Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
1.
Plant Cell Rep ; 43(8): 196, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009888

RESUMO

KEY MESSAGE: CsDGAT1A and CsDGAT2D play a positive regulatory role in cucumber's response to low-temperature stress and positively regulate the synthesis of triacylglycerol (TAG). Triacylglycerol (TAG), a highly abundant and significant organic compound in plants, plays crucial roles in plant growth, development, and stress responses. The final acetylation step of TAG synthesis is catalyzed by diacylglycerol acyltransferases (DGATs). However, the involvement of DGATs in cucumber's low-temperature stress response remains unexplored. This study focused on two DGAT genes, CsDGAT1A and CsDGAT2D, investigating their function in enhancing cucumber's low-temperature stress tolerance. Our results revealed that both proteins were the members of the diacylglycerol acyltransferase family and were predominantly localized in the endoplasmic reticulum. Functional analysis demonstrated that transient silencing of CsDGAT1A and CsDGAT2D significantly compromised cucumber's low-temperature stress tolerance, whereas transient overexpression enhanced it. Furthermore, the TAG content quantification indicated that CsDGAT1A and CsDGAT2D promoted TAG accumulation. In conclusion, this study elucidates the lipid metabolism mechanism in cucumber's low-temperature stress response and offers valuable insights for the cultivation of cold-tolerant cucumber plants.


Assuntos
Temperatura Baixa , Cucumis sativus , Diacilglicerol O-Aciltransferase , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Triglicerídeos , Cucumis sativus/genética , Cucumis sativus/enzimologia , Triglicerídeos/metabolismo , Triglicerídeos/biossíntese , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estresse Fisiológico/genética , Resposta ao Choque Frio/genética
2.
Physiol Plant ; 176(4): e14420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38956780

RESUMO

This study explores the impact of juglone on cucumber (Cucumis sativus cv. Beith Alpha), scrutinizing its effects on seed germination, growth, and the polyphenol oxidase (PPO) enzyme's activity and gene expression. Employing concentrations ranging from 0.01 to 0.5 mM, we found juglone's effects to be concentration-dependent. At lower concentrations (0.01 and 0.1 mM), juglone promoted root and shoot growth along with germination, whereas higher concentrations (0.25 and 0.5 mM) exerted inhibitory effects, delineating a threshold for its allelopathic influence. Notably, PPO activity surged, especially at 0.5 mM in roots, hinting at oxidative stress involvement. Real-time PCR unveiled that juglone modulates PPO gene expression in cotyledons, peaking at 0.1 mM and diminishing at elevated levels. Correlation analyses elucidated a positive link between juglone-induced root growth and cotyledon PPO gene expression but a negative correlation with heightened root enzyme activity. Additionally, germination percentage inversely correlated with root PPO activity, while PPO activities positively associated with dopa and catechol substrates in both roots and cotyledons. Molecular docking studies revealed juglone's selective interactions with PPO's B chain, suggesting regulatory impacts. Protein interaction assessments highlighted juglone's influence on amino acid metabolism, and molecular dynamics indicated juglone's stronger, more stable binding to PPO, inferring potential alterations in enzyme function and stability. Conclusively, our findings elucidate juglone's dose-dependent physiological and biochemical shifts in cucumber plants, offering insights into its role in plant growth, stress response, and metabolic modulation.


Assuntos
Catecol Oxidase , Cucumis sativus , Germinação , Simulação de Acoplamento Molecular , Naftoquinonas , Raízes de Plantas , Catecol Oxidase/metabolismo , Catecol Oxidase/genética , Cucumis sativus/genética , Cucumis sativus/enzimologia , Cucumis sativus/efeitos dos fármacos , Naftoquinonas/farmacologia , Naftoquinonas/metabolismo , Germinação/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/enzimologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Cotilédone/genética , Cotilédone/efeitos dos fármacos , Cotilédone/enzimologia
3.
Phytochemistry ; 224: 114151, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38768880

