Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Viruses ; 13(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34578358

RESUMO

According to the 2018 FAO report on aquaculture, there are 598 species of finfish, molluscs, crustaceans, and other organisms used in aquafarming around the world [...].


Assuntos
Aquicultura , Vírus , Animais , Crustáceos/virologia , Peixes/virologia , Vírus da Necrose Pancreática Infecciosa , Moluscos/virologia , Rhabdoviridae , Salmão/virologia
2.
Front Immunol ; 12: 674216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177916

RESUMO

Virus interference is a phenomenon in which two viruses interact within a host, affecting the outcome of infection of at least one of such viruses. The effect of this event was first observed in the XVIII century and it was first recorded even before virology was recognized as a distinct science from microbiology. Studies on virus interference were mostly done in the decades between 1930 and 1960 in viruses infecting bacteria and different vertebrates. The systems included in vivo experiments and later, more refined assays were done using tissue and cell cultures. Many viruses involved in interference are pathogenic to humans or to economically important animals. Thus the phenomenon may be relevant to medicine and to animal production due to the possibility to use it as alternative to chemical therapies against virus infections to reduce the severity of disease/mortality caused by a superinfecting virus. Virus interference is defined as the host resistance to a superinfection caused by a pathogenic virus causing obvious signs of disease and/or mortality due to the action of an interfering virus abrogating the replication of the former virus. Different degrees of inhibition of the superinfecting virus can occur. Due to the emergence of novel pathogenic viruses in recent years, virus interference has recently been revisited using different pathogens and hosts, including commercially important farmed aquatic species. Here, some highly pathogenic viruses affecting farmed crustaceans can be affected by interference with other viruses. This review presents data on the history of virus interference in hosts including bacteria and animals, with emphasis on the known cases of virus interference in crustacean hosts. Life Science Identifiers (LSIDs) Escherichia coli [(Migula 1895) Castellani & Chalmers 1919] Aedes albopictus (Skuse 1894) Liocarcinus depurator (Linnaeus 1758): urn:lsid:marinespecies.org:taxname:107387 Penaeus duorarum (Burkenroad 1939): urn:lsid:marinespecies.org:taxname:158334 Carcinus maenas (Linnaeus 1758): urn:lsid:marinespecies.org:taxname:107381 Macrobrachium rosenbergii (De Man 1879): urn:lsid:marinespecies.org:taxname:220137 Penaeus vannamei (Boone 1931): urn:lsid:zoobank.org:pub:C30A0A50-E309-4E24-851D-01CF94D97F23 Penaeus monodon (Fabricius 1798): urn:lsid:zoobank.org:act:3DD50D8B-01C2-48A7-B80D-9D9DD2E6F7AD Penaeus stylirostris (Stimpson 1874): urn:lsid:marinespecies.org:taxname:584982.


Assuntos
Crustáceos/virologia , Interferência Viral , Viroses/virologia , Animais
3.
J Invertebr Pathol ; 182: 107568, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33711318

RESUMO

A variety of reoviruses have been described in crustacean hosts, including shrimp, crayfish, prawn, and especially in crabs. However, only one genus of crustacean reovirus - Cardoreovirus - has been formally recognized by ICTV (International Committee on Taxonomy of Viruses) and most crustacean reoviruses remain unclassified. This arises in part from ambiguous or incomplete information on which to categorize them. In recent years, increased availability of crustacean reovirus genomic sequences is making the discovery and classification of crustacean reoviruses faster and more certain. This minireview describes the properties of the reoviruses infecting crustaceans and suggests an overall classification of brachyuran crustacean reoviruses based on a combination of morphology, host, genome organization pattern and phylogenetic sequence analysis.


