Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(20): e2317373121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38722810

RESUMO

In many organisms, most notably Drosophila, homologous chromosomes associate in somatic cells, a phenomenon known as somatic pairing, which takes place without double strand breaks or strand invasion, thus requiring some other mechanism for homologs to recognize each other. Several studies have suggested a "specific button" model, in which a series of distinct regions in the genome, known as buttons, can associate with each other, mediated by different proteins that bind to these different regions. Here, we use computational modeling to evaluate an alternative "button barcode" model, in which there is only one type of recognition site or adhesion button, present in many copies in the genome, each of which can associate with any of the others with equal affinity. In this model, buttons are nonuniformly distributed, such that alignment of a chromosome with its correct homolog, compared with a nonhomolog, is energetically favored; since to achieve nonhomologous alignment, chromosomes would be required to mechanically deform in order to bring their buttons into mutual register. By simulating randomly generated nonuniform button distributions, many highly effective button barcodes can be easily found, some of which achieve virtually perfect pairing fidelity. This model is consistent with existing literature on the effect of translocations of different sizes on homolog pairing. We conclude that a button barcode model can attain highly specific homolog recognition, comparable to that seen in actual cells undergoing somatic homolog pairing, without the need for specific interactions. This model may have implications for how meiotic pairing is achieved.


Assuntos
Modelos Genéticos , Animais , Pareamento Cromossômico , Drosophila melanogaster/genética , Cromossomos , Drosophila/genética , Simulação por Computador , Cromossomos de Insetos/genética , Cromossomos de Insetos/metabolismo
2.
Nature ; 593(7858): 289-293, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33854237

RESUMO

Fundamental features of 3D genome organization are established de novo in the early embryo, including clustering of pericentromeric regions, the folding of chromosome arms and the segregation of chromosomes into active (A-) and inactive (B-) compartments. However, the molecular mechanisms that drive de novo organization remain unknown1,2. Here, by combining chromosome conformation capture (Hi-C), chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq), 3D DNA fluorescence in situ hybridization (3D DNA FISH) and polymer simulations, we show that heterochromatin protein 1a (HP1a) is essential for de novo 3D genome organization during Drosophila early development. The binding of HP1a at pericentromeric heterochromatin is required to establish clustering of pericentromeric regions. Moreover, HP1a binding within chromosome arms is responsible for overall chromosome folding and has an important role in the formation of B-compartment regions. However, depletion of HP1a does not affect the A-compartment, which suggests that a different molecular mechanism segregates active chromosome regions. Our work identifies HP1a as an epigenetic regulator that is involved in establishing the global structure of the genome in the early embryo.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Posicionamento Cromossômico , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/metabolismo , Genoma de Inseto/genética , Conformação Molecular , Animais , Imunoprecipitação da Cromatina , Cromossomos de Insetos/química , Cromossomos de Insetos/genética , Cromossomos de Insetos/metabolismo , Drosophila melanogaster/citologia , Embrião não Mamífero/citologia , Desenvolvimento Embrionário/genética , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Hibridização in Situ Fluorescente
3.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019537

RESUMO

Awd, the Drosophila homologue of NME1/2 metastasis suppressors, plays key roles in many signaling pathways. Mosaic analysis of the null awdJ2A4 allele showed that loss of awd gene function blocks Notch signaling and the expression of its target genes including the Wingless (Wg/Wnt1) morphogen. We also showed that RNA interference (RNAi)-mediated awd silencing (awdi) in larval wing disc leads to chromosomal instability (CIN) and to Jun amino-terminal kinases (JNK)-mediated cell death. Here we show that this cell death is independent of p53 activity. Based on our previous finding showing that forced survival of awdi-CIN cells leads to aneuploidy without the hyperproliferative effect, we investigated the Wg expression in awdi wing disc cells. Interestingly, the Wg protein is expressed in its correct dorso-ventral domain but shows an altered cellular distribution which impairs its signaling. Further, we show that RNAi-mediated knock down of awd in wing discs does not affect Notch signaling. Thus, our analysis of the hypomorphic phenotype arising from awd downregulation uncovers a dose-dependent effect of Awd in Notch and Wg signaling.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Nucleosídeo NM23 Difosfato Quinases/genética , Núcleosídeo-Difosfato Quinase/genética , Asas de Animais/metabolismo , Via de Sinalização Wnt/genética , Proteína Wnt1/genética , Animais , Morte Celular , Instabilidade Cromossômica , Cromossomos de Insetos/química , Cromossomos de Insetos/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Larva/citologia , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Masculino , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Núcleosídeo-Difosfato Quinase/antagonistas & inibidores , Núcleosídeo-Difosfato Quinase/metabolismo , Fenótipo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Asas de Animais/citologia , Asas de Animais/crescimento & desenvolvimento , Proteína Wnt1/metabolismo
4.
Nat Struct Mol Biol ; 27(3): 297-304, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32157249

