gastrointestinal tracts. Environmental cobamide profiles obtained from aquatic, soil, and contaminated groundwater samples reveal that the cobamide compositions of environmental samples are highly variable. As the only commercially available cobamide, cobalamin is routinely supplied during microbial culturing efforts. However, these findings suggest that cobamides specific to a given microbiome may yield greater insight into nutrient utilization and physiological processes that occur in these habitats.


Assuntos
Cobamidas , Vitamina B 12 , Animais , Bactérias/metabolismo , Cobamidas/metabolismo , Mamíferos/metabolismo , Vitamina B 12/metabolismo , Corrinoides/química , Corrinoides/metabolismo
2.
Methods Enzymol ; 668: 87-108, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35589203

RESUMO

Adenosylcobamides (AdoCbas) are coenzymes required by organisms from all domains of life to perform challenging chemical reactions. AdoCbas are characterized by a cobalt-containing tetrapyrrole ring, where an adenosyl group is covalently attached to the cobalt ion via a unique Co-C organometallic bond. During catalysis, this bond is homolytically cleaved by AdoCba-dependent enzymes to form an adenosyl radical that is critical for intra-molecular rearrangements. The formation of the Co-C bond is catalyzed by a family of enzymes known as ATP:Co(I)rrinoid adenosyltransferases (ACATs). ACATs adenosylate Cbas in two steps: (I) they generate a planar, Co(II) four-coordinate Cba to facilitate the reduction of Co(II) to Co(I), and (II) they transfer the adenosyl group from ATP to the Co(I) ion. To synthesize adenosylated corrinoids in vitro, it is imperative that anoxic conditions are maintained to avoid oxidation of Co(II) or Co(I) ions. Here we describe a method for the enzymatic synthesis and quantification of specific AdoCbas.


Assuntos
Alquil e Aril Transferases , Corrinoides , Trifosfato de Adenosina , Proteínas de Bactérias/química , Cobalto/química , Cobamidas/química , Corrinoides/química , Vitamina B 12/química
3.
J Med Chem ; 64(6): 3479-3492, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33677970

RESUMO

Corrination is the conjugation of a corrin ring containing molecule, such as vitamin B12 (B12) or B12 biosynthetic precursor dicyanocobinamide (Cbi), to small molecules, peptides, or proteins with the goal of modifying pharmacology. Recently, a corrinated GLP-1R agonist (GLP-1RA) exendin-4 (Ex4) has been shown in vivo to have reduced penetration into the central nervous system relative to Ex4 alone, producing a glucoregulatory GLP-1RA devoid of anorexia and emesis. The study herein was designed to optimize the lead conjugate for GLP-1R agonism and binding. Two specific conjugation sites were introduced in Ex4, while also utilizing various linkers, so that it was possible to identify Cbi conjugates of Ex4 that exhibit improved binding and agonist activity at the GLP-1R. An optimized conjugate (22), comparable with Ex4, was successfully screened and subsequently assayed for insulin secretion in rat islets and in vivo in shrews for glucoregulatory and emetic behavior, relative to Ex4.


Assuntos
Corrinoides/química , Corrinoides/farmacologia , Exenatida/análogos & derivados , Exenatida/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Animais , Células Cultivadas , Corrinoides/síntese química , Exenatida/síntese química , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células HEK293 , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Modelos Moleculares , Ratos , Ratos Sprague-Dawley
4.
Inorg Chem ; 59(17): 11995-12004, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32794737