Assuntos
Crustáceos/virologia , Reoviridae/classificação , Animais , Filogenia , Reoviridae/genética
4.
J Fish Dis ; 44(4): 401-413, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33340375

RESUMO

Rapid and user-friendly diagnostic tests are necessary for early diagnosis and immediate detection of diseases, particularly for on-site screening of pathogenic microorganisms in aquaculture. In this study, we developed a dual-sample microfluidic chip integrated with a real-time fluorogenic loop-mediated isothermal amplification assay (dual-sample on-chip LAMP) to simultaneously detect 10 pathogenic microorganisms, that is Aeromonas hydrophila, Edwardsiella tarda, Vibrio harveyi, V. alginolyticus, V. anguillarum, V. parahaemolyticus, V. vulnificus, infectious hypodermal and haematopoietic necrosis virus, infectious spleen and kidney necrosis virus, and white spot syndrome virus. This on-chip LAMP provided a nearly automated protocol that can analyse two samples simultaneously, and the tests achieved limits of detection (LOD) ranging from 100 to 10-1  pg/µl for genomic DNA of tested bacteria and 10-4 to 10-5  pg/µl for recombinant plasmid DNA of tested viruses, with run times averaging less than 30 min. The coefficient of variation for the time-to-positive value was less than 10%, reflecting a robust reproducibility. The clinical sensitivity and specificity were 93.52% and 85.53%, respectively, compared to conventional microbiological or clinical methods. The on-chip LAMP assay provides an effective dual-sample and multiple pathogen analysis, and thus would be applicable to on-site detection and routine monitoring of multiple pathogens in aquaculture.


Assuntos
Aeromonas hydrophila/isolamento & purificação , Densovirinae/isolamento & purificação , Edwardsiella tarda/isolamento & purificação , Iridoviridae/isolamento & purificação , Microfluídica/métodos , Técnicas de Diagnóstico Molecular/veterinária , Técnicas de Amplificação de Ácido Nucleico/veterinária , Vibrio/isolamento & purificação , Vírus da Síndrome da Mancha Branca 1/isolamento & purificação , Animais , Crustáceos/microbiologia , Crustáceos/virologia , Infecções por Vírus de DNA/diagnóstico , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/microbiologia , Doenças dos Peixes/virologia , Peixes/microbiologia , Peixes/virologia , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Limite de Detecção , Técnicas de Diagnóstico Molecular/métodos , Moluscos/microbiologia , Moluscos/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Int J Biol Macromol ; 167: 1168-1175, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33197475

RESUMO

White spot syndrome virus (WSSV), the causative agent of white spot disease (WSD) severely affecting crustacean life forms, is highly contagious and forms the principal cause of massive economic losses in the shrimp aquaculture industry. Previous studies have demonstrated thymidylate synthase as a successful anti-cancer therapeutic drug target, leading to various anti-cancer drugs. The differential utilization of nucleotide precursors between white spot syndrome virus and shrimp encouraged us to analyze WSSV-thymidylate synthase (wTS). Here, we report the crystal structures of wTS in its apo-form and as a ternary complex with deoxyuridine monophosphate (dUMP) and methotrexate at a resolution of 2.35 Å and 2.6 Å, respectively. wTS possesses a fold characteristic to known thymidylate synthase (TS) structures. Like other TS structures, the apo-form of wTS displays an open conformation, whereas the wTS ternary complex attains a closed conformation. While the C-terminal loop maintains a typical distance from methotrexate, the Sγ atom of the catalytic Cys is positioned farther from the C6 atom of dUMP. Altogether, we report the first TS structure from a crustacean virus and highlight its distinction from shrimp and other TS structures.


Assuntos
Nucleotídeos de Desoxiuracil/química , Metotrexato/química , Penaeidae/virologia , Timidilato Sintase/química , Vírus da Síndrome da Mancha Branca 1/química , Animais , Crustáceos/virologia , Escherichia coli/química , Humanos , Ligação de Hidrogênio , Ligantes , Camundongos , Modelos Moleculares , Conformação Molecular , Penaeidae/química , Domínios Proteicos , Proteínas Recombinantes
6.
Dev Comp Immunol ; 112: 103771, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32634522

RESUMO

The viral accommodation hypothesis for crustaceans and insects was first proposed in 1998/2001, stimulated by observations that shrimp and insects or insect cell lines can coexist with both DNA or RNA viruses without showing any signs of disease (i.e., they tolerate, single to multiple, persistent infections, sometimes for a lifetime). A review of tests of the hypothesis up to 2007 was previously published in DCI. This was followed by a major revision in 2009 when the elusive memory element required by the hypothesis was proposed to reside in non-retroviral fragments of extant viruses, now called endogenous viral elements (EVE) that are autonomously inserted into the host genome as cDNA copied from viral mRNA. Here, progress in research on viral accommodation in crustaceans and insects over the decade following 2009 is reviewed. It culminates with a discussion of exiting research results from insects in 2019 that prove the existence of specific, adaptive and heritable immunity, at least in mosquitoes. It remains to be determined whether the same mechanisms also govern EVE acquisition and its protective RNA production in shrimp. The wide-ranging consequences of the revealed mechanisms for viral disease control in economic crustaceans and insects is discussed.


