Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(2): e0315823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38265238

RESUMO

The zoonotic Cryptosporidium parvum is a global contributor to infantile diarrheal diseases and opportunistic infections in immunocompromised or weakened individuals. Like other apicomplexans, it possesses several specialized secretory organelles, including micronemes, rhoptry, and dense granules. However, the understanding of cryptosporidial micronemal composition and secretory pathway remains limited. Here, we report a new micronemal protein in C. parvum, namely, thrombospondin (TSP)-repeat domain-containing protein-4 (CpTSP4), providing insights into these ambiguities. Immunostaining and enzyme-linked assays show that CpTSP4 is prestored in the micronemes of unexcysted sporozoites but secreted during sporozoite excystation, gliding, and invasion. In excysted sporozoites, CpTSP4 is also distributed on the two central microtubules unique to Cryptosporidium. The secretion and microtubular distribution could be completely blocked by the selective kinesin-5 inhibitors SB-743921 and SB-715992, resulting in the accumulation of CpTSP4 in micronemes. These support the kinesin-dependent microtubular trafficking of CpTSP4 for secretion. We also localize γ-tubulin, consistent with kinesin-dependent anterograde trafficking. Additionally, recombinant CpTSP4 displays nanomolar binding affinity to the host cell surface, for which heparin acts as one of the host ligands. A novel heparin-binding motif is identified and validated biochemically for its contribution to the adhesive property of CpTSP4 by peptide competition assays and site-directed mutagenesis. These findings shed light on the mechanisms of intracellular trafficking and secretion of a cryptosporidial micronemal protein and the interaction of a TSP-family protein with host cells.IMPORTANCECryptosporidium parvum is a globally distributed apicomplexan parasite infecting humans and/or animals. Like other apicomplexans, it possesses specialized secretory organelles in the zoites, in which micronemes discharge molecules to facilitate the movement and invasion of zoites. Although past and recent studies have identified several proteins in cryptosporidial micronemes, our understanding of the composition, secretory pathways, and domain-ligand interactions of micronemal proteins remains limited. This study identifies a new micronemal protein, namely, CpTSP4, that is discharged during excystation, gliding, and invasion of C. parvum sporozoites. The CpTSP4 secretion depends on the intracellular trafficking on the two Cryptosporidium-unique microtubes that could be blocked by kinesin-5/Eg5 inhibitors. Additionally, a novel heparin-binding motif is identified and biochemically validated, which contributes to the nanomolar binding affinity of CpTSP4 to host cells. These findings indicate that kinesin-dependent microtubular trafficking is critical to CpTSP4 secretion, and heparin/heparan sulfate is one of the ligands for this micronemal protein.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Humanos , Animais , Cryptosporidium parvum/metabolismo , Criptosporidiose/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Esporozoítos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Heparina/metabolismo
2.
J Proteomics ; 287: 104969, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37463621

RESUMO

Cryptosporidium is a protozoan parasite capable of infecting humans and animals and is a leading cause of diarrheal disease and early childhood mortality. The molecular mechanisms underlying invasive infection and its pathogenesis remain largely unknown. To better understand the molecular mechanism of the interaction between C. parvum and host cells, we profiled the changes of host cells membrane proteins extracted using native membrane protein extraction kit between C. parvum-infected HCT-8 cells and the control group after C. parvum infected 6 h combined with quantitative Tandem Mass Tags (TMT) liquid chromatography-dual mass spectrometry proteomic analysis. Among the 4844 quantifiable proteins identified, the expression levels of 625 were upregulated, and those of 116 were downregulated at 6 h post-infection compared with controls (1.5-fold difference in abundance, p < 0.05). Enrichment analysis of the function, protein domain and Kyoto Encyclopedia of Genes and Genomes pathway of the differentially expressed proteins revealed that the differentially expressed proteins were mainly related to biological functions related to the cytoskeleton and cytoplasmic matrix. We also found that infection with C. parvum may destroy HCT-8 intercellular space adhesion. Six proteins were further verified using quantitative real-time reverse transcription polymerase chain reaction and western blotting. Through systematic analysis of proteomics related to HCT-8 cell membranes infected by C. parvum, we found many host membrane proteins that can serve as potential receptors in C. parvum adhesion or invasion. C. parvum infection destroyed host cell barrier function and caused extensive changes in host cytoskeleton proteins, providing a deeper understanding of the molecules and their functions involved in the host-C. parvum interaction. SIGNIFICANCE: There is a lack of systematic research on the molecular mechanisms underlying the interaction of C. parvum with host cells. Changes of host cell membrane proteins after C. parvum infection may be used to examine the host cell receptors for parasite adhesion and invasion, and how the parasite interacts with these receptors. It is of great significance that host cells undergo membrane fusion to mediate invasion. Through proteomic studies on the host cell membrane after infection with HCT-8 cells by C. parvum, we observed disruption of the host cell cellular barrier function and widespread alteration of host cytoskeletal proteins caused by C. parvum infection, providing a deeper understanding of the molecules and their functions involved in host-C. parvum interaction.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Humanos , Pré-Escolar , Animais , Criptosporidiose/genética , Criptosporidiose/metabolismo , Criptosporidiose/parasitologia , Cryptosporidium parvum/genética , Proteômica , Proteínas de Membrana
3.
Cell Rep ; 42(7): 112680, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37384526

