Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Sci Rep ; 12(1): 1015, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046436

RESUMO

Based on their cell ultrastructure, two types of erythrophores in the spotted skin regions of brown trout (Salmo trutta) were previously described. To test the hypothesis regarding the origin of a new cell type following genome duplication, we analysed the gene and paralogue gene expression patterns of erythrophores in brown trout skin. In addition, the ultrastructure of both erythrophore types was precisely examined using transmission electron microscopy (TEM) and correlative light microscopy and electron microscopy (CLEM). Ultrastructural differences between the sizes of erythrophore inclusions were confirmed; however, the overlapping inclusion sizes blur the distinction between erythrophore types, which we have instead defined as cell subtypes. Nevertheless, the red spots of brown trout skin with subtype 2 erythrophores, exhibited unique gene expression patterns. Many of the upregulated genes are involved in melanogenesis or xanthophore differentiation. In addition, sox10, related to progenitor cells, was also upregulated in the red spots. The expressions of paralogues derived from two genome duplication events were also analysed. Multiple paralogues were overexpressed in the red spots compared with other skin regions, suggesting that the duplicated gene copies adopted new functions and contributed to the origin of a new cell subtype that is characteristic for red spot. Possible mechanisms regarding erythrophore origin are proposed and discussed. To the best of our knowledge, this is the first study to evaluate pigment cell types in the black and red spots of brown trout skin using the advanced CLEM approach together with gene expression profiling.


Assuntos
Cromatóforos/citologia , Pele/citologia , Truta/anatomia & histologia , Animais , Diferenciação Celular , Cromatóforos/ultraestrutura , Perfilação da Expressão Gênica , Microscopia , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão , Pele/metabolismo , Pele/ultraestrutura , Pigmentação da Pele/genética , Truta/genética
2.
Curr Biol ; 30(17): 3484-3490.e4, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32735817

RESUMO

Seminal studies using squid as a model led to breakthroughs in neurobiology. The squid giant axon and synapse, for example, laid the foundation for our current understanding of the action potential [1], ionic gradients across cells [2], voltage-dependent ion channels [3], molecular motors [4-7], and synaptic transmission [8-11]. Despite their anatomical advantages, the use of squid as a model receded over the past several decades as investigators turned to genetically tractable systems. Recently, however, two key advances have made it possible to develop techniques for the genetic manipulation of squid. The first is the CRISPR-Cas9 system for targeted gene disruption, a largely species-agnostic method [12, 13]. The second is the sequencing of genomes for several cephalopod species [14-16]. If made genetically tractable, squid and other cephalopods offer a wealth of biological novelties that could spur discovery. Within invertebrates, not only do they possess by far the largest brains, they also express the most sophisticated behaviors [17]. In this paper, we demonstrate efficient gene knockout in the squid Doryteuthis pealeii using CRISPR-Cas9. Ommochromes, the pigments found in squid retinas and chromatophores, are derivatives of tryptophan, and the first committed step in their synthesis is normally catalyzed by Tryptophan 2,3 Dioxygenase (TDO [18-20]). Knocking out TDO in squid embryos efficiently eliminated pigmentation. By precisely timing CRISPR-Cas9 delivery during early development, the degree of pigmentation could be finely controlled. Genotyping revealed knockout efficiencies routinely greater than 90%. This study represents a critical advancement toward making squid genetically tractable.


Assuntos
Sistemas CRISPR-Cas , Cromatóforos/fisiologia , Decapodiformes/genética , Embrião não Mamífero/metabolismo , Técnicas de Inativação de Genes , Pigmentação , Triptofano Oxigenase/antagonistas & inibidores , Animais , Cromatóforos/citologia , Decapodiformes/embriologia , Decapodiformes/enzimologia , Embrião não Mamífero/citologia , Fenótipo , Triptofano Oxigenase/genética , Triptofano Oxigenase/metabolismo
3.
PLoS Genet ; 14(10): e1007402, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30286071