RESUMO

Methyl-coenzyme M reductase (MCR), which contains the nickel hydrocorphinoid cofactor F430, is responsible for biological methane generation under anaerobic conditions via a reaction mechanism which has not been completely elucidated. In this work, myoglobin reconstituted with an artificial cofactor, nickel(I) tetradehydrocorrin (NiI(TDHC)), is used as a protein-based functional model for MCR. The reconstituted protein, rMb(NiI(TDHC)), is found to react with methyl donors such as methyl p-toluenesulfonate and trimethylsulfonium iodide with methane evolution observed in aqueous media containing dithionite. Moreover, rMb(NiI(TDHC)) is found to convert benzyl bromide derivatives to reductively debrominated products without homocoupling products. The reactivity increases in the order of primary > secondary > tertiary benzylic carbons, indicating steric effects on the reaction of the nickel center with the benzylic carbon in the initial step. In addition, Hammett plots using a series of para-substituted benzyl bromides exhibit enhancement of the reactivity with introduction of electron-withdrawing substituents, as shown by the positive slope against polar substituent constants. These results suggest a nucleophilic SN2-type reaction of the Ni(I) species with the benzylic carbon to provide an organonickel species as an intermediate. The reaction in D2O buffer at pD 7.0 causes a complete isotope shift of the product by +1 mass unit, supporting our proposal that protonation of the organonickel intermediate occurs during product formation. Although the turnover numbers are limited due to inactivation of the cofactor by side reactions, the present findings will contribute to elucidating the reaction mechanism of MCR-catalyzed methane generation from activated methyl sources and dehalogenation.


Assuntos
Benzeno/química , Materiais Biomiméticos/química , Complexos de Coordenação/química , Corrinoides/química , Metano/química , Níquel/química , Oxirredutases/metabolismo , Soluções Tampão , Halogenação , Concentração de Íons de Hidrogênio , Oxirredução
5.
Protein Sci ; 28(10): 1902-1908, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31359509

RESUMO

Corrinoids are essential cofactors of enzymes involved in the C1 metabolism of anaerobes. The active, super-reduced [CoI ] state of the corrinoid cofactor is highly sensitive to autoxidation. In O-demethylases, the oxidation to inactive [CoII ] is reversed by an ATP-dependent electron transfer catalyzed by the activating enzyme (AE). The redox potential changes of the corrinoid cofactor, which occur during this reaction, were studied by potentiometric titration coupled to UV/visible spectroscopy. By applying europium(II)-diethylenetriaminepentaacetic acid (DTPA) as a reductant, we were able to determine the midpoint potential of the [CoII ]/[CoI ] couple of the protein-bound corrinoid cofactor in the absence and presence of AE and/or ATP. The data revealed that the transfer of electrons from a physiological donor to the corrinoid as the electron-accepting site is achieved by increasing the potential of the corrinoid cofactor from -530 ± 15 mV to -250 ± 10 mV (ESHE , pH 7.5). The first 50 to 100 mV of the shift of the redox potential seem to be caused by the interaction of nucleotide-bound AE with the corrinoid protein or its cofactor. The remaining 150-200 mV had to be overcome by the chemical energy of ATP hydrolysis. The experiments revealed that Eu(II)-DTPA, which was already known as a powerful reducing agent, is a suitable electron donor for titration experiments of low-potential redox centers. Furthermore, the results of this study will contribute to the understanding of thermodynamically unfavorable electron transfer processes driven by the power of ATP hydrolysis.


Assuntos
Trifosfato de Adenosina/química , Corrinoides/química , Európio/química , Ácido Pentético/química , Oxirredução
6.
Angew Chem Int Ed Engl ; 58(31): 10756-10760, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31115943

RESUMO

The B12 cofactors instill a natural curiosity regarding the primordial selection and evolution of their corrin ligand. Surprisingly, this important natural macrocycle has evaded molecular scrutiny, and its specific role in predisposing the incarcerated cobalt ion for organometallic catalysis has remained obscure. Herein, we report the biosynthesis of the cobalt-free B12 corrin moiety, hydrogenobyric acid (Hby), a compound crafted through pathway redesign. Detailed insights from single-crystal X-ray and solution structures of Hby have revealed a distorted helical cavity, redefining the pattern for binding cobalt ions. Consequently, the corrin ligand coordinates cobalt ions in desymmetrized "entatic" states, thereby promoting the activation of B12 -cofactors for their challenging chemical transitions. The availability of Hby also provides a route to the synthesis of transition metal analogues of B12 .