RESUMO

Understanding the targeting and spreading patterns of long non-coding RNAs (lncRNAs) on chromatin requires a technique that can detect both high-intensity binding sites and reveal genome-wide changes in spreading patterns with high precision and confidence. Here we determine lncRNA localization using biotinylated locked nucleic acid (LNA)-containing oligonucleotides with toehold architecture capable of hybridizing to target RNA through strand-exchange reaction. During hybridization, a protecting strand competitively displaces contaminating species, leading to highly specific RNA capture of individual RNAs. Analysis of Drosophila roX2 lncRNA using this approach revealed that heat shock, unlike the unfolded protein response, leads to reduced spreading of roX2 on the X chromosome, but surprisingly also to relocalization to sites on autosomes. Our results demonstrate that this improved hybridization capture approach can reveal previously uncharacterized changes in the targeting and spreading of lncRNAs on chromatin.


Assuntos
Cromatina/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Oligonucleotídeos/química , RNA Longo não Codificante/química , Proteínas de Ligação a RNA/genética , Cromossomo X/química , Animais , Pareamento de Bases , Sítios de Ligação , Biotinilação , Cromatina/metabolismo , Mapeamento Cromossômico , Cromossomos de Insetos/química , Cromossomos de Insetos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Resposta ao Choque Térmico , Nanotecnologia/métodos , Hibridização de Ácido Nucleico , Oligonucleotídeos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Cromossomo X/metabolismo
5.
Genes (Basel) ; 10(12)2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817557

RESUMO

Moths and butterflies (Lepidoptera) are the largest group with heterogametic females. Although the ancestral sex chromosome system is probably Z0/ZZ, most lepidopteran species have the W chromosome. When and how the W chromosome arose remains elusive. Existing hypotheses place the W origin either at the common ancestor of Ditrysia and Tischeriidae, or prefer independent origins of W chromosomes in these two groups. Due to their phylogenetic position at the base of Ditrysia, bagworms (Psychidae) play an important role in investigating the W chromosome origin. Therefore, we examined the W chromosome status in three Psychidae species, namely Proutiabetulina, Taleporiatubulosa, and Diplodomalaichartingella, using both classical and molecular cytogenetic methods such as sex chromatin assay, comparative genomic hybridization (CGH), and male vs. female genome size comparison by flow cytometry. In females of all three species, no sex chromatin was found, no female-specific chromosome regions were revealed by CGH, and a Z-chromosome univalent was observed in pachytene oocytes. In addition, the genome size of females was significantly smaller than males. Overall, our study provides strong evidence for the absence of the W chromosome in Psychidae, thus supporting the hypothesis of two independent W chromosome origins in Tischeriidae and in advanced Ditrysia.


Assuntos
Cromossomos de Insetos/genética , Genoma de Inseto , Mariposas/genética , Filogenia , Cromossomos Sexuais/metabolismo , Animais , Cromossomos de Insetos/metabolismo , Feminino , Masculino , Mariposas/classificação , Mariposas/metabolismo
6.
Elife ; 82019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31524597

RESUMO

Centromeres are the basic unit for chromosome inheritance, but their evolutionary dynamics is poorly understood. We generate high-quality reference genomes for multiple Drosophila obscura group species to reconstruct karyotype evolution. All chromosomes in this lineage were ancestrally telocentric and the creation of metacentric chromosomes in some species was driven by de novo seeding of new centromeres at ancestrally gene-rich regions, independently of chromosomal rearrangements. The emergence of centromeres resulted in a drastic size increase due to repeat accumulation, and dozens of genes previously located in euchromatin are now embedded in pericentromeric heterochromatin. Metacentric chromosomes secondarily became telocentric in the pseudoobscura subgroup through centromere repositioning and a pericentric inversion. The former (peri)centric sequences left behind shrunk dramatically in size after their inactivation, yet contain remnants of their evolutionary past, including increased repeat-content and heterochromatic environment. Centromere movements are accompanied by rapid turnover of the major satellite DNA detected in (peri)centromeric regions.