RESUMO

Cryptosporidiosis is a leading cause of life-threatening diarrhea in young children in resource-poor settings. To explore microbial influences on susceptibility, we screened 85 microbiota-associated metabolites for their effects on Cryptosporidium parvum growth in vitro. We identify eight inhibitory metabolites in three main classes: secondary bile salts/acids, a vitamin B6 precursor, and indoles. Growth restriction of C. parvum by indoles does not depend on the host aryl hydrocarbon receptor (AhR) pathway. Instead, treatment impairs host mitochondrial function and reduces total cellular ATP, as well as directly reducing the membrane potential in the parasite mitosome, a degenerate mitochondria. Oral administration of indoles, or reconstitution of the gut microbiota with indole-producing bacteria, delays life cycle progression of the parasite in vitro and reduces the severity of C. parvum infection in mice. Collectively, these findings indicate that microbiota metabolites impair mitochondrial function and contribute to colonization resistance to Cryptosporidium infection.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Microbiota , Animais , Camundongos , Cryptosporidium parvum/metabolismo , Criptosporidiose/metabolismo , Criptosporidiose/microbiologia , Criptosporidiose/parasitologia , Mitocôndrias/metabolismo , Indóis/farmacologia , Indóis/metabolismo
4.
Vet Res ; 54(1): 40, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138353

RESUMO

Cryptosporidiosis is one of the main causes of diarrhea in children and young livestock. The interaction of the parasite with the intestinal host cells has not been characterized thoroughly yet but may be affected by the nutritional demand of the parasite. Hence, we aimed to investigate the impact of C. parvum infection on glucose metabolism in neonatal calves. Therefore, N = 5 neonatal calves were infected with C. parvum on the first day of life, whereas a control group was not (N = 5). The calves were monitored clinically for one week, and glucose absorption, turnover and oxidation were assessed using stable isotope labelled glucose. The transepithelial transport of glucose was measured using the Ussing chamber technique. Glucose transporters were quantified on gene and protein expression level using RT-qPCR and Western blot in the jejunum epithelium and brush border membrane preparations. Plasma glucose concentration and oral glucose absorption were decreased despite an increased electrogenic phlorizin sensitive transepithelial transport of glucose in infected calves. No difference in the gene or protein abundance of glucose transporters, but an enrichment of glucose transporter 2 in the brush border was observed in the infected calves. Furthermore, the mRNA for enzymes of the glycolysis pathway was increased indicating enhanced glucose oxidation in the infected gut. In summary, C. parvum infection modulates intestinal epithelial glucose absorption and metabolism. We assume that the metabolic competition of the parasite for glucose causes the host cells to upregulate their uptake mechanisms and metabolic machinery to compensate for the energy losses.


Assuntos
Doenças dos Bovinos , Criptosporidiose , Cryptosporidium parvum , Glucose , Mucosa Intestinal , Animais , Bovinos , Animais Recém-Nascidos/metabolismo , Animais Recém-Nascidos/parasitologia , Glicemia/metabolismo , Doenças dos Bovinos/metabolismo , Doenças dos Bovinos/parasitologia , Criptosporidiose/metabolismo , Criptosporidiose/parasitologia , Cryptosporidium parvum/metabolismo , Glucose/metabolismo , Mucosa Intestinal/metabolismo , Jejuno/metabolismo , Masculino
5.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675151

RESUMO

Apicomplexan infections, such as giardiasis and cryptosporidiosis, negatively impact a considerable proportion of human and commercial livestock populations. Despite this, the molecular mechanisms of disease, particularly the effect on the body beyond the gastrointestinal tract, are still poorly understood. To highlight host-parasite-microbiome biochemical interactions, we utilised integrated metabolomics-16S rRNA genomics and metabolomics-proteomics approaches in a C57BL/6J mouse model of giardiasis and compared these to Cryptosporidium and uropathogenic Escherichia coli (UPEC) infections. Comprehensive samples (faeces, blood, liver, and luminal contents from duodenum, jejunum, ileum, caecum and colon) were collected 10 days post infection and subjected to proteome and metabolome analysis by liquid and gas chromatography-mass spectrometry, respectively. Microbial populations in faeces and luminal washes were examined using 16S rRNA metagenomics. Proteome-metabolome analyses indicated that 12 and 16 key pathways were significantly altered in the gut and liver, respectively, during giardiasis with respect to other infections. Energy pathways including glycolysis and supporting pathways of glyoxylate and dicarboxylate metabolism, and the redox pathway of glutathione metabolism, were upregulated in small intestinal luminal contents and the liver during giardiasis. Metabolomics-16S rRNA genetics integration indicated that populations of three bacterial families-Autopobiaceae (Up), Desulfovibrionaceae (Up), and Akkermanasiaceae (Down)-were most significantly affected across the gut during giardiasis, causing upregulated glycolysis and short-chained fatty acid (SCFA) metabolism. In particular, the perturbed Akkermanasiaceae population seemed to cause oxidative stress responses along the gut-liver axis. Overall, the systems biology approach applied in this study highlighted that the effects of host-parasite-microbiome biochemical interactions extended beyond the gut ecosystem to the gut-liver axis. These findings form the first steps in a comprehensive comparison to ascertain the major molecular and biochemical contributors of host-parasite interactions and contribute towards the development of biomarker discovery and precision health solutions for apicomplexan infections.