Assuntos
Retrovirus Endógenos/fisiologia , Insetos/virologia , Modelos Biológicos , Vírus de RNA/fisiologia , Viroses/imunologia , Animais , Doenças Assintomáticas , Crustáceos/virologia , Reservatórios de Doenças , Transmissão de Doença Infecciosa , Evolução Molecular , Humanos , Imunidade , Recombinação Genética , Viroses/transmissão , Latência Viral
7.
Subcell Biochem ; 94: 63-80, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32189296

RESUMO

Anti-lipopolysaccharide factors (ALFs) are a type of antimicrobial peptide (AMP) which show broad-spectrum antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, fungi and viruses. In this chapter, we review the discovery and classification of this kind of antimicrobial peptide in crustaceans. The structure and function, as well as the mechanism of antibacterial and antiviral activities of ALFs will be summarized and discussed. We will then describe the expression and regulation of various ALF genes in different crustacean species. Finally, the application prospects of ALFs in drug development and disease-resistant genetic breeding will be pointed out and discussed. The review will also discuss several key questions such as the systematic classification and expression regulation of the ALF genes, as well as the future application of ALFs and ALF-derived peptides.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Artrópodes/farmacologia , Crustáceos , Animais , Bactérias/efeitos dos fármacos , Crustáceos/genética , Crustáceos/microbiologia , Crustáceos/virologia , Desenvolvimento de Medicamentos , Fungos/efeitos dos fármacos , Lipopolissacarídeos , Vírus/efeitos dos fármacos
8.
J Gen Virol ; 101(1): 3-4, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31935180

RESUMO

Members of the family Nudiviridae are large dsDNA viruses with distinctive rod-shaped nucleocapsids and circular genomes of 96-232 kbp. Nudiviruses have been identified from a diverse range of insects and crustaceans and are closely related to baculoviruses. This is a summary of the International Committee on Taxonomy of Viruses Report on the taxonomy of the family Nudiviridae, which is available at ictv.global/report/nudiviridae.


Assuntos
Nudiviridae/classificação , Nudiviridae/genética , Animais , Baculoviridae/genética , Crustáceos/virologia , Genoma Viral/genética , Insetos/virologia , Vírion/genética
9.
mBio ; 11(1)2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937645

RESUMO

Panulirus argus virus 1 (PaV1) is the only known virus infecting the Caribbean spiny lobster (Panulirus argus) from the Caribbean Sea. Recently, related viruses, Dikerogammarus haemobaphes virus 1 (DhV1) and Carcinus maenas virus 1 (CmV1), have been detected in the demon shrimp (Dikerogammarus haemobaphes) and the European shore crab (Carcinus maenas), respectively, from sites in the United Kingdom. The virion morphology of these crustacean viruses is similar to that of iridoviruses. However, unlike iridoviruses and other nucleocytoplasmic large DNA viruses (NCLDVs), these viruses complete their morphogenesis in the host cell nucleus rather than in the cytoplasm. To date, these crustacean viruses have remained unclassified due to a lack of genomic data. Using an Illumina MiSeq sequencer, we sequenced the complete genomes of PaV1, CmV1, and DhV1. Comparative genome analysis shows that these crustacean virus genomes encode the 10 hallmark proteins previously described for the NCLDVs of eukaryotes, strongly suggesting that they are members of this group. With a size range of 70 to 74 kb, these are the smallest NCLDV genomes identified to date. Extensive gene loss, divergence of gene sequences, and the accumulation of low-complexity sequences reflect the extreme degradation of the genomes of these "minimal" NCLDVs rather than any direct relationship with the NCLDV ancestor. Phylogenomic analysis supports the classification of these crustacean viruses as a distinct family, "Mininucleoviridae," within the pitho-irido-Marseille branch of the NCLDVs.IMPORTANCE Recent genomic and metagenomic studies have led to a dramatic expansion of the known diversity of nucleocytoplasmic large DNA viruses (NCLDVs) of eukaryotes, which include giant viruses of protists and important pathogens of vertebrates, such as poxviruses. However, the characterization of viruses from nonmodel hosts still lags behind. We sequenced the complete genomes of three viruses infecting crustaceans, the Caribbean spiny lobster, demon shrimp, and European shore crab. These viruses have the smallest genomes among the known NCLDVs, with losses of many core genes, some of which are shared with iridoviruses. The deterioration of the transcription apparatus is compatible with microscopic and ultrastructural observations indicating that these viruses replicate in the nucleus of infected cells rather than in the cytoplasm. Phylogenomic analysis indicates that these viruses are sufficiently distinct from all other NCLDVs to justify the creation of a separate family, for which we propose the name "Mininucleoviridae" (i.e., small viruses reproducing in the cell nucleus).