Assuntos
Corrinoides/biossíntese , Uroporfirinas/metabolismo , Vitamina B 12/metabolismo , Biocatálise , Cobalto/química , Cobalto/metabolismo , Corrinoides/química , Ligantes , Estrutura Molecular , Uroporfirinas/química , Vitamina B 12/química
7.
Chemosphere ; 221: 212-218, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30640003

RESUMO

Iodinated X-ray contrast media are known for their stability concerning deiodination in the aquatic environment under aerobic conditions. In this study, we demonstrate the abiotic reductive deiodination of the iodinated contrast media iopromide, iopamidol and diatrizoate in the presence of corrinoids. In addition, triiodinated benzoic acid derivatives with iodine atoms bound at different positions were investigated. Corrinoids like cyanocobalamin (vitamin B12) and dicyanocobinamide served as electron shuttles and as catalysts between the reducing agent (e.g., titanium (III) citrate) and the electron accepting iodinated compound. The concentration decrease of the iodinated compounds followed first-order kinetics with rate constant kobs depending on the iodinated compound. A linear correlation between the rate of iodide release and the corrinoid concentration was observed, with deiodination rates for dicyanocobinamide twice as high as for vitamin B12. Reducing agents with a less negative standard redox potential like dithiothreitol or cysteine caused slower deiodination as the cobalt center was only reduced to its CoII oxidation state. With a temperature increase from 11 to 23 °C, the concentrations of released iodide doubled. A complete deiodination was only observed for the iodinated contrast media but not for structurally similar iodinated benzoic acid derivatives.


Assuntos
Meios de Contraste/química , Corrinoides/química , Halogenação , Raios X , Catálise , Diatrizoato/química , Iodo/química , Iohexol/análogos & derivados , Iohexol/química , Iopamidol/química , Cinética , Oxirredução
8.
Analyst ; 144(1): 130-136, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30460362

RESUMO

This paper describes the detection of endogenous cyanide using corrin-based CyanoKit technologies in combination with a smartphone readout device. When applied to the detection of cyanide in water, this method demonstrates high repeatability and discriminative power with a limit of blank of 0.074 ppm and an instrument limit of detection of 0.13 ppm. Quantification of endogenous cyanide in cassava and bitter almond extracts with the smartphone readout is in excellent agreement with independent analyses using traditional spectrophotometric detection. The prototype system objectively detects levels of cyanide with a high granularity at the point-of-need and does not depend on large, heavy and expensive instrumentation. The methodology has the potential to be easily adopted in resource limited situations and low-income countries.


Assuntos
Colorimetria/instrumentação , Colorimetria/métodos , Cianetos/análise , Contaminação de Alimentos/análise , Smartphone , Água/análise , Algoritmos , Corrinoides/química , Limite de Detecção , Manihot/química , Prunus dulcis/química
9.
Angew Chem Int Ed Engl ; 57(50): 16308-16312, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30352140

RESUMO

F430 is a unique enzymatic cofactor in the production and oxidation of methane by strictly anaerobic bacteria. The key enzyme methyl coenzyme M reductase (MCR) contains a hydroporphinoid nickel complex with a characteristic absorption maximum at around 430 nm in its active site. Herein, the three-step semisynthesis of a hybrid NiII -containing corrinoid that partly resembles F430 in its structural and spectroscopic features from vitamin B12 is presented. A key step of the route is the simultaneous demetalation and ring closure reaction of a 5,6-secocobalamin to metal-free 5,6-dihydroxy-5,6-dihydrohydrogenobalamin with cobaltocene and KCN under reductive conditions. Studies on the coordination chemistry of the novel compound support an earlier hypothesis why nature carefully selected a corphin over a corrin ligand in F430 for challenging nickel-catalyzed biochemical reactions.