Assuntos
Criptosporidiose , Cryptosporidium , Microbioma Gastrointestinal , Giardíase , Microbiota , Camundongos , Animais , Humanos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Regulação para Cima , Proteoma/metabolismo , Criptosporidiose/metabolismo , Camundongos Endogâmicos C57BL , Cryptosporidium/metabolismo , Metabolômica , Metaboloma , Fígado/metabolismo , Oxirredução
6.
Front Immunol ; 13: 963723, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211380

RESUMO

The physical barrier of the intestine and associated mucosal immunity maintains a delicate homeostatic balance between the host and the external environment by regulating immune responses to commensals, as well as functioning as the first line of defense against pathogenic microorganisms. Understanding the orchestration and characteristics of the intestinal mucosal immune response during commensal or pathological conditions may provide novel insights into the mechanisms underlying microbe-induced immunological tolerance, protection, and/or pathogenesis. Over the last decade, our knowledge about the interface between the host intestinal mucosa and the gut microbiome has been dominated by studies focused on bacterial communities, helminth parasites, and intestinal viruses. In contrast, specifically how commensal and pathogenic protozoa regulate intestinal immunity is less well studied. In this review, we provide an overview of mucosal immune responses induced by intestinal protozoa, with a major focus on the role of different cell types and immune mediators triggered by commensal (Blastocystis spp. and Tritrichomonas spp.) and pathogenic (Toxoplasma gondii, Giardia intestinalis, Cryptosporidium parvum) protozoa. We will discuss how these various protozoa modulate innate and adaptive immune responses induced in experimental models of infection that benefit or harm the host.


Assuntos
Criptosporidiose , Cryptosporidium , Criptosporidiose/metabolismo , Humanos , Imunidade nas Mucosas , Mucosa Intestinal , Intestinos
7.
Int J Mol Sci ; 23(14)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35886965

RESUMO

The protozoan pathogen Cryptosporidium parvum infects intestinal epithelial cells and causes diarrhea in humans and young animals. Among the more than 20 genes encoding insulinase-like metalloproteinases (INS), two are paralogs with high sequence identity. In this study, one of them, INS-16 encoded by the cgd3_4270 gene, was expressed and characterized in a comparative study of its sibling, INS-15 encoded by the cgd3_4260 gene. A full-length INS-16 protein and its active domain I were expressed in Escherichia coli, and antibodies against the domain I and an INS-16-specific peptide were produced in rabbits. In the analysis of the crude extract of oocysts, a ~60 kDa fragment of INS-16 rather than the full protein was recognized by polyclonal antibodies against the specific peptide, indicating that INS-16 undergoes proteolytic cleavage before maturation. The expression of the ins-16 gene peaked at the invasion phase of in vitro C. parvum culture, with the documented expression of the protein in both sporozoites and merozoites. Localization studies with antibodies showed significant differences in the distribution of the native INS-15 and INS-16 proteins in sporozoites and merozoites. INS-16 was identified as a dense granule protein in sporozoites and macrogamonts but was mostly expressed at the apical end of merozoites. We screened 48 candidate INS-16 inhibitors from the molecular docking of INS-16. Among them, two inhibited the growth of C. parvum in vitro (EC50 = 1.058 µM and 2.089 µM). The results of this study suggest that INS-16 may have important roles in the development of C. parvum and could be a valid target for the development of effective treatments.


Assuntos
Cryptosporidium parvum , Insulisina , Metaloproteases , Proteínas de Protozoários , Animais , Criptosporidiose/metabolismo , Cryptosporidium/metabolismo , Cryptosporidium parvum/metabolismo , Insulisina/metabolismo , Metaloproteases/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Protozoários/metabolismo , Coelhos , Esporozoítos/metabolismo
8.
Am J Trop Med Hyg ; 105(6): 1706-1711, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34583337

RESUMO

In low-resource settings, Cryptosporidium spp. is a common cause of diarrheal disease in children under the age of 3 years. In addition to diarrhea, these children also experience subclinical episodes that have been shown to affect growth and cognitive function. In this study, we screened polymorphisms in the promoter and exon1 regions of the mannose binding lectin 2 (MBL2) gene, as well as single nucleotide polymorphisms (SNPs) described in toll-like receptors (TLR) TLR1, TLR2, TLR4, and TLR9 and TIR domain-containing adaptor protein (TIRAP) genes among children with cryptosporidial diarrhea (cases) and children who only experienced asymptomatic (subclinical) cryptosporidiosis (controls). Among the polymorphisms screened, the variant allele B at codon 54 (rs1800450) of the MBL2 gene was associated with susceptibility to cryptosporidial diarrhea (odds ratio [OR] = 2.2, 95% confidence interval [CI] 1.1-4.5). When plasma MBL levels were compared, 72% of cases were found to be deficient compared with 32% among controls (OR = 5.09). Among TLR polymorphisms screened, multivariate analysis showed that heterozygous genotypes of TLR4 896A/G (rs4986790, OR = 0.33, 95% CI: 0.11-0.98) and TIRAP 539 C/T (rs8177374, OR = 0.19, 95% CI: 0.06-0.64) SNPs were associated with protection from cryptosporidial diarrhea. Although not statistically significant, these findings suggest that polymorphisms of MBL2 and TLR genes influence susceptibility to symptomatic cryptosporidial diarrhea even in settings with high exposure levels. Further studies to validate these findings in a larger cohort and to understand the role of these polymorphisms in mediating innate and adaptive immune responses to cryptosporidial infection are necessary.