Assuntos
Crustáceos/virologia , Vírus de DNA/classificação , Genoma Viral , Filogenia , Animais , Braquiúros/virologia , Vírus de DNA/isolamento & purificação , Vírus de DNA/patogenicidade , Ecossistema , Evolução Molecular , Genômica , Oceanos e Mares , Palinuridae/virologia , Penaeidae/virologia , Reino Unido
10.
Viruses ; 11(12)2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766648

RESUMO

All iflavirus members belong to the unique genus, Iflavirus, of the family, Iflaviridae. The host taxa and sequence identities of these viruses are diverse. A codon usage bias, maintained by a balance between selection, mutation, and genetic drift, exists in a wide variety of organisms. We characterized the codon usage patterns of 44 iflavirus genomes that were isolated from the classes, Insecta, Arachnida, Mammalia, and Malacostraca. Iflaviruses lack a strong codon usage bias when they are evaluated using an effective number of codons. The odds ratios of the majority of dinucleotides are within the normal range. However, the dinucleotides at the 1st-2nd codon positions are more biased than those at the 2nd-3rd codon positions. Plots of effective numbers of codons, relative neutrality analysis, and PR2 bias analysis all indicate that selection pressure dominates mutations in shaping codon usage patterns in the family, Iflaviridae. When these viruses were grouped into their host taxa, we found that the indices, including the nucleotide composition, effective number of codons, relative synonymous codon usage, and the influencing factors behind the codon usage patterns, all show that there are non-significant differences between the six host-taxa-groups. Our results disagree with our assumption that diverse viruses should possess diverse codon usage patterns, suggesting that the nucleotide composition and codon usage in the family, Iflaviridae, are not host taxa-specific signatures.


Assuntos
Uso do Códon , Genoma Viral/genética , Vírus de RNA/genética , Animais , Aracnídeos/virologia , Composição de Bases , Códon , Crustáceos/virologia , Humanos , Insetos/virologia , Mamíferos/virologia , Mutação
11.
J Fish Dis ; 42(11): 1471-1491, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31637760

RESUMO

Samples from multiple animals may be pooled and tested to reduce costs of surveillance for infectious agents in aquatic animal populations. The primary advantage of pooling is increased population-level coverage when prevalence is low (<10%) and the number of tests is fixed, because of increased likelihood of including target analyte from at least one infected animal in a tested pool. Important questions and a priori design considerations need to be addressed. Unfortunately, pooling recommendations in disease-specific chapters of the 2018 OIE Aquatic Manual are incomplete and, except for amphibian chytrid fungus, are not supported by peer-reviewed research. A systematic review identified only 12 peer-reviewed aquatic diagnostic accuracy and surveillance studies using pooled samples. No clear patterns for pooling methods and characteristics were evident across reviewed studies, although most authors agreed there is a negative effect on detection. Therefore, our purpose was to review pooling procedures used in published aquatic infectious disease research, present evidence-based guidelines, and provide simulated data examples for white spot syndrome virus in shrimp. A decision tree of pooling guidelines was developed for use by peer-reviewed journals and research institutions for the design, statistical analysis and reporting of comparative accuracy studies of individual and pooled tests for surveillance purposes.