RESUMO

Multipotent neural crest (NC) progenitors generate an astonishing array of derivatives, including neuronal, skeletal components and pigment cells (chromatophores), but the molecular mechanisms allowing balanced selection of each fate remain unknown. In zebrafish, melanocytes, iridophores and xanthophores, the three chromatophore lineages, are thought to share progenitors and so lend themselves to investigating the complex gene regulatory networks (GRNs) underlying fate segregation of NC progenitors. Although the core GRN governing melanocyte specification has been previously established, those guiding iridophore and xanthophore development remain elusive. Here we focus on the iridophore GRN, where mutant phenotypes identify the transcription factors Sox10, Tfec and Mitfa and the receptor tyrosine kinase, Ltk, as key players. Here we present expression data, as well as loss and gain of function results, guiding the derivation of an initial iridophore specification GRN. Moreover, we use an iterative process of mathematical modelling, supplemented with a Monte Carlo screening algorithm suited to the qualitative nature of the experimental data, to allow for rigorous predictive exploration of the GRN dynamics. Predictions were experimentally evaluated and testable hypotheses were derived to construct an improved version of the GRN, which we showed produced outputs consistent with experimentally observed gene expression dynamics. Our study reveals multiple important regulatory features, notably a sox10-dependent positive feedback loop between tfec and ltk driving iridophore specification; the molecular basis of sox10 maintenance throughout iridophore development; and the cooperation between sox10 and tfec in driving expression of pnp4a, a key differentiation gene. We also assess a candidate repressor of mitfa, a melanocyte-specific target of sox10. Surprisingly, our data challenge the reported role of Foxd3, an established mitfa repressor, in iridophore regulation. Our study builds upon our previous systems biology approach, by incorporating physiologically-relevant parameter values and rigorous evaluation of parameter values within a qualitative data framework, to establish for the first time the core GRN guiding specification of the iridophore lineage.


Assuntos
Cromatóforos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Crista Neural/metabolismo , Biologia de Sistemas/métodos , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Linhagem da Célula/genética , Cromatóforos/citologia , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Mutação , Crista Neural/citologia , Crista Neural/embriologia , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Biochem Biophys Res Commun ; 502(1): 104-109, 2018 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-29787751

RESUMO

Although body color pattern formation by pigment cells plays critical roles in animals, pigment cell specification has not yet been fully elucidated. In zebrafish, there are three chromatophores: melanophore, iridophore, and xanthophore, that are derived from neural crest cells (NCCs). A recent study has reported the differentially expressed genes between melanophores and iridophores. Based on transcriptome data, we identified that Gbx2 is required for iridophore specification during development. In support of this, iridophore formation is suppressed by gbx2 knockdown by morpholino antisense oligonucleotide, at 72 h post fertilization (hpf) in zebrafish. Moreover, gbx2 is expressed in sox10-expressing NCCs and guanine crystal plates-containing iridophores during development at 24 and 48 hpf, respectively. In gbx2 knockdown zebrafish embryos, apoptosis of sox10-expressing NCCs was detected at 24 hpf without any effect on the formation of melanophores and xanthophores at 48 hpf. We further observed that the N-terminal domain of Gbx2 is able to rescue the iridophore formation defect caused by gbx2 knockdown. Our study provides insights into the requirement of N-terminal domain of Gbx2 for iridophore specification in zebrafish.


Assuntos
Cromatóforos/citologia , Proteínas de Homeodomínio/metabolismo , Crista Neural/citologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Apoptose , Cromatóforos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Crista Neural/metabolismo , Domínios Proteicos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
5.
J R Soc Interface ; 14(128)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28250104

RESUMO

Application of optical coherence tomography (OCT) for in vivo imaging of tissue and skeleton structure of intact living corals enabled the non-invasive visualization of coral tissue layers (endoderm versus ectoderm), skeletal cavities and special structures such as mesenterial filaments and mucus release from intact living corals. Coral host chromatophores containing green fluorescent protein-like pigment granules appeared hyper-reflective to near-infrared radiation allowing for excellent optical contrast in OCT and a rapid characterization of chromatophore size, distribution and abundance. In vivo tissue plasticity could be quantified by the linear contraction velocity of coral tissues upon illumination resulting in dynamic changes in the live coral tissue surface area, which varied by a factor of 2 between the contracted and expanded state of a coral. Our study provides a novel view on the in vivo organization of coral tissue and skeleton and highlights the importance of microstructural dynamics for coral ecophysiology.