Assuntos
Criptosporidiose/genética , Diarreia/parasitologia , Lectina de Ligação a Manose/genética , Polimorfismo Genético , Receptores Toll-Like/genética , Imunidade Adaptativa , Estudos de Casos e Controles , Pré-Escolar , Estudos de Coortes , Criptosporidiose/imunologia , Criptosporidiose/metabolismo , Diarreia/genética , Humanos , Imunidade Inata , Índia , Lactente , Pobreza , Áreas de Pobreza , População Urbana
9.
Parasit Vectors ; 14(1): 238, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33957927

RESUMO

BACKGROUND: Cryptosporidium is an important zoonotic pathogen responsible for severe enteric diseases in humans and animals. However, the molecular mechanisms underlying host and Cryptosporidium interactions are still not clear. METHODS: To study the roles of circRNAs in host cells during Cryptosporidium infection, the expression profiles of circRNAs in HCT-8 cells infected with C. parvum were investigated using a microarray assay, and the regulatory role of a significantly upregulated circRNA, ciRS-7, was investigated during C. parvum infection. RESULTS: C. parvum infection caused notable alterations in the expression profiles of circRNAs in HCT-8 cells, and a total of 178 (including 128 up- and 50 downregulated) circRNAs were significantly differentially expressed following C. parvum infection. Among them, ciRS-7 was significantly upregulated and regulated the NF-κB signaling pathway by sponging miR-1270 during C. parvum infection. Furthermore, the ciRS-7/miR-1270/relA axis markedly affected the propagation of C. parvum in HCT-8 cells. CONCLUSIONS: Our results revealed that ciRS-7 would promote C. parvum propagation by regulating the miR-1270/relA axis and affecting the NF-κB pathway. To the best of our knowledge, this is the first study to investigate the role of circRNA during Cryptosporidium infection, and the findings provide a novel view for implementing control strategies against Cryptosporidium infection.


Assuntos
Cryptosporidium parvum , Células Epiteliais/parasitologia , MicroRNAs/metabolismo , RNA Circular/metabolismo , Animais , Linhagem Celular , Criptosporidiose/metabolismo , Cryptosporidium parvum/crescimento & desenvolvimento , Cryptosporidium parvum/patogenicidade , Células Epiteliais/metabolismo , Humanos , NF-kappa B/metabolismo , Transdução de Sinais
10.
Front Immunol ; 12: 784683, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095858

RESUMO

Cryptosporidium parvum infection is very common in infants, immunocompromised patients, or in young ruminants, and chitosan supplementation exhibits beneficial effects against the infection caused by C. parvum. This study investigated whether chitosan supplementation modulates the gut microbiota and mediates the TLR4/STAT1 signaling pathways and related cytokines to attenuate C. parvum infection in immunosuppressed mice. Immunosuppressed C57BL/6 mice were divided into five treatment groups. The unchallenged mice received a basal diet (control), and three groups of mice challenged with 1 × 106 C. parvum received a basal diet, a diet supplemented with 50 mg/kg/day paromomycin, and 1 mg/kg/day chitosan, and unchallenged mice treated with 1 mg/kg/day chitosan. Chitosan supplementation regulated serum biochemical indices and significantly (p < 0.01) reduced C. parvum oocyst excretion in infected mice treated with chitosan compared with the infected mice that received no treatment. Chitosan-fed infected mice showed significantly (p < 0.01) decreased mRNA expression levels of interferon-gamma (IFN-γ) and tumor necrosis factor-α (TNF-α) compared to infected mice that received no treatment. Chitosan significantly inhibited TLR4 and upregulated STAT1 protein expression (p < 0.01) in C. parvum-infected mice. 16S rRNA sequencing analysis revealed that chitosan supplementation increased the relative abundance of Bacteroidetes/Bacteroides, while that of Proteobacteria, Tenericutes, Defferribacteres, and Firmicutes decreased (p < 0.05). Overall, the findings revealed that chitosan supplementation can ameliorate C. parvum infection by remodeling the composition of the gut microbiota of mice, leading to mediated STAT1/TLR4 up- and downregulation and decreased production of IFN-γ and TNF-α, and these changes resulted in better resolution and control of C. parvum infection.