RESUMO

The plant lipoxygenase cascade is a source of various regulatory oxylipins that play a role in cell signalling, stress adaptation, and immune response. Recently, we detected an unprecedented 16(S)-lipoxygenase, CsLOX3, in the leaves and fruit pericarp of cucumber (Cucumis sativus L.). In the present work, an array of products biosynthesized through the conversions of α-linolenic acid 16-hydroperoxide (16-HPOT) was detected. Firstly, a prominent 15-hydroxy-9,12-pentadecadienoic acid (Me/TMS) was detected, the product of hydroperoxide lyase (HPL) chain cleavage of 16-HPOT and further reduction of aldehyde 15-oxo-9,12-pentadecadienoic acid to alcohol. Besides, the presence of dicarboxylic acid, 3,6-pentadecadiene-1,15-dioic acid, was deduced from the detection of its catalytic hydrogenation product, pentadecane-1,15-dioic acid. Finally, 12,15-dihydroxypentadecanoic acid (Me/TMS) was detected amongst the hydrogenated products, thus indicating the presence of the parent 12,15-dihydroxy-9,13-pentadecadienoic acid. To confirm the proposed HPL chain cleavage, the 16(S)-HPOT was prepared and incubated with the recombinant cucumber HPL CYP74B6 enzyme. The CYP74B6 possessed high activity towards 16-HPOT. Chain cleavage yields the (9Z,12Z)-15-oxo-9,12-pentadecadienoic acid, undergoing a spontaneous isomerization into (9Z,13E)-15-oxo-9,13-pentadecadienoic acid. Thus, the cucumber plants as well as the recombinant cucumber HPL CYP74B6 possessed unprecedented 16-HPL activity, cleaving 16-HPOT into a C15 fragment, 15-oxo-9,12-pentadecadienoic acid, and a complementary volatile C3 fragment, propionic aldehyde. The 16-LOX/16-HPL route of oxylipin biosynthesis presents a novel facet of the plant LOX pathway.


Assuntos
Aldeído Liases , Cucumis sativus , Sistema Enzimático do Citocromo P-450 , Oxilipinas , Cucumis sativus/metabolismo , Cucumis sativus/enzimologia , Aldeído Liases/metabolismo , Aldeído Liases/química , Oxilipinas/metabolismo , Oxilipinas/química , Oxilipinas/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Estrutura Molecular
4.
Theor Appl Genet ; 137(5): 114, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678513

RESUMO

KEY MESSAGE: Map-based cloning revealed that a mutation in a highly conserved amino acid of the CsGME gene encoding GDP-mannose 3,5-epimerase, causes the phenotype of little and wrinkled leaves in cucumbers. Leaf size is a critical determinant of plant architecture in cucumbers, yet only a few genes associated with this trait have been mapped or cloned. Here, we identified and characterized a mutant with little and wrinkled leaves, named lwl-1. Genetic analysis revealed that the phenotype of the lwl-1 was controlled by a single recessive gene. Through map-based cloning, the lwl-1 locus was narrowed down to a 12.22-kb region exclusively containing one fully annotated gene CsGME (CsaV3_2G004170). CsGME encodes GDP-mannose 3,5-epimerase, which is involved in the synthesis of ascorbic acid (ASA) and one of the components of pectin, RG-II. Whole-length sequencing of the 12.22 kb DNA fragment revealed the presence of only a non-synonymous mutation located in the sixth exon of CsGME in lwl-1, resulting in an amino acid alteration from Pro363 to Leu363. This mutation was unique among 118 inbred lines from cucumber natural populations. CsGME expression significantly reduced in various organs of lwl-1, accompanied by a significant decrease in ASA and pectin content in leaves. Both CsGME and Csgme proteins were localized to the cytoplasm. The mutant phenotype exhibited partial recovery after the application of exogenous boric acid. Silencing CsGME in cucumber through VIGS confirmed its role as the causal gene for lwl-1. Transcriptome profiling revealed that CsGME greatly affected the expression of genes related to the cell division process and cell plate formation. This study represents the first report to characterize and clone the CsGME in cucumber, indicating its crucial role in regulating leaf size and development.


Assuntos
Carboidratos Epimerases , Mapeamento Cromossômico , Cucumis sativus , Folhas de Planta , Ácido Ascórbico/metabolismo , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Clonagem Molecular , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/enzimologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genes Recessivos , Mutação , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Plant Physiol ; 195(2): 1293-1311, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38428987

RESUMO

In plants, pollen-pistil interactions during pollination and fertilization mediate pollen hydration and germination, pollen tube growth, and seed set and development. Cell wall invertases (CWINs) help provide the carbohydrates for pollen development; however, their roles in pollination and fertilization have not been well established. In cucumber (Cucumis sativus), CsCWIN3 showed the highest expression in flowers, and we further examined CsCWIN3 for functions during pollination to seed set. Both CsCWIN3 transcript and CsCWIN3 protein exhibited similar expression patterns in the sepals, petals, stamen filaments, anther tapetum, and pollen of male flowers, as well as in the stigma, style, transmitting tract, and ovule funiculus of female flowers. Notably, repression of CsCWIN3 in cucumber did not affect the formation of parthenocarpic fruit but resulted in an arrested growth of stigma integuments in female flowers and a partially delayed dehiscence of anthers with decreased pollen viability in male flowers. Consequently, the pollen tube grew poorly in the gynoecia after pollination. In addition, CsCWIN3-RNA interference plants also showed affected seed development. Considering that sugar transporters could function in cucumber fecundity, we highlight the role of CsCWIN3 and a potential close collaboration between CWIN and sugar transporters in these processes. Overall, we used molecular and physiological analyses to determine the CsCWIN3-mediated metabolism during pollen formation, pollen tube growth, and plant fecundity. CsCWIN3 has essential roles from pollination and fertilization to seed set but not parthenocarpic fruit development in cucumber.