Assuntos
Antozoários/anatomia & histologia , Antozoários/fisiologia , Cromatóforos/citologia , Cromatóforos/fisiologia , Tomografia de Coerência Óptica , Animais
6.
Zygote ; 24(3): 396-400, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27172056

RESUMO

Vertebrate pigmentation provides an ideal system for studying the intersections between evolution, genetics, and developmental biology. Teleost fish, with their accessible developmental stages and intense and diverse colours produced by chromatophores, are an ideal group for study. We set out to test whether Betta splendens is a good model organism for studying the evolution and development of diverse pigmentation. Our results demonstrate that B. splendens can be bred to produce large numbers of offspring with easily visualized pigment cells. Depending on the colour of the parents, there was variation in larval pigmentation patterns both within and between breeding events. In juveniles the developing adult pigmentation patterns showed even greater variation. These results suggest that B. splendens has great potential as a model organism for pigmentation studies.


Assuntos
Cromatóforos/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/fisiologia , Perciformes/metabolismo , Pigmentação/fisiologia , Nadadeiras de Animais/crescimento & desenvolvimento , Nadadeiras de Animais/metabolismo , Animais , Cruzamento/métodos , Cromatóforos/citologia , Cor , Embrião não Mamífero/embriologia , Feminino , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Modelos Biológicos , Perciformes/embriologia , Perciformes/crescimento & desenvolvimento , Fatores Sexuais , Fatores de Tempo
7.
Nat Commun ; 7: 11462, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27118125

RESUMO

The adult striped pattern of zebrafish is composed of melanophores, iridophores and xanthophores arranged in superimposed layers in the skin. Previous studies have revealed that the assembly of pigment cells into stripes involves heterotypic interactions between all three chromatophore types. Here we investigate the role of homotypic interactions between cells of the same chromatophore type. Introduction of labelled progenitors into mutants lacking the corresponding cell type allowed us to define the impact of competitive interactions via long-term in vivo imaging. In the absence of endogenous cells, transplanted iridophores and xanthophores show an increased rate of proliferation and spread as a coherent net into vacant space. By contrast, melanophores have a limited capacity to spread in the skin even in the absence of competing endogenous cells. Our study reveals a key role for homotypic competitive interactions in determining number, direction of migration and individual spacing of cells within chromatophore populations.


Assuntos
Padronização Corporal , Proliferação de Células , Cromatóforos/citologia , Cor , Pigmentação da Pele , Animais , Blastômeros/citologia , Blastômeros/metabolismo , Comunicação Celular , Cromatóforos/metabolismo , Melanóforos/citologia , Melanóforos/metabolismo , Microscopia Confocal , Pele/citologia , Pele/embriologia , Pele/crescimento & desenvolvimento , Peixe-Zebra
8.
Pigment Cell Melanoma Res ; 29(3): 284-96, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26801003

RESUMO

The zebrafish striped pattern results from the interplay among three pigment cell types; black melanophores, yellow xanthophores and silvery iridophores, making it a valuable model to study pattern formation in vivo. It has been suggested that iridophore proliferation, dispersal and cell shape transitions play an important role during stripe formation; however, the underlying molecular mechanisms remain poorly understood. Using gain- and loss-of-function alleles of leucocyte tyrosine kinase (ltk) and a pharmacological inhibitor approach, we show that Ltk specifically regulates iridophore establishment, proliferation and survival. Mutants in shady/ltk lack iridophores and display an abnormal body stripe pattern. Moonstone mutants, ltk(mne) , display ectopic iridophores, suggesting hyperactivity of the mutant Ltk. The dominant ltk(mne) allele carries a missense mutation in a conserved position of the kinase domain that highly correlates with neuroblastomas in mammals. Chimeric analysis suggests a novel physiological role of Ltk in the regulation of iridophore proliferation by homotypic competition.


Assuntos
Cromatóforos/citologia , Cromatóforos/enzimologia , Proteínas Tirosina Quinases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Envelhecimento , Sequência de Aminoácidos , Animais , Sequência de Bases , Comportamento Animal , Padronização Corporal , Comunicação Celular , Proliferação de Células , Sobrevivência Celular , Melanóforos/citologia , Melanóforos/metabolismo , Mutação/genética , Fenótipo , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
9.
Protist ; 167(1): 1-12, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26709891