Assuntos
Quitosana/farmacologia , Criptosporidiose , Microbioma Gastrointestinal , Fator de Transcrição STAT1/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Criptosporidiose/imunologia , Criptosporidiose/metabolismo , Cryptosporidium parvum , Suplementos Nutricionais , Hospedeiro Imunocomprometido , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
11.
mBio ; 11(6)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323514

RESUMO

The protozoan parasite Cryptosporidium sp. is a leading cause of diarrheal disease in those with compromised or underdeveloped immune systems, particularly infants and toddlers in resource-poor localities. As an enteric pathogen, Cryptosporidium sp. invades the apical surface of intestinal epithelial cells, where it resides in close proximity to metabolites in the intestinal lumen. However, the effect of gut metabolites on susceptibility to Cryptosporidium infection remains largely unstudied. Here, we first identified which gut metabolites are prevalent in neonatal mice when they are most susceptible to Cryptosporidium parvum infection and then tested the isolated effects of these metabolites on C. parvum invasion and growth in intestinal epithelial cells. Our findings demonstrate that medium or long-chain saturated fatty acids inhibit C. parvum growth, perhaps by negatively affecting the streamlined metabolism in C. parvum, which is unable to synthesize fatty acids. Conversely, long-chain unsaturated fatty acids enhanced C. parvum invasion, possibly by modulating membrane fluidity. Hence, gut metabolites, either from diet or produced by the microbiota, influence C. parvum growth in vitro and may also contribute to the early susceptibility to cryptosporidiosis seen in young animals.IMPORTANCECryptosporidium sp. occupies a unique intracellular niche that exposes the parasite to both host cell contents and the intestinal lumen, including metabolites from the diet and produced by the microbiota. Both dietary and microbial products change over the course of early development and could contribute to the changes seen in susceptibility to cryptosporidiosis in humans and mice. Consistent with this model, we show that the immature gut metabolome influenced the growth of Cryptosporidium parvumin vitro Interestingly, metabolites that significantly altered parasite growth were fatty acids, a class of molecules that Cryptosporidium sp. is unable to synthesize de novo The enhancing effects of polyunsaturated fatty acids and the inhibitory effects of saturated fatty acids presented in this study may provide a framework for future studies into this enteric parasite's interactions with exogenous fatty acids during the initial stages of infection.


Assuntos
Bactérias/metabolismo , Criptosporidiose/parasitologia , Cryptosporidium parvum/fisiologia , Microbioma Gastrointestinal , Mucosa Intestinal/microbiologia , Mucosa Intestinal/parasitologia , Animais , Animais Recém-Nascidos/metabolismo , Animais Recém-Nascidos/microbiologia , Animais Recém-Nascidos/parasitologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Criptosporidiose/metabolismo , Criptosporidiose/microbiologia , Cryptosporidium parvum/genética , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/parasitologia , Ácidos Graxos/metabolismo , Feminino , Humanos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR
12.
Proc Natl Acad Sci U S A ; 116(42): 21160-21165, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31570573

RESUMO

The apicomplexan parasite Cryptosporidium is a leading global cause of severe diarrheal disease and an important contributor to early-childhood mortality. Waterborne outbreaks occur frequently, even in countries with advanced water treatment capabilities, and there is currently no fully effective treatment. Nucleotide pathways are attractive targets for antimicrobial development, and several laboratories are designing inhibitors of these enzymes as potential treatment for Cryptosporidium infections. Here we take advantage of newly available molecular genetics for Cryptosporidium parvum to investigate nucleotide biosynthesis by directed gene ablation. Surprisingly, we found that the parasite tolerates the loss of classical targets including dihydrofolate reductase-thymidylate synthase (DHFR-TS) and inosine monophosphate dehydrogenase (IMPDH). We show that thymidine kinase provides a route to thymidine monophosphate in the absence of DHFR-TS. In contrast, only a single pathway has been identified for C. parvum purine nucleotide salvage. Nonetheless, multiple enzymes in the purine pathway, as well as the adenosine transporter, can be ablated. The resulting mutants are viable under normal conditions but are hypersensitive to inhibition of purine nucleotide synthesis in their host cell. Cryptosporidium might use as-yet undiscovered purine transporters and salvage enzymes; however, genetic and pharmacological experiments led us to conclude that Cryptosporidium imports purine nucleotides from the host cell. The potential for ATP uptake from the host has significant impact on our understanding of parasite energy metabolism given that Cryptosporidium lacks oxidative phosphorylation and glycolytic enzymes are not constitutively expressed throughout the parasite life cycle.


Assuntos
Transporte Biológico/fisiologia , Criptosporidiose/metabolismo , Criptosporidiose/parasitologia , Cryptosporidium parvum/genética , Cryptosporidium parvum/metabolismo , Nucleotídeos/metabolismo , Purinas/metabolismo , Linhagem Celular Tumoral , Humanos , IMP Desidrogenase/metabolismo , Complexos Multienzimáticos/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidilato Sintase/metabolismo
13.
Am J Physiol Cell Physiol ; 317(6): C1205-C1212, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31483700