Assuntos
Parede Celular , Cucumis sativus , Proteínas de Plantas , Polinização , Cucumis sativus/genética , Cucumis sativus/fisiologia , Cucumis sativus/enzimologia , Cucumis sativus/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Açúcares/metabolismo , beta-Frutofuranosidase/metabolismo , beta-Frutofuranosidase/genética , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Flores/genética , Flores/fisiologia , Flores/crescimento & desenvolvimento , Fertilização , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/genética , Tubo Polínico/fisiologia
6.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34948084

RESUMO

A Raffinose family oligosaccharides (RFOs) is one of the major translocated sugars in the vascular bundle of cucumber, but little RFOs can be detected in fruits. Alpha-galactosidases (α-Gals) catalyze the first catabolism step of RFOs. Six α-Gal genes exist in a cucumber genome, but their spatial functions in fruits remain unclear. Here, we found that RFOs were highly accumulated in vascular tissues. In phloem sap, the stachyose and raffinose content was gradually decreased, whereas the content of sucrose, glucose and fructose was increased from pedicel to fruit top. Three alkaline forms instead of acid forms of α-Gals were preferentially expressed in fruit vascular tissues and alkaline forms have stronger RFO-hydrolysing activity than acid forms. By inducible gene silencing of three alkaline forms of α-Gals, stachyose was highly accumulated in RNAi-CsAGA2 plants, while raffinose and stachyose were highly accumulated in RNAi-CsAGA1 plants. The content of sucrose, glucose and fructose was decreased in both RNAi-CsAGA1 and RNAi-CsAGA2 plants after ß-estradiol treatment. In addition, the fresh- and dry-weight of fruits were significantly decreased in RNAi-CsAGA1 and RNAi-CsAGA2 plants. In cucurbitaceous plants, the non-sweet motif within the promoter of ClAGA2 is widely distributed in the promoter of its homologous genes. Taken together, we found RFOs hydrolysis occurred in the vascular tissues of fruits. CsAGA1 and CsAGA2 played key but partly distinct roles in the hydrolysis of RFOs.


Assuntos
Cucumis sativus/enzimologia , Frutas/enzimologia , Oligossacarídeos/metabolismo , Rafinose/metabolismo , alfa-Galactosidase/metabolismo , Cucumis sativus/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Floema/enzimologia , Floema/metabolismo , Regiões Promotoras Genéticas , Especificidade por Substrato , alfa-Galactosidase/genética
7.
Mol Plant Pathol ; 22(11): 1317-1331, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34355485

RESUMO

RNA-dependent RNA polymerases (RDRs) regulate important aspects of plant development and resistance to pathogens. The role of RDRs in virus resistance has been demonstrated using siRNA signal amplification and through the methylation of viral genomes. Cucumber (Cucumis sativus) has four RDR1 genes that are differentially induced during virus infection: CsRDR1a, CsRDR1b, and duplicated CsRDR1c1/c2. The mode of action of CsRDR1s during viral infection is unknown. Transient expression of the cucumber mosaic virus (CMV)-2b protein (the viral suppressor of RNA silencing) in cucumber protoplasts induced the expression of CsRDR1c, but not of CsRDR1a/1b. Results from the yeast two-hybrid system showed that CsRDR1 proteins interacted with CMV-2b and this was confirmed by bimolecular fluorescence complementation assays. In protoplasts, CsRDR1s localized in the cytoplasm as punctate spots. Colocalization experiments revealed that CsRDR1s and CMV-2b were uniformly dispersed throughout the cytoplasm, suggesting that CsRDR1s are redistributed as a result of interactions. Transient overexpression of individual CsRDR1a/1b genes in protoplasts reduced CMV accumulation, indicating their antiviral role. However, overexpression of CsRDR1c in protoplasts resulted in relatively higher accumulation of CMV and CMVΔ2b. In single cells, CsRDR1c enhances viral replication, leading to CMV accumulation and blocking secondary siRNA amplification of CsRDR1c by CMV-2b protein. This suggests that CMV-2b acts as both a transcription factor that induces CsRDR1c (controlling virus accumulation) and a suppressor of CsRDR1c activity.