Assuntos
Centrômero/metabolismo , Cromossomos de Insetos/metabolismo , Drosophila/genética , Cariótipo , Animais , Evolução Molecular
7.
Sci Rep ; 9(1): 12194, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434920

RESUMO

Males of hymenopteran insects, which include ants, bees and wasps, develop as haploids from unfertilized eggs. In order to accommodate their lack of homologous chromosome pairs, some hymenopterans such as the honeybee have been shown to produce haploid sperm through an abortive meiosis. We employed microscopic approaches to visualize landmark aspects of spermatogenesis in the jewel wasp Nasonia vitripennis, a model for hymenopteran reproduction and development. Our work demonstrates that N. vitripennis, like other examined hymenopterans, exhibits characteristics indicative of an abortive meiosis, including slight enlargement of spermatocytes preceding meiotic initiation. However, we saw no evidence of cytoplasmic buds containing centrioles that are produced from the first abortive meiotic division, which occurs in the honeybee. In contrast to other previously studied hymenopterans, N. vitripennis males produce sperm in bundles that vary widely from 16 to over 200, thus reflecting a range of cellular divisions. Our results highlight interesting variations in spermatogenesis among the hymenopteran insects, and together with previous studies, they suggest a pattern of progression from meiosis to a more mitotic state in producing sperm.


Assuntos
Cromossomos de Insetos/metabolismo , Haploidia , Meiose/fisiologia , Espermatogênese/fisiologia , Vespas/metabolismo , Animais , Masculino
8.
Chromosoma ; 128(4): 533-545, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31410566

RESUMO

Moths and butterflies (Lepidoptera) are the most species-rich group of animals with female heterogamety, females mostly having a WZ, males a ZZ sex chromosome constitution. We studied chromatin conformation, activity, and inactivity of the sex chromosomes in the flour moth Ephestia kuehniella and the silkworm Bombyx mori, using immunostaining with anti-H3K9me2/3, anti-RNA polymerase II, and fluoro-uridine (FU) labelling of nascent transcripts, with conventional widefield fluorescence microscopy and 'spatial structured illumination microscopy' (3D-SIM). The Z chromosome is euchromatic in somatic cells and throughout meiosis. It is transcriptionally active in somatic cells and in the postpachaytene stage of meiosis. The W chromosome in contrast is heterochromatic in somatic cells as well as in meiotic cells at pachytene, but euchromatic and transcriptionally active like all other chromosomes at postpachytene. As the W chromosomes are apparently devoid of protein-coding genes, their transcripts must be non-coding. We found no indication of 'meiotic sex chromosome inactivation' (MSCI) in the two species.


Assuntos
Cromatina/metabolismo , Mariposas/genética , Cromossomos Sexuais/metabolismo , Animais , Bombyx/genética , Bombyx/metabolismo , Cromossomos de Insetos/metabolismo , Meiose , Mariposas/metabolismo
9.
Nat Commun ; 10(1): 1176, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862957

RESUMO

How the nuclear lamina (NL) impacts on global chromatin architecture is poorly understood. Here, we show that NL disruption in Drosophila S2 cells leads to chromatin compaction and repositioning from the nuclear envelope. This increases the chromatin density in a fraction of topologically-associating domains (TADs) enriched in active chromatin and enhances interactions between active and inactive chromatin. Importantly, upon NL disruption the NL-associated TADs become more acetylated at histone H3 and less compact, while background transcription is derepressed. Two-colour FISH confirms that a TAD becomes less compact following its release from the NL. Finally, polymer simulations show that chromatin binding to the NL can per se compact attached TADs. Collectively, our findings demonstrate a dual function of the NL in shaping the 3D genome. Attachment of TADs to the NL makes them more condensed but decreases the overall chromatin density in the nucleus by stretching interphase chromosomes.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/metabolismo , Histonas/metabolismo , Lâmina Nuclear/metabolismo , Animais , Linhagem Celular , Cromossomos de Insetos/metabolismo , Regulação para Baixo , Drosophila melanogaster , Perfilação da Expressão Gênica , Genes de Insetos/genética , Hibridização in Situ Fluorescente , Modelos Animais , Regulação para Cima
10.
PLoS Biol ; 17(2): e3000016, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30794535