RESUMO

The protozoan parasite Cryptosporidium parvum (CP) causes cryptosporidiosis, a diarrheal disease worldwide. Infection in immunocompetent hosts typically results in acute, self-limiting, or recurrent diarrhea. However, in immunocompromised individuals infection can cause fulminant diarrhea, extraintestinal manifestations, and death. To date, the mechanisms underlying CP-induced diarrheal pathogenesis are poorly understood. Diarrheal diseases most commonly involve increased secretion and/or decreased absorption of fluid and electrolytes. We and others have previously shown impaired chloride absorption in infectious diarrhea due to dysregulation of SLC26A3 [downregulated in adenoma (DRA)], the human intestinal apical membrane Cl-/HCO3- exchanger protein. However, there are no studies on the effects of CP infection on DRA activity. Therefore, we examined the expression and function of DRA in intestinal epithelial cells in response to CP infection in vitro and in vivo. CP infection (0.5 × 106 oocysts/well in 24-well plates, 24 h) of Caco-2 cell monolayers significantly decreased Cl-/HCO3- exchange activity (measured as DIDS-sensitive 125I uptake) as well as DRA mRNA and protein levels. Substantial downregulation of DRA mRNA and protein was also observed following CP infection ex vivo in mouse enteroid-derived monolayers and in vivo in the ileal and jejunal mucosa of C57BL/6 mice for 24 h. However, at 48 h after infection in vivo, the effects on DRA mRNA and protein were attenuated and at 5 days after infection DRA returned to normal levels. Our results suggest that impaired chloride absorption due to downregulation of DRA could be one of the contributing factors to CP-induced acute, self-limiting diarrhea in immunocompetent hosts.


Assuntos
Antiporters/genética , Antiportadores de Cloreto-Bicarbonato/genética , Criptosporidiose/genética , Cryptosporidium parvum/patogenicidade , Regulação da Expressão Gênica/genética , Mucosa Intestinal/metabolismo , Transportadores de Sulfato/genética , Animais , Anticorpos Neutralizantes/farmacologia , Antiporters/antagonistas & inibidores , Antiporters/metabolismo , Células CACO-2 , Antiportadores de Cloreto-Bicarbonato/antagonistas & inibidores , Antiportadores de Cloreto-Bicarbonato/metabolismo , Cloretos/metabolismo , Criptosporidiose/metabolismo , Criptosporidiose/parasitologia , Cryptosporidium parvum/fisiologia , Interações Hospedeiro-Parasita/genética , Humanos , Íleo/metabolismo , Íleo/parasitologia , Mucosa Intestinal/parasitologia , Transporte de Íons , Janus Quinases/genética , Janus Quinases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Organoides/metabolismo , Organoides/parasitologia , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transportadores de Sulfato/antagonistas & inibidores , Transportadores de Sulfato/metabolismo
14.
PLoS Negl Trop Dis ; 13(9): e0007411, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31560681

RESUMO

Based on our initial observations showing that mice consuming a probiotic product develop more severe cryptosporidiosis, we investigated the impact of other dietary interventions on the intracellular proliferation of Cryptosporidium parvum and C. tyzzeri in the mouse. Mice were orally infected with oocysts and parasite multiplication measured by quantifying fecal oocyst output. High-throughput sequencing of 16S ribosomal RNA amplicons was used to correlate oocyst output with diet and with the composition of the intestinal microbiota. On average, mice fed a diet without fiber (cellulose, pectin and inulin) developed more severe infections. As expected, a diet without fibers also significantly altered the fecal microbiota. Consistent with these observations, mice fed a prebiotic product sold for human consumption excreted significantly fewer oocysts. The fecal microbiota of mice consuming no plant polysaccharides was characterized by a lower relative abundance of Bacteroidetes bacteria. Since bacterial metabolites play an important role in the physiology of intestinal enterocytes, we hypothesize based on these observations that the impact of diet on parasite proliferation is mediated primarily by the metabolic activity of the anaerobic microbiota, specifically by the effect of certain metabolites on the host. This model is consistent with the metabolic dependence of intracellular stages of the parasite on the host cell. These observations underscore the potential of dietary interventions to alleviate the impact of cryptosporidiosis, particularly in infants at risk of recurrent enteric infections.


Assuntos
Criptosporidiose/metabolismo , Criptosporidiose/parasitologia , Fibras na Dieta/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Criptosporidiose/microbiologia , Cryptosporidium/fisiologia , Suscetibilidade a Doenças , Fezes/microbiologia , Fezes/parasitologia , Feminino , Microbioma Gastrointestinal , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
Microbes Infect ; 20(6): 369-375, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29842985

RESUMO

Cryptosporidium spp. are opportunistic protozoan parasites that infect epithelial cells in the intestinal tract and cause a flu-like diarrheal illness. Innate immunity is key to limiting the expansion of parasitic stages early in infection. One mechanism in which it does this is through the generation of early cytokines, such as IL-18. The processing and secretion of mature IL-18 (and IL-1ß) is mediated by caspase-1 which is activated within an inflammasome following the engagement of inflammasome-initiating sensors. We examined how the absence of caspase-1 and caspase-11, the adapter protein Asc, and other inflammasome components affects susceptibility to cryptosporidial infection by these and other key cytokines in the gut. We found that Casp-11-/-Casp-1-/- knockout mice have increased susceptibility to Cryptosporidium parvum infection as demonstrated by the 35-fold higher oocyst production (at peak infection) compared to wild-type mice. Susceptibility correlated with a lack of IL-18 in caspase-1 and caspase1/11 knockout mice, whereas IL-18 is significantly elevated in wildtype mice. IL-1ß was not generated in any significant amount following infection nor was any increased susceptibility observed in IL-1ß knockout mice. We also show that the adapter protein Asc is important to susceptibility, and that the caspase-1 canonical inflammasome signaling pathway is the dominant pathway in C. parvum resistance.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspase 1/metabolismo , Criptosporidiose/genética , Criptosporidiose/metabolismo , Cryptosporidium parvum/metabolismo , Inflamassomos/metabolismo , Animais , Proteínas Adaptadoras de Sinalização CARD/deficiência , Caspase 1/deficiência , Caspases/deficiência , Caspases/metabolismo , Caspases Iniciadoras , Cryptosporidium parvum/crescimento & desenvolvimento , Predisposição Genética para Doença , Interações Hospedeiro-Parasita , Interleucina-18/metabolismo , Camundongos , Camundongos Knockout , Carga Parasitária , Transdução de Sinais
16.
PLoS One ; 13(3): e0194058, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29522573