Assuntos
Cucumis sativus , Cucumovirus , Doenças das Plantas/virologia , RNA Polimerase Dependente de RNA , Proteínas Virais , Cucumis sativus/enzimologia , Cucumis sativus/virologia , Cucumovirus/patogenicidade , Protoplastos
8.
Int J Mol Sci ; 22(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205396

RESUMO

Members of the lectin receptor-like kinase (LecRLKs) family play a vital role in innate plant immunity. Few members of the LecRLKs family have been characterized in rice and Arabidopsis, respectively. However, little literature is available about LecRLKs and their role against fungal infection in cucumber. In this study, 60 putative cucumber LecRLK (CsLecRLK) proteins were identified using genome-wide analysis and further characterized into L-type LecRLKs (24) and G-type LecRLKs (36) based on domain composition and phylogenetic analysis. These proteins were allocated to seven cucumber chromosomes and found to be involved in the expansion of the CsLecRLK gene family. Subcellular localization of CsaLecRLK9 and CsaLecRLK12 showed green fluorescence signals in the plasma membrane of leaves. The transcriptional profiling of CsLecRLK genes showed that L-type LecRLKs exhibited functional redundancy as compared to G-type LecRLKs. The qRT-PCR results indicated that both L- and G-type LecRLKs showed significant response against plant growth-promoting fungi (PGPF-Trichoderma harzianum Rifai), powdery mildew pathogen (PPM-Golovinomyces orontii (Castagne) V.P. Heluta), and combined (PGPF+PPM) treatments. The findings of this study contribute to a better understanding of the role of cucumber CsLecRLK genes in response to PGPF, PPM, and PGPF+PPM treatments and lay the basis for the characterization of this important functional gene family.


Assuntos
Cucumis sativus/enzimologia , Erysiphe/imunologia , Imunidade Vegetal , Proteínas Quinases/genética , Estresse Fisiológico , Cromossomos de Plantas , Cucumis sativus/genética , Cucumis sativus/imunologia , Perfilação da Expressão Gênica , Genes de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo
9.
Theor Appl Genet ; 134(8): 2639-2652, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34091695

RESUMO

KEY MESSAGE: The elongated hypocotyl1 (elh1) mutant in cucumber is due to a mutation in CsHY2, which is a homolog of the Arabidopsis HY2 encoding the phytochromobilin (PΦB) synthase for phytochrome biosynthesis Hypocotyl length is a critical determinant in establishing high quality seedlings for successful cucumber production, but knowledge on the molecular regulation of hypocotyl growth in cucumber is very limited. Here, we reported identification and characterization of a cucumber elongated hypocotyl 1 (elh1) mutant. We found that the longer hypocotyl in elh1 was due to longitudinal growth of hypocotyl cells. With fine mapping, the elh1 locus was delimited to a 20.9-kb region containing three annotated genes; only one polymorphism was identified in this region between two parental lines, which was a non-synonymous SNP (G28153633A) in the third exon of CsHY2 (CsGy1G030000) that encodes a phytochromobilin (PΦB) synthase. Uniqueness of the mutant allele at CsHY2 was verified in natural cucumber populations. Ectopic expression of CsHY2 in Arabidopsis hy2-1 long-hypocotyl mutant led to reduced hypocotyl length. The PΦB protein was targeted to the chloroplast. The expression levels of CsHY2 and five phytochrome genes CsPHYA1, CsPHYA2, CsPHYB, CsPHYC and CsPHYE were all significantly down-regulated while several cell elongation related genes were up-regulated in elh1 mutant compared to wild-type cucumber, which are correlated with dynamic hypocotyl elongation in the mutant. RNA-seq analysis in the WT and mutant revealed differentially expressed genes involved in porphyrin and chlorophyll metabolisms, cell elongation and plant hormone signal transduction pathways. This is the first report to characterize and clone the CsHY2 gene in cucumber. This work reveals the important of CsHY2 in regulating hypocotyl length and extends our understanding of the roles of CsHY2 in cucumber.


Assuntos
Cucumis sativus/crescimento & desenvolvimento , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hipocótilo/crescimento & desenvolvimento , Mutação , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Cucumis sativus/enzimologia , Cucumis sativus/genética , Hipocótilo/enzimologia , Hipocótilo/genética , Oxirredutases/genética , Fenótipo , Proteínas de Plantas/genética
10.
Plant Cell ; 33(2): 306-321, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33793793

RESUMO

Unisexual flowers provide a useful system for studying plant sex determination. In cucumber (Cucumis sativus L.), three major Mendelian loci control unisexual flower development, Female (F), androecious [a; 1-aminocyclopropane-1-carboxylate {ACC} synthase 11, acs11], and Monoecious (M; ACS2), referred to here as the Female, Androecious, Monoecious (FAM) model, in combination with two genes, gynoecious (g, the WIP family C2H2 zinc finger transcription factor gene WIP1) and the ethylene biosynthetic gene ACC oxidase 2 (ACO2). The F locus, conferring gynoecy and the potential for increasing fruit yield, is defined by a 30.2-kb tandem duplication containing three genes. However, the gene that determines the Female phenotype, and its mechanism, remains unknown. Here, we created a set of mutants and revealed that ACS1G is responsible for gynoecy conferred by the F locus. The duplication resulted in ACS1G acquiring a new promoter and expression pattern; in plants carrying the F locus duplication, ACS1G is expressed early in floral bud development, where it functions with ACO2 to generate an ethylene burst. The resulting ethylene represses WIP1 and activates ACS2 to initiate gynoecy. This early ACS1G expression bypasses the need for ACS11 to produce ethylene, thereby establishing a dominant pathway for female floral development. Based on these findings, we propose a model for how these ethylene biosynthesis genes cooperate to control unisexual flower development in cucumber.