RESUMO

The freshwater testate filose amoeba Paulinella chromatophora is the sole species in the genus to have plastids, usually termed "chromatophores", of a Synechococcus/Prochlorococcus-like cyanobacterial origin. Here, we report a new marine phototrophic species, Paulinella longichromatophora sp. nov., using light and electron microscopy and molecular data. This new species contains two blue-green U-shaped chromatophores reaching up to 40 µm in total length. Further, the new Paulinella species is characterized by having five oral scales surrounding the pseudostomal aperture. All trees generated using three nuclear rDNA datasets (18S rDNA, 28S rDNA, and the concatenated 18S + 28S rDNA) demonstrated that three photosynthetic Paulinella species (two freshwater species, P. chromatophora and Paulinella strain FK01, and one marine species, P. longichromatophora) congruently formed a monophyletic group with strong support (≥ 90% of ML and ≥ 0.90 of PP), but their relationship to each other within the clade remained unresolved in all trees. P. longichromatophora, nevertheless, clustered consistently together with Paulinella strain FK01 with very low support, but the clade received strong support in plastid phylogenies. Phylogenetic analyses inferred from plastid-encoded 16S rDNA and a concatenated dataset of plastid 16S+23S rDNA demonstrated that chromatophores of all photosynthetic Paulinella species were monophyletic. The monophyletic group fell within a cyanobacteria clade having a close relationship to an α-cyanobacterial clade containing Prochlorococcus and Synechococcus species with very robust support (100% of ML and 1.0 of PP). Additionally, phylogenetic analyses of nuclear 18S rDNA and plastid 16S rDNA suggested divergent evolution within the photosynthetic Paulinella population after a single acquisition of the chromatophore. After the single acquisition of the chromatophore, ancestral photosynthetic Paulinella appears to have diverged into at least two distinct clades, one containing the marine P. longichromatophora and freshwater Paulinella strain FK01, the other P. chromatophora CCAC 0185.


Assuntos
Cercozoários/classificação , Cianobactérias/classificação , Simbiose , Cercozoários/citologia , Cercozoários/genética , Cercozoários/isolamento & purificação , Cromatóforos/citologia , Cromatóforos/metabolismo , Cianobactérias/citologia , Cianobactérias/genética , Cianobactérias/isolamento & purificação , DNA de Protozoário/genética , DNA de Protozoário/metabolismo , Dados de Sequência Molecular , Filogenia , República da Coreia , Análise de Sequência de DNA , Especificidade da Espécie
10.
J Anat ; 227(5): 583-95, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26467239

RESUMO

Skin pigmentation in animals is an important trait with many functions. The present study focused on two closely related salmonid species, marble trout (Salmo marmoratus) and brown trout (S. trutta), which display an uncommon labyrinthine (marble-like) and spot skin pattern, respectively. To determine the role of chromatophore type in the different formation of skin pigment patterns in the two species, the distribution and ultrastructure of chromatophores was examined with light microscopy and transmission electron microscopy. The presence of three types of chromatophores in trout skin was confirmed: melanophores; xanthophores; and iridophores. In addition, using correlative microscopy, erythrophore ultrastructure in salmonids was described for the first time. Two types of erythrophores are distinguished, both located exclusively in the skin of brown trout: type 1 in black spot skin sections similar to xanthophores; and type 2 with a unique ultrastructure, located only in red spot skin sections. Morphologically, the difference between the light and dark pigmentation of trout skin depends primarily on the position and density of melanophores, in the dark region covering other chromatophores, and in the light region with the iridophores and xanthophores usually exposed. With larger amounts of melanophores, absence of xanthophores and presence of erythrophores type 1 and type L iridophores in the black spot compared with the light regions and the presence of erythrophores type 2 in the red spot, a higher level of pigment cell organisation in the skin of brown trout compared with that of marble trout was demonstrated. Even though the skin regions with chromatophores were well defined, not all the chromatophores were in direct contact, either homophilically or heterophilically, with each other. In addition to short-range interactions, an important role of the cellular environment and long-range interactions between chromatophores in promoting adult pigment pattern formation of trout are proposed.


Assuntos
Cromatóforos/citologia , Derme/citologia , Pigmentação da Pele/fisiologia , Truta , Animais , Cromatóforos/diagnóstico por imagem , Melanóforos/citologia , Microscopia Eletrônica de Transmissão , Ultrassonografia
11.
Nat Commun ; 6: 6971, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25959141

RESUMO

The zebrafish is a model organism for pattern formation in vertebrates. Understanding what drives the formation of its coloured skin motifs could reveal pivotal to comprehend the mechanisms behind morphogenesis. The motifs look and behave like reaction-diffusion Turing patterns, but the nature of the underlying physico-chemical processes is very different, and the origin of the patterns is still unclear. Here we propose a minimal model for such pattern formation based on a regulatory mechanism deduced from experimental observations. This model is able to produce patterns with intrinsic wavelength, closely resembling the experimental ones. We mathematically prove that their origin is a Turing bifurcation occurring despite the absence of cell motion, through an effect that we call differential growth. This mechanism is qualitatively different from the reaction-diffusion originally proposed by Turing, although they both generate the short-range activation and the long-range inhibition required to form Turing patterns.