RESUMO

Somatostatins are proteins that are involved in gastrointestinal function. However, little is known with regard to somatostatin receptor subtype (SSTR) expression changes that occur in the jejunum during low-grade inflammation and during subsequent octreotide treatment. The aim of the present study was to investigate the expression of SSTRs in the jejunums of Cryptosporidium parvum (C. parvum)-infected rats by immunohistochemisty, reverse transcription (RT) PCR and quantitative real-time RT-PCR assays. Five-day-old suckling Sprague-Dawley rats (n = 15 for each group) were orally gavaged with 105 Nouzilly isolate (NoI) oocysts. Rats then received 50 µg/kg/day of octreotide by intraperitoneal injection from day 10 to day 17 post-infection. Animals were sacrificed on days 7 and 14 post-infection for immunohistochemical analysis and on days 14, 35 and 50 for mRNA expression analysis of SSTR subtypes. Histological analysis of jejunum tissues demonstrated infection of C. parvum along the villus brush border on day 7 post-infection and infection clearance by day 14 post-infection. Real-time PCR analysis indicated that in the inflamed jejunum, a significant increase in SSTR1 and SSTR2 expression was observed on day 14 post-infection. Octreotide therapy down-regulated the expression of SSTR2 on day 37 post-infection but significantly increased expression of SSTR1, SSTR2 and SSTR3 on day 50 post-infection. The results indicate that specific SSTRs may regulate the inflammatory pathway in the rat intestinal inflammation model.


Assuntos
Anti-Inflamatórios/farmacologia , Criptosporidiose/metabolismo , Cryptosporidium parvum , Regulação da Expressão Gênica/efeitos dos fármacos , Doenças do Jejuno/metabolismo , Jejuno/efeitos dos fármacos , Octreotida/farmacologia , Receptores de Somatostatina/biossíntese , Animais , Animais Lactentes , Anti-Inflamatórios/administração & dosagem , Criptosporidiose/patologia , Inflamação , Mucosa Intestinal/metabolismo , Doenças do Jejuno/patologia , Jejuno/metabolismo , Jejuno/patologia , Octreotida/administração & dosagem , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Somatostatina/genética
17.
Eur J Protistol ; 62: 101-121, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29316479

RESUMO

The need for an effective treatment against cryptosporidiosis has triggered studies in the search for a working in vitro model. The peculiar niche of cryptosporidia at the brush border of host epithelial cells has been the subject of extensive debates. Despite extensive research on the invasion process, it remains enigmatic whether cryptosporidian host-parasite interactions result from an active invasion process or through encapsulation. We used HCT-8 and HT-29 cell lines for in vitro cultivation of the gastric parasite Cryptosporidium proliferans strain TS03. Using electron and confocal laser scanning microscopy, observations were carried out 24, 48 and 72 h after inoculation with a mixture of C. proliferans oocysts and sporozoites. Free sporozoites and putative merozoites were observed apparently searching for an appropriate infection site. Advanced stages, corresponding to trophozoites and meronts/gamonts enveloped by parasitophorous sac, and emptied sacs were detected. As our observations showed that even unexcysted oocysts became enveloped by cultured cell projections, using polystyrene microspheres, we evaluated the response of cell lines to simulated inoculation with cryptosporidian oocysts to verify innate and parasite-induced behaviour. We found that cultured cell encapsulation of oocysts is induced by parasite antigens, independent of any active invasion/motility.


Assuntos
Cryptosporidium/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Antígenos de Protozoários/metabolismo , Linhagem Celular , Criptosporidiose/metabolismo , Criptosporidiose/parasitologia , Células HT29 , Humanos , Microscopia Confocal
18.
Parasitology ; 143(14): 1890-1901, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27707418

RESUMO

Protists are a diverse collection of eukaryotic organisms that account for a significant global infection burden. Often, the immune responses mounted against these parasites cause excessive inflammation and therefore pathology in the host. Elucidating the mechanisms of both protective and harmful immune responses is complex, and often relies of the use of animal models. In any immune response, leucocyte trafficking to the site of infection, or inflammation, is paramount, and this involves the production of chemokines, small chemotactic cytokines of approximately 8-10 kDa in size, which bind to specific chemokine receptors to induce leucocyte movement. Herein, the scientific literature investigating the role of chemokines in the propagation of immune responses against key protist infections will be reviewed, focussing on Plasmodium species, Toxoplasma gondii, Leishmania species and Cryptosporidium species. Interestingly, many studies find that chemokines can in fact, promote parasite survival in the host, by drawing in leucocytes for spread and further replication. Recent developments in drug targeting against chemokine receptors highlights the need for further understanding of the role played by these proteins and their receptors in many different diseases.