Assuntos
Níquel/química , Vitamina B 12/análogos & derivados , Complexo Vitamínico B/química , Bactérias/enzimologia , Catálise , Domínio Catalítico , Coenzimas/química , Corrinoides/síntese química , Corrinoides/química , Metano/química , Oxirredução , Oxirredutases/química , Vitamina B 12/síntese química , Complexo Vitamínico B/síntese química
10.
Angew Chem Int Ed Engl ; 57(26): 7830-7835, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29797764

RESUMO

The crystal structures of the B12 -dependent isomerases (eliminating) diol dehydratase and ethanolamine ammonia-lyase complexed with adenosylcobalamin were solved with and without substrates. The structures revealed that the peripheral a-acetamide side chain of the corrin ring directly interacts with the adenosyl group to maintain the group in the catalytic position, and that this side chain swings between the original and catalytic positions in a synchronized manner with the radical shuttling between the coenzyme and substrate/product. Mutations involving key residues that cooperatively participate in the positioning of the adenosyl group, directly or indirectly through the interaction with the a-side chain, decreased the turnover rate and increased the relative rate of irreversible inactivation caused by undesirable side reactions. These findings guide the engineering of enzymes for improved catalysis and producing useful chemicals by utilizing the high reactivity of radical species.


Assuntos
Cobamidas/química , Corrinoides/química , Sítios de Ligação , Catálise , Corrinoides/genética , Cristalografia por Raios X , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Conformação Proteica
11.
Chem Res Toxicol ; 30(12): 2197-2208, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29116760

RESUMO

In aqueous media at neutral pH, the binding of two cyanide molecules per cobinamide can be described by two formation constants, Kf1 = 1.1 (±0.6) × 105 M-1 and Kf2 = 8.5 (±0.1) × 104 M-1, or an overall cyanide binding constant of ∼1 × 1010 M-2. In comparison, the cyanide binding constants for cobalamin and a fully oxidized form of cytochrome c oxidase, each binding a single cyanide anion, were found to be 7.9 (±0.5) × 104 M-1 and 1.6 (±0.2) × 107 M-1, respectively. An examination of the cyanide-binding properties of cobinamide at neutral pH by stopped-flow spectrophotometry revealed two kinetic phases, rapid and slow, with apparent second-order rate constants of 3.2 (±0.5) × 103 M-1 s-1 and 45 (±1) M-1 s-1, respectively. Under the same conditions, cobalamin exhibited a single slow cyanide-binding kinetic phase with a second-order rate constant of 35 (±1) M-1 s-1. All three of these processes are significantly slower than the rate at which cyanide is bound by complex IV during enzyme turnover (>106 M-1 s-1). Overall, it can be understood from these findings why cobinamide is a measurably better cyanide scavenger than cobalamin, but it is unclear how either cobalt corrin can be antidotal toward cyanide intoxication as neither compound, by itself, appears able to out-compete cytochrome c oxidase for available cyanide. Furthermore, it has also been possible to unequivocally show in head-to-head comparison assays that the enzyme does indeed have greater affinity for cyanide than both cobalamin and cobinamide. A plausible resolution of the paradox that both cobalamin and cobinamide clearly are antidotal toward cyanide intoxication, involving the endogenous auxiliary agent nitric oxide, is suggested. Additionally, the catalytic consumption of oxygen by the cobalt corrins is demonstrated and, in the case of cobinamide, the involvement of cytochrome c when present. Particularly in the case of cobinamide, these oxygen-dependent reactions could potentially lead to erroneous assessment of the ability of the cyanide scavenger to restore the activity of cyanide-inhibited cytochrome c oxidase.