Assuntos
Movimento Celular , Cromatóforos/citologia , Modelos Biológicos , Pigmentação , Pele/citologia , Peixe-Zebra/fisiologia , Animais , Simulação por Computador , Método de Monte Carlo , Processos Estocásticos
12.
Science ; 345(6202): 1362-4, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25214630

RESUMO

The pattern of alternating blue and golden stripes displayed by adult zebrafish is composed of three kinds of pigment cells: black melanophores, yellow xanthophores, and silvery-blue iridophores. We analyzed the dynamics of xanthophores during stripe morphogenesis in vivo with long-term time-lapse imaging. Larval xanthophores start to proliferate at the onset of metamorphosis and give rise to adult xanthophores covering the flank before the arrival of stem-cell-derived iridophores and melanophores. Xanthophores compact to densely cover the iridophores forming the interstripe, and they acquire a loose stellate shape over the melanophores in the stripes. Thus, xanthophores, attracted by iridophores and repelling melanophores, sharpen and color the pattern. Variations on these cell behaviors may contribute to the generation of color pattern diversity in fish.


Assuntos
Padronização Corporal/fisiologia , Cromatóforos/fisiologia , Pigmentação da Pele/fisiologia , Peixe-Zebra/embriologia , Animais , Padronização Corporal/genética , Cromatóforos/citologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Melanóforos/citologia , Melanóforos/fisiologia , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Pigmentação da Pele/genética , Imagem com Lapso de Tempo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
J Exp Biol ; 217(Pt 6): 850-8, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24622892

RESUMO

Squid display impressive changes in body coloration that are afforded by two types of dynamic skin elements: structural iridophores (which produce iridescence) and pigmented chromatophores. Both color elements are neurally controlled, but nothing is known about the iridescence circuit, or the environmental cues, that elicit iridescence expression. To tackle this knowledge gap, we performed denervation, electrical stimulation and behavioral experiments using the long-fin squid, Doryteuthis pealeii. We show that while the pigmentary and iridescence circuits originate in the brain, they are wired differently in the periphery: (1) the iridescence signals are routed through a peripheral center called the stellate ganglion and (2) the iridescence motor neurons likely originate within this ganglion (as revealed by nerve fluorescence dye fills). Cutting the inputs to the stellate ganglion that descend from the brain shifts highly reflective iridophores into a transparent state. Taken together, these findings suggest that although brain commands are necessary for expression of iridescence, integration with peripheral information in the stellate ganglion could modulate the final output. We also demonstrate that squid change their iridescence brightness in response to environmental luminance; such changes are robust but slow (minutes to hours). The squid's ability to alter its iridescence levels may improve camouflage under different lighting intensities.


Assuntos
Cromatóforos/fisiologia , Decapodiformes/fisiologia , Meio Ambiente , Pigmentação , Animais , Comportamento Animal , Encéfalo , Cromatóforos/citologia , Decapodiformes/anatomia & histologia , Denervação , Estimulação Elétrica , Luz , Neurônios Motores/fisiologia
14.
PLoS One ; 9(1): e85647, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465632

RESUMO

The fitness of male guppies (Poecilia reticulata) highly depends on the size and number of their black, blue, and orange ornaments. Recently, progress has been made regarding the genetic mechanisms underlying male guppy pigment pattern formation, but we still know little about the pigment cell organization within these ornaments. Here, we investigate the pigment cell distribution within the black, blue, and orange trunk spots and selected fin color patterns of guppy males from three genetically divergent strains using transmission electron microscopy. We identified three types of pigment cells and found that at least two of these contribute to each color trait. Further, two pigment cell layers, one in the dermis and the other in the hypodermis, contribute to each trunk spot. The pigment cell organization within the black and orange trunk spots was similar between strains. The presence of iridophores in each of the investigated color traits is consistent with a key role for this pigment cell type in guppy color pattern formation.