Assuntos
Quimiocinas/imunologia , Criptosporidiose/imunologia , Malária/imunologia , Receptores de Quimiocinas/imunologia , Toxoplasmose/imunologia , Animais , Quimiocinas/classificação , Quimiocinas/metabolismo , Criptosporidiose/tratamento farmacológico , Criptosporidiose/metabolismo , Criptosporidiose/parasitologia , Cryptosporidium/efeitos dos fármacos , Cryptosporidium/imunologia , Interações Hospedeiro-Parasita , Humanos , Malária/tratamento farmacológico , Malária/metabolismo , Malária/parasitologia , Camundongos , Plasmodium/efeitos dos fármacos , Plasmodium/imunologia , Receptores de Quimiocinas/química , Receptores de Quimiocinas/metabolismo , Toxoplasma/efeitos dos fármacos , Toxoplasma/imunologia , Toxoplasmose/tratamento farmacológico , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia
19.
Physiol Rep ; 4(24)2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28039407

RESUMO

Cryptosporidium, a ubiquitous coccidian protozoan parasite that infects the gastrointestinal epithelium and other mucosal surfaces, is an important opportunistic pathogen for immunocompromised individuals and a common cause of diarrhea in young children in the developing countries. One of the pathological hallmarks of intestinal cryptosporidiosis is villous atrophy, which results in a shorter height of intestinal villi. Here, we investigated the effects of Cryptosporidium infection on intestinal epithelial growth, using an ex vivo model of intestinal cryptosporidiosis employing enteroids from mice. We detected infection of enteroids isolated from immunocompetent adult and neonatal mice after ex vivo exposure to Cryptosporidium sporozoites. We observed a significant inhibition of enteroid propagation following infection. Intriguingly, we identified a decreased expression level of intestinal stem cell markers in enteroids following C. parvum infection. We further measured the expression levels of several Wnt antagonists or agonists in infected enteroids, as induction of the Wnt/ß-catenin activation is a key factor for intestinal stem cell function. We detected a markedly increased level of the Dickkopf-related protein 1 and decreased level of the Wnt family member 5a in enteroids after infection. The low density lipoprotein receptor-related protein 5, one of the Wnt co-receptors, is downregulated in the infected enteroids. In addition, increased apoptotic cell death and cell senescence were observed in the infected enteroids. Our results demonstrate a significant inhibitory effect of Cryptosporidium infection on the ex vivo propagation of enteroids from mice, providing additional insights into the impact of Cryptosporidium infection on intestinal epithelial growth.


Assuntos
Criptosporidiose/fisiopatologia , Cryptosporidium parvum/patogenicidade , Mucosa Intestinal/fisiopatologia , Mucosa Intestinal/parasitologia , Animais , Apoptose , Senescência Celular , Criptosporidiose/metabolismo , Expressão Gênica , Inflamação/genética , Inflamação/parasitologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Células-Tronco/parasitologia
20.
PLoS One ; 10(11): e0142219, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26556238

RESUMO

The parasite, Cryptosporidium parvum, induces human gastroenteritis through infection of host epithelial cells in the small intestine. During the initial stage of infection, C. parvum is reported to engage host mechanisms at the host cell-parasite interface to form a parasitophorous vacuole. We determined that upon infection, the larger molecular weight proteins in human small intestinal epithelial host cells (FHs 74 Int) appeared to globally undergo tyrosine dephosphorylation. In parallel, expression of the cytoplasmic protein tyrosine phosphatase Src homology-2 domain-containing phosphatase 2 (SHP-2) increased in a time-dependent manner. SHP-2 co-localized with the C. parvum sporozoite and this interaction increased the rate of C. parvum infectivity through SH2-mediated SHP-2 activity. Furthermore, we show that one potential target that SHP-2 acts upon is the focal adhesion protein, paxillin, which undergoes moderate dephosphorylation following infection, with inhibition of SHP-2 rescuing paxillin phosphorylation. Importantly, treatment with an inhibitor to SHP-2 and with an inhibitor to paxillin and Src family kinases, effectively decreased the multiplicity of C. parvum infection in a dose-dependent manner. Thus, our study reveals an important role for SHP-2 in the pathogenesis of C. parvum. Furthermore, while host proteins can be recruited to participate in the development of the electron dense band at the host cell-parasite interface, our study implies for the first time that SHP-2 appears to be recruited by the C. parvum sporozoite to regulate infectivity. Taken together, these findings suggest that SHP-2 and its down-stream target paxillin could serve as targets for intervention.


Assuntos
Cryptosporidium parvum/patogenicidade , Mucosa Intestinal/parasitologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Animais , Linhagem Celular , Criptosporidiose/etiologia , Criptosporidiose/metabolismo , Criptosporidiose/parasitologia , Cryptosporidium parvum/metabolismo , Interações Hospedeiro-Parasita/efeitos dos fármacos , Interações Hospedeiro-Parasita/fisiologia , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Paxilina/antagonistas & inibidores , Paxilina/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Esporozoítos/metabolismo , Virulência/efeitos dos fármacos , Virulência/fisiologia , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...