Assuntos
Cucumis sativus/enzimologia , Cucumis sativus/genética , Flores/enzimologia , Flores/genética , Liases/genética , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Genoma de Planta , Genótipo , Glucuronidase/metabolismo , Liases/química , Fenótipo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Theor Appl Genet ; 134(7): 2023-2034, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33683399

RESUMO

KEY MESSAGE: By the strategy of bulked segregant analysis sequencing combined with genetic mapping, CsDWF5, which encodes 7 dehydrocholesterol reductase that involved in brassinosteroids biosynthesis, was identified as the candidate gene for cpa. Dwarf architecture is one of the most important breeding goals in crops. The biosynthesis and signal transduction of brassinosteroids (BRs) have a great impact on plant growth and development including plant architecture. Here, we identified a compact plant architecture (cpa) mutant from an EMS-induced cucumber population. cpa displayed the extremely dwarf phenotype with shortened internode and petiole, darkened and wrinkled leaf. Genetic analysis revealed that cpa was caused by a single recessive gene. By the strategy of bulked segregant analysis sequencing combined with genetic mapping, CsDWF5, encoding a 7-dehydrocholesterol reductase that involved in sterol biosynthesis, was identified as the candidate gene for cpa. One single nucleotide mutation (G→A) in splicing site causing 3-bp insertion (TAG) was found in the first base of the sixth intron of CsDWF5 in cpa, which furtherly resulted in the frameshift mutation and got a premature stop codon. The expression of CsDWF5 gene was significantly down regulated in different tissues of the cpa mutant compared with that in wild type. The phenotype of cpa could be partially recovered by exogenous BR treatment. Transcriptome analysis identified 1096 genes that exhibited differential expression between the cpa mutant and wild type. KEGG enrichment analysis indicated that differentially expressed genes were significantly enriched in BR biosynthesis and plant-pathogen interaction pathways. These results provide perspectives on the molecular mechanisms underlying the dwarfing phenotype in cucumber.


Assuntos
Brassinosteroides/biossíntese , Cucumis sativus/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Sequência de Aminoácidos , Mapeamento Cromossômico , Códon sem Sentido , Cucumis sativus/enzimologia , Mutação da Fase de Leitura , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genes Recessivos , Fenótipo
12.
Theor Appl Genet ; 134(4): 979-991, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33558986

RESUMO

KEY MESSAGE: CsSh5.1, which controls hypocotyl elongation under high temperature conditions in cucumber, was mapped to a 57.1 kb region on chromosome 5 containing a candidate gene encoding a xyloglucan galactosyltransferase. Hypocotyl growth is a vital process in seedling establishment. Hypocotyl elongation after germination relies more on longitudinal cell elongation than cell division. Cell elongation is largely determined by the extensibility of the cell wall. Here, we identified a spontaneous mutant in cucumber (Cucumis sativus L.), sh5.1, which exhibits a temperature-insensitive short hypocotyl phenotype. Genetic analysis showed that the phenotype of sh5.1 was controlled by a recessive nuclear gene. CsSh5.1 was mapped to a 57.1 kb interval on chromosome 5, containing eight predicted genes. Sequencing analysis revealed that the Csa5G171710 is the candidate gene of CsSh5.1, which was further confirmed via co-segregation analysis and genomic DNA sequencing in natural cucumber variations. The result indicated that hypocotyl elongation might be controlled by this gene. CsSh5.1 encodes a xyloglucan galactosyltransferase that specifically adds galactose to xyloglucan and forms galactosylated xyloglucans, which determine the strength and extensibility of the cell walls. CsSh5.1 expression in wild-type (WT) hypocotyl was significantly higher than that in sh5.1 hypocotyl under high temperature, suggesting its important role in hypocotyl cell elongation under high temperature. The identification of CsSh5.1 is helpful for elucidating the function of xyloglucan galactosyltransferase in cell wall expansion and understanding the mechanism of hypocotyl elongation in cucumber.