Assuntos
Cobalto/metabolismo , Corrinoides/metabolismo , Cianetos/metabolismo , Cianetos/toxicidade , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oxigênio/metabolismo , Cobalto/química , Corrinoides/química , Cianetos/química , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/química , Estrutura Molecular , Oxigênio/química
12.
Annu Rev Biochem ; 86: 357-386, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28654328

RESUMO

A wide range of phylogenetically diverse microorganisms couple the reductive dehalogenation of organohalides to energy conservation. Key enzymes of such anaerobic catabolic pathways are corrinoid and Fe-S cluster-containing, membrane-associated reductive dehalogenases. These enzymes catalyze the reductive elimination of a halide and constitute the terminal reductases of a short electron transfer chain. Enzymatic and physiological studies revealed the existence of quinone-dependent and quinone-independent reductive dehalogenases that are distinguishable at the amino acid sequence level, implying different modes of energy conservation in the respective microorganisms. In this review, we summarize current knowledge about catabolic reductive dehalogenases and the electron transfer chain they are part of. We review reaction mechanisms and the role of the corrinoid and Fe-S cluster cofactors and discuss physiological implications.


Assuntos
Proteínas de Bactérias/química , Chloroflexi/enzimologia , Coenzimas/química , Corrinoides/química , Halogênios/química , Oxirredutases/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzoquinonas/química , Benzoquinonas/metabolismo , Biocatálise , Chloroflexi/química , Chloroflexi/genética , Coenzimas/metabolismo , Corrinoides/metabolismo , Transporte de Elétrons , Metabolismo Energético , Expressão Gênica , Halogênios/metabolismo , Cinética , Modelos Moleculares , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , Especificidade por Substrato , Vitamina B 12/química , Vitamina B 12/metabolismo
13.
J Biol Inorg Chem ; 22(5): 695-703, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28432454

RESUMO

Horseradish peroxidase was reconstituted with cobalt tetradehydrocorrin, rHRP(Co(TDHC)), as a structural analog of cobalamin coordinated with an imidazolate-like His residue, which is generally seen in native enzymes. In contrast to the previously reported cobalt tetradehydrocorrin-reconstituted myoglobin, rMb(Co(TDHC)), the HRP matrix was expected to provide strong axial ligation by His170 which has imidazolate character. rHRP(CoII(TDHC)) was characterized by EPR and its reaction with reductants indicates a negative shift of its redox potential compared to rMb(Co(TDHC)). Furthermore, aqua- and CN-forms of Co(III) state were prepared. The former species was obtained by oxidation of rHRP(CoII(TDHC)) with K3[Fe(CN)6]. The cyanide-coordinated Co(III) species in the latter was prepared by ligand exchange of rHRP(CoIII(OH)(TDHC)) with exogenous cyanide upon addition of KCN. The 13C NMR chemical shift of cyanide in rHRP(CoIII(CN)(TDHC)) was determined to be 121.8 ppm. IR measurements show that the cyanide of rHRP(CoIII(CN)(TDHC)) has a stretching frequency peak at 2144 cm-1. The 13C NMR and IR measurements indicate strong coordination of cyanide to CoIII(TDHC) relative to rMb(CoIII(CN)(TDHC)). Thus, the extent of π-back donation from the cobalt ion to the cyanide ion is relatively high in rHRP(CoIII(CN)(TDHC)). The pK 1/2 values of rHRP(CoIII(OH)(TDHC)) and rHRP(CoIII(CN)(TDHC)) are the same (pK 1/2 = 3.2) as determined by a pH titration experiment, indicating that cyanide ligation does not affect Co-His ligation, whereas cyanide ligation weakens the Co-His ligation in rMb(CoIII(CN)(TDHC)). Taken together, these results indicate that HRP reconstituted with cobalt tetradehydrocorrin is a suitable cobalamin-dependent enzyme model with imidazolate-like His residue.