Assuntos
Cromatóforos/fisiologia , Cor , Poecilia/fisiologia , Pigmentação da Pele/fisiologia , Nadadeiras de Animais/citologia , Nadadeiras de Animais/fisiologia , Nadadeiras de Animais/ultraestrutura , Animais , Cromatóforos/citologia , Cromatóforos/ultraestrutura , Células Epidérmicas , Epiderme/fisiologia , Epiderme/ultraestrutura , Masculino , Melanóforos/citologia , Melanóforos/fisiologia , Melanóforos/ultraestrutura , Microscopia Eletrônica de Transmissão , Fenótipo , Poecilia/classificação , Poecilia/genética
15.
J R Soc Interface ; 11(93): 20130942, 2014 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-24478280

RESUMO

Cuttlefish, Sepia officinalis, possess neurally controlled, pigmented chromatophore organs that allow rapid changes in skin patterning and coloration in response to visual cues. This process of adaptive coloration is enabled by the 500% change in chromatophore surface area during actuation. We report two adaptations that help to explain how colour intensity is maintained in a fully expanded chromatophore when the pigment granules are distributed maximally: (i) pigment layers as thin as three granules that maintain optical effectiveness and (ii) the presence of high-refractive-index proteins-reflectin and crystallin-in granules. The latter discovery, combined with our finding that isolated chromatophore pigment granules fluoresce between 650 and 720 nm, refutes the prevailing hypothesis that cephalopod chromatophores are exclusively pigmentary organs composed solely of ommochromes. Perturbations to granular architecture alter optical properties, illustrating a role for nanostructure in the agile, optical responses of chromatophores. Our results suggest that cephalopod chromatophore pigment granules are more complex than homogeneous clusters of chromogenic pigments. They are luminescent protein nanostructures that facilitate the rapid and sophisticated changes exhibited in dermal pigmentation.


Assuntos
Cromatóforos , Decapodiformes , Pigmentos Biológicos/metabolismo , Pigmentação da Pele/fisiologia , Animais , Cromatóforos/citologia , Cromatóforos/metabolismo , Decapodiformes/anatomia & histologia , Decapodiformes/fisiologia
16.
Pigment Cell Melanoma Res ; 27(2): 178-89, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24330346

RESUMO

We characterized a zebrafish mutant that displays defects in melanin synthesis and in the differentiation of melanophores and iridophores of the skin and retinal pigment epithelium. Positional cloning and candidate gene sequencing link this mutation to a 410-kb region on chromosome 6, containing the oculocutaneous albinism 2 (oca2) gene. Quantification of oca2 mutant melanophores shows a reduction in the number of differentiated melanophores compared with wildtype siblings. Consistent with the analysis of mouse Oca2-deficient melanocytes, zebrafish mutant melanophores have immature melanosomes which are partially rescued following treatment with vacuolar-type ATPase inhibitor/cytoplasmic pH modifier, bafilomycin A1. Melanophore-specific gene expression is detected at the correct time and in anticipated locations. While oca2 zebrafish display unpigmented gaps on the head region of mutants 3 days post-fertilization, melanoblast quantification indicates that oca2 mutants have the correct number of melanoblasts, suggesting a differentiation defect explains the reduced melanophore number. Unlike melanophores, which are reduced in number in oca2 mutants, differentiated iridophores are present at significantly higher numbers. These data suggest distinct mechanisms for oca2 in establishing differentiated chromatophore number in developing zebrafish.


Assuntos
Diferenciação Celular , Cromatóforos/citologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Sequência de Bases , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Cromatóforos/efeitos dos fármacos , Cromatóforos/metabolismo , Cromatóforos/ultraestrutura , Clonagem Molecular , Análise Mutacional de DNA , Hibridização In Situ , Macrolídeos/farmacologia , Melaninas/biossíntese , Melanóforos/efeitos dos fármacos , Melanóforos/metabolismo , Melanóforos/ultraestrutura , Camundongos , Dados de Sequência Molecular , Monofenol Mono-Oxigenase/metabolismo , Mutação/genética , Especificidade de Órgãos/efeitos dos fármacos , Pigmentação/efeitos dos fármacos , Tirosina/farmacologia , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/metabolismo
17.
PLoS One ; 8(5): e63005, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23671650

RESUMO

Abnormal pigmentation of Senegalese sole has been described as one problem facing the full exploitation of its commercial production. To improve our understanding of flatfish pigmentation of this commercially important species we have evaluated eleven genes related to two different processes of pigmentation: melanophore differentiation, and melanin production. The temporal distribution of gene expression peaks corresponds well with changes in pigmentation patterns and the intensity of skin melanization. Several gene ratios were also examined to put in perspective possible genetic markers for the different stages of normal pigmentation development. Further, the phenotypic changes that occur during morphogenesis correspond well with the main transitions in gene expression that occur. Given the dramatic phenotypic alterations which flatfish undergo, including the asymmetric coloration that occurs between the ocular and the blind side, and the synchrony of the two processes of morphogenesis and pigmentation ontogenesis, these species constitute an interesting model for the study of pigmentation. In this study we present a first approximation towards explaining the genetic mechanisms for regulating pigmentation ontogeny in Senegalese sole, Solea senegalensis.