RESUMO

Studying aneuploidy during organism development has strong limitations because chronic mitotic perturbations used to generate aneuploidy usually result in lethality. We developed a genetic tool to induce aneuploidy in an acute and time-controlled manner during Drosophila development. This is achieved by reversible depletion of cohesin, a key molecule controlling mitotic fidelity. Larvae challenged with aneuploidy hatch into adults with severe motor defects shortening their life span. Neural stem cells, despite being aneuploid, display a delayed stress response and continue proliferating, resulting in the rapid appearance of chromosomal instability, a complex array of karyotypes, and cellular abnormalities. Notably, when other brain-cell lineages are forced to self-renew, aneuploidy-associated stress response is significantly delayed. Protecting only the developing brain from induced aneuploidy is sufficient to rescue motor defects and adult life span, suggesting that neural tissue is the most ill-equipped to deal with developmental aneuploidy.


Assuntos
Aneuploidia , Drosophila melanogaster/fisiologia , Longevidade/fisiologia , Células-Tronco Neurais/fisiologia , Estresse Fisiológico , Animais , Encéfalo/fisiologia , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Autorrenovação Celular , Instabilidade Cromossômica , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos de Insetos/metabolismo , Cariótipo , Cinética , Larva/fisiologia , Mitose , Células-Tronco Neurais/citologia , Fatores de Tempo , Asas de Animais/fisiologia , Coesinas
11.
J Cell Biochem ; 120(3): 4494-4503, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30260021

RESUMO

Chromosomes in many organisms, including Drosophila and mammals, are folded into topologically associating domains (TADs). Increasing evidence suggests that TAD folding is hierarchical, wherein subdomains combine to form larger superdomains, instead of a sequence of nonoverlapping domains. Here, we studied the hierarchical structure of TADs in Drosophila. We show that the boundaries of TADs of different hierarchical levels are characterized by the presence of different portions of active chromatin, but do not vary in the binding of architectural proteins, such as CCCTC binding factor or cohesin. The apparent hierarchy of TADs in Drosophila chromosomes is not likely to have functional importance but rather reflects various options of long-range chromatin folding directed by the distribution of active and inactive chromatin segments and may represent population average.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Cromossomos de Insetos/metabolismo , Proteínas de Drosophila/metabolismo , Animais , Fator de Ligação a CCCTC/genética , Cromatina/genética , Cromossomos de Insetos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster
13.
Proc Natl Acad Sci U S A ; 115(41): E9610-E9619, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30266792

RESUMO

Chromosomal rearrangements (e.g., fusions/fissions) have the potential to drive speciation. However, their accumulation in a population is generally viewed as unlikely, because chromosomal heterozygosity should lead to meiotic problems and aneuploid gametes. Canonical meiosis involves segregation of homologous chromosomes in meiosis I and sister chromatid segregation during meiosis II. In organisms with holocentric chromosomes, which are characterized by kinetic activity distributed along almost the entire chromosome length, this order may be inverted depending on their metaphase I orientation. Here we analyzed the evolutionary role of this intrinsic versatility of holocentric chromosomes, which is not available to monocentric ones, by studying F1 to F4 hybrids between two chromosomal races of the Wood White butterfly (Leptidea sinapis), separated by at least 24 chromosomal fusions/fissions. We found that these chromosomal rearrangements resulted in multiple meiotic multivalents, and, contrary to the theoretical prediction, the hybrids displayed relatively high reproductive fitness (42% of that of the control lines) and regular behavior of meiotic chromosomes. In the hybrids, we also discovered inverted meiosis, in which the first and critical stage of chromosome number reduction was replaced by the less risky stage of sister chromatid separation. We hypothesize that the ability to invert the order of the main meiotic events facilitates proper chromosome segregation and hence rescues fertility and viability in chromosomal hybrids, potentially promoting dynamic karyotype evolution and chromosomal speciation.