Assuntos
Complexos de Coordenação/química , Corrinoides/química , Heme/química , Histidina/química , Peroxidase do Rábano Silvestre/química , Imidazóis/química , Cobalto/química , Complexos de Coordenação/metabolismo , Corrinoides/metabolismo , Heme/metabolismo , Histidina/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Imidazóis/metabolismo , Modelos Moleculares , Conformação Molecular
14.
Inorg Chem ; 56(4): 1950-1955, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28165219

RESUMO

We investigate the correlations between the redox potentials of nonalkylated cobalt corrinoids and the Co-C bond dissociation energies (BDEs) of the methylated species with an aqua or histidine axial ligand. A set of cobalt corrinoids, cobalamin, and its model systems, which include new version of myoglobin reconstituted with cobalt didehydrocorrin, are investigated. The Co(III)/Co(II) and Co(II)/Co(I) redox potentials of myoglobin reconstituted with cobalt tetradehydrocorrin and didehydrocorrin and the bare cofactors were determined. Density functional theory (DFT) calculations were performed to estimate the Co-C BDEs of the methylated species. It is found that the redox potentials correlate well with the heterolytic BDEs, which are dependent on the electronegativity of the corrinoid frameworks. The present study offers two important insights into our understanding of how enzymes promote the reactions: (i) homolysis is promoted by strong axial ligation and (ii) heterolysis is controlled by the redox potentials, which are regulated by the saturated framework and axial ligation in the enzyme.


Assuntos
Cobalto/química , Complexos de Coordenação/química , Corrinoides/química , Teoria Quântica , Ligantes , Modelos Moleculares , Estrutura Molecular , Oxirredução
15.
Methods Enzymol ; 580: 439-54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27586344

RESUMO

An important strategy used in engineering of hemoproteins to generate artificial enzymes involves replacement of heme with an artificial cofactor after removal of the native heme cofactor under acidic conditions. Replacement of heme in an enzyme with a nonnatural metalloporphyrinoid can significantly alter the reactivity of the enzyme. This chapter describes the design and synthesis of three types of artificial metalloporphyrinoid cofactors consisting of mono-, di-, and tri-anionic ligands (tetradehydrocorrin, porphycene, and corrole, respectively). In addition, practical procedures for the preparation of apo-hemoproteins, incorporation of artificial cofactors, and characterization techniques are presented. Furthermore, the representative catalytic activities of artificial enzymes generated by reconstitution of hemoproteins are summarized.


Assuntos
Heme/química , Hemeproteínas/química , Metaloporfirinas/química , Engenharia de Proteínas/métodos , Corrinoides/síntese química , Corrinoides/química , Hemeproteínas/síntese química , Cinética , Metaloporfirinas/síntese química , Porfirinas/síntese química , Porfirinas/química
16.
PLoS One ; 11(7): e0158681, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27384529

RESUMO

A cobalamin (Cbl) cofactor in corrinoid iron-sulfur protein (CoFeSP) is the primary methyl group donor and acceptor in biological carbon oxide conversion along the reductive acetyl-CoA pathway. Changes of the axial coordination of the cobalt ion within the corrin macrocycle upon redox transitions in aqua-, methyl-, and cyano-Cbl bound to CoFeSP or in solution were studied using X-ray absorption spectroscopy (XAS) at the Co K-edge in combination with density functional theory (DFT) calculations, supported by metal content and cobalt redox level quantification with further spectroscopic methods. Calculation of the highly variable pre-edge X-ray absorption features due to core-to-valence (ctv) electronic transitions, XANES shape analysis, and cobalt-ligand bond lengths determination from EXAFS has yielded models for the molecular and electronic structures of the cobalt sites. This suggested the absence of a ligand at cobalt in CoFeSP in α-position where the dimethylbenzimidazole (dmb) base of the cofactor is bound in Cbl in solution. As main species, (dmb)CoIII(OH2), (dmb)CoII(OH2), and (dmb)CoIII(CH3) sites for solution Cbl and CoIII(OH2), CoII(OH2), and CoIII(CH3) sites in CoFeSP-Cbl were identified. Our data support binding of a serine residue from the reductive-activator protein (RACo) of CoFeSP to the cobalt ion in the CoFeSP-RACo protein complex that stabilizes Co(II). The absence of an α-ligand at cobalt not only tunes the redox potential of the cobalamin cofactor into the physiological range, but is also important for CoFeSP reactivation.