Assuntos
Cromatóforos/metabolismo , Linguados/metabolismo , Melaninas/biossíntese , Pigmentação da Pele/fisiologia , Análise de Variância , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Cromatóforos/citologia , Análise por Conglomerados , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Linguados/genética , Linguados/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Melanóforos/citologia , Melanóforos/metabolismo , Metamorfose Biológica/genética , Metamorfose Biológica/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/crescimento & desenvolvimento , Pele/metabolismo , Pigmentação da Pele/genética
19.
J Exp Zool B Mol Dev Evol ; 320(3): 151-65, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23436657

RESUMO

The adult-type chromatophores of flounder differentiate at metamorphosis in the skin of ocular side to establish asymmetric pigmentation. In young larva and before metamorphosis, adult-type melanophores that migrate to the ocular side during metamorphosis reside at the base of the dorsal fin as latent precursors. However, the migration route taken by these precursor cells and the mechanisms by which lateralization and asymmetric pigmentation develop on the ocular side are unknown. To further investigate this migration and lateralization, we used in situ hybridization with gch2 probe, a marker for melanoblasts and xanthoblasts (precursors of adult type chromatophores), to examine the distribution of chromatophore precursors in metamorphosing larvae. The gch2-positive precursors were present in the myoseptum as well as in the skin. This finding indicated that these precursors migrated from the dorsal part of the fin to the skin via the myoseptum. Additionally, there were much fewer gch2-positive cells in the myoseptum of the blind side than in the skin and myoseptum of the ocular side, and this finding indicated either that migration of the precursor cells into the myoseptum of blind side was inhibited or that the precursors were eliminated from the myoseptum of the blind side. Therefore, we propose that the signals responsible for development of asymmetric pigmentation in flounder reside not only in the skin but on a larger scale and in multiple tissues throughout the lateral half of the trunk.


Assuntos
Padronização Corporal/fisiologia , Cromatóforos/fisiologia , Linguado/crescimento & desenvolvimento , Metamorfose Biológica/fisiologia , Pigmentação/fisiologia , Animais , Bromodesoxiuridina , Carbocianinas , Movimento Celular/fisiologia , Cromatóforos/citologia , Hibridização In Situ , Japão
20.
PLoS One ; 7(6): e37913, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701587

RESUMO

Body coloration plays a major role in fish ecology and is predominantly generated using two principles: a) absorbance combined with reflection of the incoming light in pigment colors and b) scatter, refraction, diffraction and interference in structural colors. Poikilotherms, and especially fishes possess several cell types, so-called chromatophores, which employ either of these principles. Together, they generate the dynamic, multi-color patterns used in communication and camouflage. Several chromatophore types possess motile organelles, which enable rapid changes in coloration. Recently, we described red fluorescence in a number of marine fish and argued that it may be used for private communication in an environment devoid of red. Here, we describe the discovery of a chromatophore in fishes that regulates the distribution of fluorescent pigments in parts of the skin. These cells have a dendritic shape and contain motile fluorescent particles. We show experimentally that the fluorescent particles can be aggregated or dispersed through hormonal and nervous control. This is the first description of a stable and natural cytoskeleton-related fluorescence control mechanism in vertebrate cells. Its nervous control supports suggestions that fluorescence could act as a context-dependent signal in some marine fish species and encourages further research in this field. The fluorescent substance is stable under different chemical conditions and shows no discernible bleaching under strong, constant illumination.


Assuntos
Nadadeiras de Animais/citologia , Cromatóforos/citologia , Cromatóforos/metabolismo , Fluorescência , Perciformes/metabolismo , Potenciais de Ação/fisiologia , Animais , Microscopia de Fluorescência , Norepinefrina/farmacologia , Potássio , Imagem com Lapso de Tempo , alfa-MSH
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...