Assuntos
Borboletas , Quimera , Cromátides , Metáfase/fisiologia , Animais , Borboletas/genética , Borboletas/metabolismo , Quimera/genética , Quimera/metabolismo , Cromátides/genética , Cromátides/metabolismo , Cromossomos de Insetos/genética , Cromossomos de Insetos/metabolismo
14.
PLoS Comput Biol ; 14(5): e1006159, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29813054

RESUMO

The 3D organization of chromosomes is crucial for regulating gene expression and cell function. Many experimental and polymer modeling efforts are dedicated to deciphering the mechanistic principles behind chromosome folding. Chromosomes are long and densely packed-topologically constrained-polymers. The main challenges are therefore to develop adequate models and simulation methods to investigate properly the multi spatio-temporal scales of such macromolecules. Here, we proposed a generic strategy to develop efficient coarse-grained models for self-avoiding polymers on a lattice. Accounting accurately for the polymer entanglement length and the volumic density, we show that our simulation scheme not only captures the steady-state structural and dynamical properties of the system but also tracks the same dynamics at different coarse-graining. This strategy allows a strong power-law gain in numerical efficiency and offers a systematic way to define reliable coarse-grained null models for chromosomes and to go beyond the current limitations by studying long chromosomes during an extended time period with good statistics. We use our formalism to investigate in details the time evolution of the 3D organization of chromosome 3R (20 Mbp) in drosophila during one cell cycle (20 hours). We show that a combination of our coarse-graining strategy with a one-parameter block copolymer model integrating epigenomic-driven interactions quantitatively reproduce experimental data at the chromosome-scale and predict that chromatin motion is very dynamic during the cell cycle.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina , Epigênese Genética , Modelos Genéticos , Animais , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/fisiologia , Cromossomos de Insetos/química , Cromossomos de Insetos/genética , Cromossomos de Insetos/metabolismo , Biologia Computacional , Drosophila/genética , Epigênese Genética/genética , Epigênese Genética/fisiologia , Epigenômica , Simulação de Dinâmica Molecular
15.
PLoS One ; 13(4): e0195207, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29659604

RESUMO

Morphologically, polytene chromosomes of Drosophila melanogaster consist of compact "black" bands alternating with less compact "grey" bands and interbands. We developed a comprehensive approach that combines cytological mapping data of FlyBase-annotated genes and novel tools for predicting cytogenetic features of chromosomes on the basis of their protein composition and determined the genomic coordinates for all black bands of polytene chromosome 2R. By a PCNA immunostaining assay, we obtained the replication timetable for all the bands mapped. The results allowed us to compare replication timing between polytene chromosomes in salivary glands and chromosomes from cultured diploid cell lines and to observe a substantial similarity in the global replication patterns at the band resolution level. In both kinds of chromosomes, the intervals between black bands correspond to early replication initiation zones. Black bands are depleted of replication initiation events and are characterized by a gradient of replication timing; therefore, the time of replication completion correlates with the band length. The bands are characterized by low gene density, contain predominantly tissue-specific genes, and are represented by silent chromatin types in various tissues. The borders of black bands correspond well to the borders of topological domains as well as to the borders of the zones showing H3K27me3, SUUR, and LAMIN enrichment. In conclusion, the characteristic pattern of polytene chromosomes reflects partitioning of the Drosophila genome into two global types of domains with contrasting properties. This partitioning is conserved in different tissues and determines replication timing in Drosophila.


Assuntos
Período de Replicação do DNA/fisiologia , Diploide , Drosophila melanogaster/genética , Genoma de Inseto , Cromossomos Politênicos/genética , Animais , Cromossomos de Insetos/química , Cromossomos de Insetos/genética , Cromossomos de Insetos/metabolismo , Replicação do DNA , Mapeamento Físico do Cromossomo , Cromossomos Politênicos/metabolismo , Glândulas Salivares/metabolismo
16.
Epigenetics Chromatin ; 11(1): 3, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29357905