Assuntos
Proteínas de Bactérias/química , Cobalto/química , Corrinoides/química , Proteínas Ferro-Enxofre/química , Vitamina B 12/química , Espectroscopia por Absorção de Raios X/métodos , Proteínas de Bactérias/metabolismo , Fenômenos Químicos , Cobalto/metabolismo , Corrinoides/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Firmicutes/metabolismo , Íons/química , Íons/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ligantes , Modelos Moleculares , Oxirredução , Ligação Proteica , Conformação Proteica , Soluções , Vitamina B 12/metabolismo
17.
Angew Chem Int Ed Engl ; 55(37): 11281-6, 2016 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-27355790

RESUMO

B12 is unique among the vitamins as it is biosynthesized only by certain prokaryotes. The complexity of its synthesis relates to its distinctive cobalt corrin structure, which is essential for B12 biochemistry and renders coenzyme B12 (AdoCbl) so intriguingly suitable for enzymatic radical reactions. However, why is cobalt so fit for its role in B12 -dependent enzymes? To address this question, we considered the substitution of cobalt in AdoCbl with rhodium to generate the rhodium analogue 5'-deoxy-5'-adenosylrhodibalamin (AdoRbl). AdoRbl was prepared by de novo total synthesis involving both biological and chemical steps. AdoRbl was found to be inactive in vivo in microbial bioassays for methionine synthase and acted as an in vitro inhibitor of an AdoCbl-dependent diol dehydratase. Solution NMR studies of AdoRbl revealed a structure similar to that of AdoCbl. However, the crystal structure of AdoRbl revealed a conspicuously better fit of the corrin ligand for Rh(III) than for Co(III) , challenging the current views concerning the evolution of corrins.


Assuntos
Cobamidas/farmacologia , Corrinoides/síntese química , Corrinoides/farmacologia , Desidrogenase do Álcool de Açúcar/antagonistas & inibidores , Citrobacter freundii/enzimologia , Cobamidas/química , Corrinoides/química , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Relação Estrutura-Atividade , Desidrogenase do Álcool de Açúcar/metabolismo
18.
Chem Res Toxicol ; 29(6): 1011-9, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27104767

RESUMO

The complex of cobalt(II) with the ligand 2,12-dimethyl-3,7,11,17-tetraazabicyclo-[11.3.1]heptadeca-1(17)2,11,13,15-pentaene (CoN4[11.3.1]) has been shown to bind two molecules of cyanide in a cooperative fashion with an association constant of 2.7 (±0.2) × 10(5). In vivo, irrespective of whether it is initially administered as the Co(II) or Co(III) cation, EPR spectroscopic measurements on blood samples show that at physiological levels of reductant (principally ascorbate) CoN4[11.3.1] becomes quantitatively reduced to the Co(II) form. However, following addition of sodium cyanide, a dicyano Co(III) species is formed, both in blood and in buffered aqueous solution at neutral pH. In keeping with other cobalt-containing cyanide-scavenging macrocycles like cobinamide and cobalt(III) meso-tetra(4-N-methylpyridyl)porphine, we found that CoN4[11.3.1] exhibits rapid oxygen turnover in the presence of the physiological reductant ascorbate. This behavior could potentially render CoN4[11.3.1] cytotoxic and/or interfere with evaluations of the antidotal capability of the complex toward cyanide through respirometric measurements, particularly since cyanide rapidly inhibits this process, adding further complexity. A sublethal mouse model was used to assess the effectiveness of CoN4[11.3.1] as a potential cyanide antidote. The administration of CoN4[11.3.1] prophylactically to sodium cyanide-intoxicated mice resulted in the time required for the surviving animals to recover from "knockdown" (unconsciousness) being significantly decreased (3 ± 2 min) compared to that of the controls (22 ± 5 min). All observations are consistent with the demonstrated antidotal activity of CoN4[11.3.1] operating through a cyanide-scavenging mechanism, which is associated with a Co(II) → Co(III) oxidation of the cation. To test for postintoxication neuromuscular sequelae, the ability of mice to remain in position on a rotating cylinder (RotaRod test) was assessed during and after recovery. While intoxicated animals given CoN4[11.3.1] did recover ∼30 min more quickly than controls given only toxicant, there were no indications of longer-term problems in either group, as determined by continuing the RotaRod testing up to 24 h after the intoxications and routine behavioral observations for a further week.