Assuntos
Crustáceos/virologia , Testes Diagnósticos de Rotina/normas , Monitoramento Epidemiológico/veterinária , Doenças dos Peixes/epidemiologia , Guias como Assunto , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/veterinária , Vigilância da População/métodos , Prevalência
12.
Viruses ; 9(10)2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29057790

RESUMO

Viruses were recognized as the causative agents of fish diseases, such as infectious pancreatic necrosis and Oregon sockeye disease, in the early 1960s [1], and have since been shown to be responsible for diseases in all marine life from bacteria to protists, mollusks, crustaceans, fish and mammals [2].[...].


Assuntos
Ecossistema , Doenças dos Peixes/virologia , Peixes/virologia , Oceanos e Mares , Fenômenos Fisiológicos Virais , Animais , Crustáceos/virologia , Eucariotos/virologia , Interações Hospedeiro-Patógeno , Metagenoma , Viroses/veterinária , Viroses/virologia
13.
J Gen Virol ; 98(5): 890-891, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28555546

RESUMO

The Iridoviridae is a family of large, icosahedral viruses with double-stranded DNA genomes ranging in size from 103 to 220 kbp. Members of the subfamily Alphairidovirinae infect ectothermic vertebrates (bony fish, amphibians and reptiles), whereas members of the subfamily Betairidovirinae mainly infect insects and crustaceans. Infections can be either covert or patent, and in vertebrates they can lead to high levels of mortality among commercially and ecologically important fish and amphibians. This is a summary of the current International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Iridoviridae, which is available at www.ictv.global/report/iridoviridae.


Assuntos
Iridoviridae/classificação , Iridoviridae/isolamento & purificação , Anfíbios/virologia , Animais , Crustáceos/virologia , DNA Viral/genética , Peixes/virologia , Especificidade de Hospedeiro , Insetos/virologia , Iridoviridae/ultraestrutura , Répteis/virologia , Vírion/ultraestrutura
14.
BMC Genomics ; 18(1): 389, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28521727

RESUMO

BACKGROUND: Growing global demands for crustacean food crop species have driven large investments in aquaculture research worldwide. However, large-scale production is susceptible to pathogen-mediated destruction particularly in developing economies. Thus, a thorough understanding of the immune system components of food crop species is imperative for research to combat pathogens. RESULTS: Through a comparative genomics approach utilising extant data from 55 species, we describe the innate immune system of the class Malacostraca, which includes all food crop species. We identify 7407 malacostracan genes from 39 gene families implicated in different aspects of host defence and demonstrate dynamic evolution of innate immunity components within this group. Malacostracans have achieved flexibility in recognising infectious agents through divergent evolution and expansion of pathogen recognition receptors genes. Antiviral RNAi, Toll and JAK-STAT signal transduction pathways have remained conserved within Malacostraca, although the Imd pathway appears to lack several key components. Immune effectors such as the antimicrobial peptides (AMPs) have unique evolutionary profiles, with many malacostracan AMPs not found in other arthropods. Lastly, we describe four putative novel immune gene families, potentially representing important evolutionary novelties of the malacostracan immune system. CONCLUSION: Our analyses across the broader Malacostraca have allowed us to not only draw analogies with other arthropods but also to identify evolutionary novelties in immune modulation components and form strong hypotheses as to when key pathways have evolved or diverged. This will serve as a key resource for future immunology research in crustacean food crops.


Assuntos
Sequência Conservada , Crustáceos/genética , Crustáceos/imunologia , Evolução Molecular , Genômica , Imunidade Inata/genética , Animais , Crustáceos/citologia , Crustáceos/virologia , Transdução de Sinais/genética
15.
J Invertebr Pathol ; 147: 86-110, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28153770

RESUMO

Numerous infections by viral pathogens have been described from wild and cultured crustacean hosts, yet relatively few of these pathogens have been formally characterised and classified. To date viruses have generally been tentatively assigned to families based upon morphological and developmental characteristics and their location of infection within the host cell. Often nucleotide sequence information is unavailable. Some of these viral infections have caused well-documented devastating consequences on the global crustacean farming industry whilst their effects on wild populations remain largely unstudied. This paper provides an up to date review of all known viruses described infecting crustacean hosts. Full characterisation and harmonisation of these descriptions utilising specifications proposed by the International Committee on Taxonomy of Viruses (ICTV) is required to synonymise numerous examples of differential naming or abbreviation of naming, of the same virus in some cases. Development and application of techniques such as viral purification and high throughput sequencing of viral genomes will assist with these full descriptions and, provide appropriate diagnostic targets for surveillance of known and novel relatives. This review also highlights the importance of comparative study with viruses infecting insects and other arthropods to assist this process.