Assuntos
Mapeamento Cromossômico/métodos , Cucumis sativus/crescimento & desenvolvimento , Galactosiltransferases/metabolismo , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Hipocótilo/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Xilanos/metabolismo , Cromossomos de Plantas/genética , Cucumis sativus/enzimologia , Cucumis sativus/genética , Galactosiltransferases/genética , Perfilação da Expressão Gênica , Hipocótilo/enzimologia , Hipocótilo/genética , Proteínas de Plantas/genética
13.
Genes (Basel) ; 13(1)2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-35052402

RESUMO

Cucumber (Cucumis sativus L.) is an important vegetable crop worldwide, and Fusarium wilt (FW), caused by Fusarium oxysporum f. sp. cucumerinum (Foc), severely restricts cucumber growth and yield. Accumulating lines of evidence indicate that chitinases play important roles in attacking the invading fungal pathogens through catalyzing their cell wall degradation. Here, we identified the chitinase (Chi) genes in cucumber and further screened the FW-responsive genes via a comparative transcriptome analysis and found that six common genes were predominantly expressed in roots but also significantly upregulated after Foc infection. Expression verification further conformed that Chi2 and Chi14 were obviously induced by Foc as well as by hormone treatments, compared with the controls. The purified Chi2 and Chi14 proteins significantly affected the growth of Foc in vitro, compared with the controls. Knockdown of Chi2 in cucumber by virus-induced gene silencing (VIGS) increased susceptibility to FW, compared with the Chi14-silenced and control plants, and silencing of Chi2 drastically impaired gene activation in the jasmonic acid pathway, suggesting that the Chi2 gene might play positive roles in cucumber FW defense and, therefore, can provide a gene resource for developing cucumber-FW-resistance breeding programs.


Assuntos
Quitinases/metabolismo , Cucumis sativus/imunologia , Resistência à Doença/genética , Fusarium/fisiologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Quitinases/genética , Cucumis sativus/enzimologia , Cucumis sativus/genética , Cucumis sativus/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Transcriptoma
14.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35008600

RESUMO

Vacuolar invertase (VI) can irreversibly degrade sucrose into glucose and fructose and involve in plants abiotic-stress-tolerance. Cucumber (Cucumis sativus L.) is susceptible to drought stress, especially during the seedling stage. To date, the involvement of VI in drought tolerance in cucumber seedlings is in urgent need of exploration. In the present study, a cucumber vacuolar invertase gene, CsVI2, was isolated and functionally characterized. The results showed that (1) CsVI2 showed vacuolar invertase activity both in vivo and in vitro; (2) the transcript level of CsVI2, along with VI activity, was significantly induced by drought stress. Moreover, the expression of sucrose synthase 3 (CsSUS3) was increased and that of sucrose phosphate synthase 1 (CsSPS1) was decreased after exposure to drought stress, which was followed by an increase in sucrose synthase activity and a decrease in sucrose phosphate synthase activity; (3) CsVI2-overexpressing transformed cucumber seedlings showed enhanced vacuolar invertase activity and drought tolerance and 4) protein-protein interaction modelling indicated that a cucumber invertase inhibitor, CsINVINH3, can interact with CsVI2. In summary, the results indicate that CsVI2 as an invertase can regulate sucrose metabolism and enhance drought stress in cucumber seedlings.


Assuntos
Cucumis sativus/enzimologia , Secas , Estresse Fisiológico , Sacarose/metabolismo , beta-Frutofuranosidase/metabolismo , Sequência de Aminoácidos , Cucumis sativus/metabolismo , Cucumis sativus/fisiologia , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformação Proteica , Plântula/metabolismo , Alinhamento de Sequência , beta-Frutofuranosidase/química
15.
Planta ; 252(5): 75, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33026530

RESUMO

MAIN CONCLUSION: Exogenous SA treatment at appropriate concentrations promotes adventitious root formation in cucumber hypocotyls, via competitive inhibiting the IAA-Asp synthetase activity of CsGH3.5, and increasing the local free IAA level. Adventitious root formation is critical for the cutting propagation of horticultural plants. Indole-3-acetic acid (IAA) has been shown to play a central role in regulating this process, while for salicylic acid (SA), its exact effects and regulatory mechanism have not been elucidated. In this study, we showed that exogenous SA treatment at the concentrations of both 50 and 100 µM promoted adventitious root formation at the base of the hypocotyl of cucumber seedlings. At these concentrations, SA could induce the expression of CYCLIN and Cyclin-dependent Kinase (CDK) genes during adventitious rooting. IAA was shown to be involved in SA-induced adventitious root formation in cucumber hypocotyls. Exposure to exogenous SA led to a slight increase in the free IAA content, and pre-treatment with the auxin transport inhibitor 1-naphthylphthalamic acid (NPA) almost completely abolished the inducible effects of SA on adventitious root number. SA-induced IAA accumulation was also associated with the enhanced expression of Gretchen Hagen3.5 (CsGH3.5). The in vitro enzymatic assay indicated that CsGH3.5 has both IAA- and SA-amido synthetase activity and prefers aspartate (Asp) as the amino acid conjugate. The Asp concentration dictated the functional activity of CsGH3.5 on IAA. Both affinity and catalytic efficiency (Kcat/Km) increased when the Asp concentration increased from 0.3 to 1 mM. In contrast, CsGH3.5 showed equal catalytic efficiency for SA at low and high Asp concentrations. Furthermore, SA functioned as a competitive inhibitor of the IAA-Asp synthetase activity of CsGH3.5. During adventitious formation, SA application indeed repressed the IAA-Asp levels in the rooting zone. These data show that SA plays an inducible role in adventitious root formation in cucumber through competitive inhibition of the auxin conjugation enzyme CsGH3.5. SA reduces the IAA conjugate levels, thereby increasing the local free IAA level and ultimately enhancing adventitious root formation.