RESUMO

BACKGROUND: It is well recognized that the interphase chromatin of higher eukaryotes folds into non-random configurations forming territories within the nucleus. Chromosome territories have biologically significant properties, and understanding how these properties change with time during lifetime of the cell is important. Chromosome-nuclear envelope (Chr-NE) interactions play a role in epigenetic regulation of DNA replication, repair, and transcription. However, their role in maintaining chromosome territories remains unclear. RESULTS: We use coarse-grained molecular dynamics simulations to study the effects of Chr-NE interactions on the dynamics of chromosomes within a model of the Drosophila melanogaster regular (non-polytene) interphase nucleus, on timescales comparable to the duration of interphase. The model simulates the dynamics of chromosomes bounded by the NE. Initially, the chromosomes in the model are prearranged in fractal-like configurations with physical parameters such as nucleus size and chromosome persistence length taken directly from experiment. Time evolution of several key observables that characterize the chromosomes is quantified during each simulation: chromosome territories, chromosome entanglement, compactness, and presence of the Rabl (polarized) chromosome arrangement. We find that Chr-NE interactions help maintain chromosome territories by slowing down and limiting, but not eliminating, chromosome entanglement on biologically relevant timescales. At the same time, Chr-NE interactions have little effect on the Rabl chromosome arrangement as well as on how chromosome compactness changes with time. These results are rationalized by simple dimensionality arguments, robust to model details. All results are robust to the simulated activity of topoisomerase, which may be present in the interphase cell nucleus. CONCLUSIONS: Our study demonstrates that Chr-NE attachments may help maintain chromosome territories, while slowing down and limiting chromosome entanglement on biologically relevant timescales. However, Chr-NE attachments have little effect on chromosome compactness or the Rabl chromosome arrangement.


Assuntos
Drosophila melanogaster/genética , Membrana Nuclear/metabolismo , Cromossomos Politênicos/química , Cromossomos Politênicos/metabolismo , Animais , Cromossomos de Insetos/química , Cromossomos de Insetos/genética , Cromossomos de Insetos/metabolismo , Drosophila melanogaster/metabolismo , Interfase , Modelos Moleculares , Cromossomos Politênicos/genética
17.
Proc Natl Acad Sci U S A ; 114(49): 12988-12993, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29158400

RESUMO

Proper segregation of chromosomes in meiosis is essential to prevent miscarriages and birth defects. This requires that sister chromatids maintain cohesion at the centromere as cohesion is released on the chromatid arms when the homologs segregate at anaphase I. The Shugoshin proteins preserve centromere cohesion by protecting the cohesin complex from cleavage, and this has been shown in yeasts to be mediated by recruitment of the protein phosphatase 2A B' (PP2A B'). In metazoans, delineation of the role of PP2A B' in meiosis has been hindered by its myriad of other essential roles. The Drosophila Shugoshin MEI-S332 can bind directly to both of the B' regulatory subunits of PP2A, Wdb and Wrd, in yeast two-hybrid experiments. Exploiting experimental advantages of Drosophila spermatogenesis, we found that the Wdb subunit localizes first along chromosomes in meiosis I, becoming restricted to the centromere region as MEI-S332 binds. Wdb and MEI-S332 show colocalization at the centromere region until release of sister-chromatid cohesion at the metaphase II/anaphase II transition. MEI-S332 is necessary for Wdb localization, but, additionally, both Wdb and Wrd are required for MEI-S332 localization. Thus, rather than MEI-S332 being hierarchical to PP2A B', these proteins reciprocally ensure centromere localization of the complex. We analyzed functional relationships between MEI-S332 and the two forms of PP2A by quantifying meiotic chromosome segregation defects in double or triple mutants. These studies revealed that both Wdb and Wrd contribute to MEI-S332's ability to ensure accurate segregation of sister chromatids, but, as in centromere localization, they do not act solely downstream of MEI-S332.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/enzimologia , Proteína Fosfatase 2/fisiologia , Animais , Segregação de Cromossomos , Cromossomos de Insetos/genética , Cromossomos de Insetos/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Masculino , Meiose , Não Disjunção Genética , Transporte Proteico , Cromossomos Sexuais/genética , Cromossomos Sexuais/metabolismo
18.
J Cell Biol ; 216(10): 3029-3039, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28860275

RESUMO

The meiotic spindle is formed without centrosomes in a large volume of oocytes. Local activation of crucial spindle proteins around chromosomes is important for formation and maintenance of a bipolar spindle in oocytes. We found that phosphodocking 14-3-3 proteins stabilize spindle bipolarity in Drosophila melanogaster oocytes. A critical 14-3-3 target is the minus end-directed motor Ncd (human HSET; kinesin-14), which has well-documented roles in stabilizing a bipolar spindle in oocytes. Phospho docking by 14-3-3 inhibits the microtubule binding activity of the nonmotor Ncd tail. Further phosphorylation by Aurora B kinase can release Ncd from this inhibitory effect of 14-3-3. As Aurora B localizes to chromosomes and spindles, 14-3-3 facilitates specific association of Ncd with spindle microtubules by preventing Ncd from binding to nonspindle microtubules in oocytes. Therefore, 14-3-3 translates a spatial cue provided by Aurora B to target Ncd selectively to the spindle within the large volume of oocytes.