Assuntos
Crustáceos/virologia , Filogenia , Animais , Aquicultura , Vírus de DNA/classificação , Vírus de DNA/genética , Vírus de DNA/isolamento & purificação , Interações Hospedeiro-Patógeno , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação
16.
J Fish Dis ; 40(9): 1141-1153, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28026008

RESUMO

Carp (Cyprinus carpio L.) is a pest species in Australian waterways, and cyprinid herpesvirus 3 (CyHV-3) is being considered as a potential biological control (biocontrol) agent. An important consideration for any such agent is its target specificity. In this study, the susceptibility to CyHV-3 of a range of non-target species (NTS) was tested. The NTS were as follows: 13 native Australian, and one introduced, fish species; a lamprey species; a crustacean; two native amphibian species (tadpole and mature stages); two native reptilian species; chickens; and laboratory mice. Animals were exposed to 100-1000 times the approximate minimum amount of CyHV-3 required to cause disease in carp by intraperitoneal and/or bath challenge, and then examined clinically each day over the course of 28 days post-challenge. There were no clinical signs, mortalities or histological evidence consistent with a viral infection in a wide taxonomic range of NTS. Furthermore, there was no molecular evidence of infection with CyHV-3, and, in particular, all RT-PCRs for viral mRNA were negative. As a consequence, the results encourage further investigation of CyHV-3 as a potential biocontrol agent that is specific for carp.


Assuntos
Agentes de Controle Biológico/toxicidade , Carpas , Doenças dos Peixes/virologia , Infecções por Herpesviridae/veterinária , Controle Biológico de Vetores/métodos , Animais , Austrália , Crustáceos/virologia , Suscetibilidade a Doenças/veterinária , Relação Dose-Resposta a Droga , Peixes/virologia , Herpesviridae/fisiologia , Infecções por Herpesviridae/virologia , Injeções Intraperitoneais , Espécies Introduzidas , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Vertebrados/virologia
17.
PLoS One ; 11(9): e0162954, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27631372

RESUMO

During viral infection in vertebrates, cytokines play important roles in the host defense against the virus. However, the function of cytokines in invertebrates has not been well characterized. In this study, shrimp cytokines involved in viral infection were screened using a cytokine antibody microarray. The results showed that three cytokines, the Fas receptor (Fas), platelet factor 4 (PF4) and interleukin-22 (IL-22), were significantly upregulated in the white spot syndrome virus (WSSV)-challenged shrimp, suggesting that these cytokines played positive regulatory roles in the immune response of shrimp against the virus. Further experiments revealed that PF4 had positive effects on the antiviral immunity of shrimp by enhancing the shrimp phagocytic activity and inhibiting the apoptotic activity of virus-infected hemocytes. Therefore, our study presented a novel mechanism of cytokines in the innate immunity of invertebrates.


Assuntos
Crustáceos/imunologia , Fator Plaquetário 4/fisiologia , Animais , Apoptose , Crustáceos/virologia , Hemócitos/metabolismo , Fagocitose , Vírus da Síndrome da Mancha Branca 1/fisiologia
18.
Elife ; 52016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27253065

RESUMO

The intergenic IRES of Cricket Paralysis Virus (CrPV-IRES) forms a tight complex with 80S ribosomes capable of initiating the cell-free synthesis of complete proteins in the absence of initiation factors. Such synthesis raises the question of what effect the necessary IRES dissociation from the tRNA binding sites, and ultimately from all of the ribosome, has on the rates of initial peptide elongation steps as nascent peptide is formed. Here we report the first results measuring rates of reaction for the initial cycles of IRES-dependent elongation. Our results demonstrate that 1) the first two cycles of elongation proceed much more slowly than subsequent cycles, 2) these reduced rates arise from slow pseudo-translocation and translocation steps, and 3) the retarding effect of ribosome-bound IRES on protein synthesis is largely overcome following translocation of tripeptidyl-tRNA. Our results also provide a straightforward approach to detailed mechanistic characterization of many aspects of eukaryotic polypeptide elongation.