Assuntos
Cucumis sativus , Hipocótilo , Ácido Salicílico , Cucumis sativus/enzimologia , Cucumis sativus/crescimento & desenvolvimento , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Hipocótilo/enzimologia , Hipocótilo/crescimento & desenvolvimento , Ligases/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Ácido Salicílico/farmacologia
16.
Plant Physiol Biochem ; 156: 333-344, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32998100

RESUMO

Transglutaminase (TGase) is inextricably associated with plant growth and development. However, the mechanism by which TGase enhances salt tolerance of higher plants under salt stress is poorly understood. In this study, we investigated the effects of NaCl stress and exogenous o-phenanthroline (o-Phen, a metalloprotease inhibitor) on TGase activity, chlorophyll fluorescence parameters, carbohydrates contents, the reactive oxygen species (ROS) scavenging system, and endogenous polyamines (PAs) contents of salt-sensitive 'Jinyou No. 4' and salt-tolerant 'Inbred Line 9930' cucumber. Salt stress significantly inhibited plant growth of the two cultivars, as well as hindered carbohydrates transport, which was more evident in the salt-sensitive cultivar. TGase activity and expression, ROS scavenging capacity, and bound PAs content were up-regulated by salt stress to some extent, which was more distinct in the salt-tolerant cucumber cultivar. However, o-Phen treatment significantly inhibited TGase expression, and further decreased plant growth and the actual photochemical efficiency of photosystem II in the two cultivars. In addition, application of o-Phen significantly decreased endogenous PAs content in leaves of 'Jinyou No. 4' and 'Inbred Line 9930' seedlings by 9.60% and 42.32% under NaCl stress, respectively. These results suggested that high activity of TGase increases the salt stress tolerance of cucumber plants by increasing endogenous PAs content and ROS scavenging capacity, and promoting carbon assimilation and photosynthetic products.


Assuntos
Cucumis sativus/enzimologia , Tolerância ao Sal , Transglutaminases/fisiologia , Clorofila , Cucumis sativus/fisiologia , Fotossíntese , Folhas de Planta , Plântula
17.
Int J Biol Macromol ; 162: 1825-1838, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32814103

RESUMO

In recent years, exploration of biopolymer-based materials to avoid hazardous chemicals in agriculture has gained enormous importance for sustainable crop improvement. In the present study, chitosan a biopolymer derived from crab-shell was used in different concentrations as priming agent to cucumber seeds and were evaluated for its effect to enhance plant growth parameters as well as its ability to induce resistance against powdery mildew disease. Among the treatments, seeds-primed with 2.5 mg/mL exhibited early seedling germination of 90% and vigour of 2665 and also remarkably enhanced the cucumber growth parameters which might be fairly attributed to the stimulation of phytohormones content in primed plants over the controls. More importantly, under greenhouse conditions a significant induced disease protection of 66.6% against powdery mildew disease was noticed in chitosan-pretreated plants at 2.5 mg/mL. The induced resistant plants also showed a significant deposition of lignin, callose and H2O2. Notably, polyphenol oxidase, phenylalanine ammonia-lyase, peroxidase and glucanase defense-responsive enzymes were upregulated in chitosan-primed plants. Considered together, these results determine that the susceptible cucumber cultivar elicits immunity after perception of priming with chitosan to upregulate phytohormones and synthesize defense-responsive enzymes, thereby induce resistance against powdery mildew disease and strengthen the growth-promotion of cucumber plants.


Assuntos
Quitosana/farmacologia , Cucumis sativus , Resistência à Doença/efeitos dos fármacos , Fungos/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Sementes , Animais , Braquiúros/química , Cucumis sativus/enzimologia , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/microbiologia , Proteínas de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/microbiologia , Sementes/crescimento & desenvolvimento , Sementes/microbiologia
18.
Nat Plants ; 6(7): 809-822, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32665652

RESUMO

Axillary meristem development determines both plant architecture and crop yield; this critical process is regulated by the PROLIFERATING CELL FACTORS (TCP) family of transcription factors. Although TCP proteins bind primarily to promoter regions, some also target gene bodies for expression activation. However, the underlying regulatory mechanism remains unknown. Here we show that TEN, a TCP from cucumber (Cucumis sativus L.), controls the identity and mobility of tendrils. Through its C terminus, TEN binds at intragenic enhancers of target genes; its N-terminal domain functions as a non-canonical histone acetyltransferase (HAT) to preferentially act on lysine 56 and 122 of the histone H3 globular domain. This HAT activity is responsible for chromatin loosening and host-gene activation. The N termini of all tested CYCLOIDEA and TEOSINTE BRANCHED 1-like TCP proteins contain an intrinsically disordered region; despite their sequence divergence, they have conserved HAT activity. This study identifies a non-canonical class of HATs and provides a mechanism by which modification at the H3 globular domain is integrated with the transcription process.