Assuntos
Antídotos/farmacologia , Cobalto/farmacologia , Corrinoides/economia , Corrinoides/farmacologia , Cianetos/antagonistas & inibidores , Compostos Macrocíclicos/economia , Compostos Macrocíclicos/farmacologia , Animais , Antídotos/química , Antídotos/economia , Cobalto/química , Cobalto/economia , Corrinoides/química , Cianetos/química , Cianetos/toxicidade , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Masculino , Camundongos , Bases de Schiff/síntese química , Bases de Schiff/química , Bases de Schiff/economia , Bases de Schiff/farmacologia
19.
Dalton Trans ; 45(8): 3277-84, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26646210

RESUMO

Myoglobin reconstituted with a cobalt tetradehydrocorrin derivative, rMb(Co(TDHC)), was investigated as a hybrid model to replicate the reaction catalyzed by methionine synthase. In the heme pocket, Co(I)(TDHC) is found to react with methyl iodide to form the methylated cobalt complex, CH3-Co(III)(TDHC), although it is known that a similar nucleophilic reaction of a cobalt(i) tetradehydrocorrin complex does not proceed effectively in organic solvents. Furthermore, we observed a residue- and regio-selective transmethylation from the CH3-Co(III)(TDHC) species to the Nε2 atom of the His64 imidazole ring in myoglobin at 25 °C over a period of 48 h. These findings indicate that the protein matrix promotes the model reaction of methionine synthase via the methylated cobalt complex. A theoretical calculation provides support for a plausible reaction mechanism wherein the axial histidine ligation stabilizes the methylated cobalt complex and subsequent histidine-flipping induces the transmethylation via heterolytic cleavage of the Co-CH3 bond in the hybrid model.


Assuntos
Materiais Biomiméticos/química , Cobalto/química , Corrinoides/química , Mioglobina/química , Compostos Organometálicos/química , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/química , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Sequência de Aminoácidos , Heme/química , Cinética , Metilação , Modelos Moleculares , Conformação Proteica
20.
Org Biomol Chem ; 13(1): 14-7, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25317920

RESUMO

Cassava (Manihot esculenta Crantz) is a staple food for more than 500 million people, especially in Africa and South America. However, its consumption bears risks as it contains cyanogenic glycosides that convert enzymatically to toxic cyanide during cell damage. To avoid serious health problems by unintentional cyanide intake, this dangerous product of decomposition must be removed before consumption. For monitoring such food processing procedures and for controlling the quality and safety of cassava products on the market, a convenient and reliable analytical method for routine applications without laboratory equipment is required. This Perspective summarizes the authors' work on corrin-based chemosensors for the ('naked-eye') detection of endogenous cyanide in cassava samples. Considering selectivity, sensitivity, handling and speed of detection, these systems are superior to currently applied methods. Based on these properties, the development of a test kit for application by rural farmers in remote locations is proposed.


Assuntos
Técnicas de Química Analítica/instrumentação , Corrinoides/química , Cianetos/análise , Manihot/química , Técnicas de Química Analítica/economia , Inocuidade dos Alimentos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...