Assuntos
Dicistroviridae/metabolismo , Iniciação Traducional da Cadeia Peptídica , Poliproteínas/genética , RNA Viral/metabolismo , Animais , Crustáceos/virologia , Dicistroviridae/classificação , Dicistroviridae/genética , Cinética , Elongação Traducional da Cadeia Peptídica , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribossomos/metabolismo
19.
Viruses ; 8(1)2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26797629

RESUMO

Since its emergence in the 1990s, White Spot Disease (WSD) has had major economic and societal impact in the crustacean aquaculture sector. Over the years shrimp farming alone has experienced billion dollar losses through WSD. The disease is caused by the White Spot Syndrome Virus (WSSV), a large dsDNA virus and the only member of the Nimaviridae family. Susceptibility to WSSV in a wide range of crustacean hosts makes it a major risk factor in the translocation of live animals and in commodity products. Currently there are no effective treatments for this disease. Understanding the molecular basis of disease processes has contributed significantly to the treatment of many human and animal pathogens, and with a similar aim considerable efforts have been directed towards understanding host-pathogen molecular interactions for WSD. Work on the molecular mechanisms of pathogenesis in aquatic crustaceans has been restricted by a lack of sequenced and annotated genomes for host species. Nevertheless, some of the key host-pathogen interactions have been established: between viral envelope proteins and host cell receptors at initiation of infection, involvement of various immune system pathways in response to WSSV, and the roles of various host and virus miRNAs in mitigation or progression of disease. Despite these advances, many fundamental knowledge gaps remain; for example, the roles of the majority of WSSV proteins are still unknown. In this review we assess current knowledge of how WSSV infects and replicates in its host, and critique strategies for WSD treatment.


Assuntos
Antivirais/farmacologia , Crustáceos/virologia , Frutos do Mar/virologia , Vírus da Síndrome da Mancha Branca 1/genética , Animais , Interações Hospedeiro-Patógeno , Vírus da Síndrome da Mancha Branca 1/efeitos dos fármacos , Vírus da Síndrome da Mancha Branca 1/fisiologia
20.
J Biotechnol ; 212: 44-9, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26277651

RESUMO

Graphene oxide (GO) is attractived for biological or medical applications due to its unique electrical, physical, optical and biological properties. In particular, GO can adsorb DNA via π-π stacking or non-covalent interactions, leading to fluorescence quenching phenomenon applicable for bio-molecular detection. In this work, a new method for white spot syndrome virus (WSSV)-DNA detection is developed based on loop-mediated isothermal amplification (LAMP) combined with fluorescence resonance energy transfer (FRET) between GO and fluorescein isothiocyanate-labeled probe (FITC-probe). The fluorescence quenching efficiency of FITC-probe was found to increase with increasing GO concentration and reached 98.7% at a GO concentration of 50 µg/ml. The fluorescence intensity of FITC-probe was recovered after hybridization with WSSV LAMP product with an optimal hybridization time of 10 min and increased accordingly with increasing amount of LAMP products. The detection limit was estimated to be as low as 10 copies of WSSV plasmid DNA or 0.6 fg of the total DNA extracted from shrimp infected with WSSV. In addition, no cross reaction was observed with other common shrimp viral pathogens. Therefore, the GO-FRET-LAMP technique is promising for fast, sensitive and specific detection of DNAs.


Assuntos
DNA Viral/análise , Transferência Ressonante de Energia de Fluorescência/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Vírus da Síndrome da Mancha Branca 1/genética , Animais , Crustáceos/virologia , Infecções por Vírus de DNA/virologia , Fluoresceína-5-Isotiocianato/química , Corantes Fluorescentes/química , Grafite/química , Óxidos/química , Plasmídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...