Assuntos
Histona Acetiltransferases/fisiologia , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Sítios de Ligação , Cucumis sativus/enzimologia , Cucumis sativus/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Histona Acetiltransferases/metabolismo
19.
Planta ; 252(1): 9, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32602044

RESUMO

MAIN CONCLUSION: NO was involved in H2-induced adventitious rooting by regulating the protein and gene expressions of PM H+-ATPase and 14-3-3. Simultaneously, the interaction of PM H+-ATPase and 14-3-3 protein was also involved in this process. Hydrogen gas (H2) and nitric oxide (NO) have been shown to be involved in plant growth and development. The results in this study revealed that NO was involved in H2-induced adventitious root formation. Western blot (WB) analysis showed that the protein abundances of plasma membrane H+-ATPase (PM H+-ATPase) and 14-3-3 protein were increased after H2, NO, H2 plus NO treatments, whereas their protein abundances were down regulated when NO scavenger carboxy-2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTI O) was added. Moreover, the mRNA abundances of the HA3 and 14-3-3(7) gene as well as the activities of PM H+-ATPase (EC 3.6.1.35) and H+ pump were in full agreement with the changes of protein abundance. Phosphorylation of PM H+-ATPase and the interaction of PM H+-ATPase and 14-3-3 protein were detected by co-immunoprecipitation analysis. H2 and NO significantly up regulated the phosphorylation of PM H+-ATPase and the interaction of PM H+-ATPase and 14-3-3 protein. Conversely, the stimulation of PM H+-ATPase phosphorylation and protein interaction were significantly diminished by cPTIO. Protein interaction activator fusicoccin (FC) and inhibitor adenosine monophosphate (AMP) of PM H+-ATPase and 14-3-3 were used in this study, and the results showed that FC significantly increased the abundances of PM H+-ATPase and 14-3-3, while AMP showed opposite trends. We further proved the critical roles of PM H+-ATPase and 14-3-3 protein interaction in NO-H2-induced adventitious root formation. Taken together, our results suggested that NO might be involved in H2-induced adventitious rooting by regulating the expression and the interaction of PM H+-ATPase and 14-3-3 protein.


Assuntos
Cucumis sativus/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Óxido Nítrico/farmacologia , ATPases Translocadoras de Prótons/metabolismo , Transdução de Sinais/efeitos dos fármacos , Membrana Celular/enzimologia , Cucumis sativus/enzimologia , Cucumis sativus/crescimento & desenvolvimento , Glicosídeos/metabolismo , Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , ATPases Translocadoras de Prótons/genética
20.
Plant Sci ; 296: 110492, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32540011

RESUMO

Transglutaminases (TGases), mediators of the transamidation of specific proteins by polyamines (PA), play critical roles in PA metabolism in animals, but their functions and regulatory mechanisms are largely unknown in plants. In this study, we demonstrated that TGase from cucumber played a protective role in the regulation of PA metabolism under salt stress. The expression of TGase was induced by salt stress in cucumber. Ectopic overexpression of cucumber TGase in tobacco conferred enhanced tolerance to salt stress based on both external symptoms and membrane integrity. Overexpression lines maintained high levels of PAs under salt stress, suggesting that PAs played a vital role in TGase-induced salt tolerance. In contrast, the levels of Na+ content in the wild-type (WT) plants increased, while they decreased in the overexpression plants. The expression levels of several genes related to ion exchange enhanced, and the Na+/K+ ratio decreased by increased TGase activity under salt stress. The activities of the proton-pump ATPase (H+-ATPase), vacuolar H+-ATPase (V-ATPase) and vacuolar H+-pyrophosphatase (PPase) were higher in the overexpression lines than in WT plants under salt stress. Moreover, the malondialdehyde (MDA) and H2O2 contents were significantly lower in the overexpression lines than in WT plants, accompanied by increased antioxidant enzyme activity. Taken together, these findings demonstrate that TGase plays protective roles in response to salt stress, which may promote plant survival by regulating PA metabolism and the Na+/K+ balance under salt stress.


Assuntos
Nicotiana/genética , Poliaminas/metabolismo , Plantas Tolerantes a Sal/genética , Transglutaminases/metabolismo , Antioxidantes/metabolismo , Clonagem Molecular , Cucumis sativus/enzimologia , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/fisiologia , Expressão Ectópica do Gene , Genes de Plantas/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Potássio/metabolismo , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/fisiologia , Sódio/metabolismo , Nicotiana/metabolismo , Nicotiana/fisiologia , Transglutaminases/genética , Transglutaminases/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...