Assuntos
Proteínas 14-3-3/metabolismo , Cromossomos de Insetos/metabolismo , Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Oócitos/metabolismo , Fuso Acromático/metabolismo , Proteínas 14-3-3/genética , Animais , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Cromossomos de Insetos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Cinesinas/genética , Microtúbulos/genética , Oócitos/citologia , Transporte Proteico/fisiologia , Fuso Acromático/genética
19.
Methods Mol Biol ; 1642: 195-209, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28815502

RESUMO

The fruit fly, Drosophila melanogaster, has been a favorite experimental system of developmental biologists for more than a century. One of the most attractive features of this model system is the clarity by which one can analyze mutant phenotypes. Most genes are found in single copies, and loss-of-function mutants often have obvious phenotypes that can be analyzed during development and in adulthood. As with all metazoans, a significant fraction of Drosophila genes are used during both embryonic and postembryonic development, and null mutants often die during embryogenesis thereby precluding the analysis of postembryonic tissues. For several decades researchers worked around this problem by either studying gynandromorphs or irradiating chromosomes carrying mutations in the hope of inducing mitotic recombination which would then allow for the analysis of mutant phenotypes in smaller populations of cells. The former method suffers from the fact that mutations in the gene of interest are often lethal when generated in large sectors, which is a hallmark of gynandromorphs. Clonal induction with the latter method occurs at relatively low frequencies making this method laborious. The introduction of the yeast FRT System/FRT site-directed recombination system to Drosophila has made generating loss-of-function mosaic clones simple and easy. Over the years several variants of this method have allowed developmental biologists to remove genes, overexpress genes, and even express one gene in patches of cells that are mutant for a second gene. In this review we will briefly discuss some of various FRT System/FRT-based approaches that are being used to manipulate gene expression in Drosophila. The individual FRT System/FRT-based methods are described in the papers that are cited herein. We will outline the procedure that our lab uses to prepare and analyze mosaic clones in Drosophila eye-antennal imaginal discs.


Assuntos
DNA Nucleotidiltransferases/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Discos Imaginais/metabolismo , Recombinação Genética , Animais , Animais Geneticamente Modificados , Cromossomos de Insetos/química , Cromossomos de Insetos/metabolismo , Células Clonais , DNA Nucleotidiltransferases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Discos Imaginais/crescimento & desenvolvimento , Discos Imaginais/ultraestrutura , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mosaicismo , Mutação , Fenótipo , Fixação de Tecidos/métodos
20.
Methods Mol Biol ; 1471: 255-264, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28349401

RESUMO

Drosophila melanogaster has been studied for a century as a genetic model to understand recombination, chromosome segregation, and the basic rules of inheritance. However, it has only been about 25 years since the events that occur during nuclear envelope breakdown, spindle assembly, and chromosome orientation during D. melanogaster female meiosis I were first visualized by fixed cytological methods (Theurkauf and Hawley, J Cell Biol 116:1167-1180, 1992). Although these fixed cytological studies revealed many important details about the events that occur during meiosis I, they failed to elucidate the timing or order of these events. The development of protocols for live imaging of meiotic events within the oocyte has enabled collection of real-time information on the kinetics and dynamics of spindle assembly, as well as the behavior of chromosomes during prometaphase I. Here, we describe a method to visualize spindle assembly and chromosome movement during meiosis I by injecting fluorescent dyes to label microtubules and DNA into stage 12-14 oocytes. This method enables the events during Drosophila female meiosis I, such as spindle assembly and chromosome movement, to be observed in vivo, regardless of genetic background, with exceptional spatial and temporal resolution.


Assuntos
Cromossomos de Insetos/metabolismo , Drosophila melanogaster/citologia , Meiose , Oócitos/fisiologia , Animais , Cromossomos de Insetos/genética , Drosophila melanogaster/genética , Feminino , Corantes Fluorescentes/metabolismo , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Microtúbulos/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...