Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 914
Filtrar
1.
BMC Plant Biol ; 24(1): 564, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879470

RESUMO

BACKGROUND: Three Amino acid Loop Extension (TALE) belongs to the homeobox group of genes that are important constituents of plant systems. The TALE gene family is instrumental not only in growth and development but also plays an essential role in regulating plant response to environmental adversaries. RESULTS: In the present study, we isolated 21 CsTALE genes from the cucumber (Cucumis sativus L.) genome database. Bioinformatics tools were put in place to understand the structural and functional components of the CsTALE gene family. The evolutionary analysis dissected them into seven subclades (KNOX-I, KNOX-II, and BELL-I to BELL-V). The cis-acting elements in the promoter region of CsTALE genes disclosed that they are key regulators of hormonal and stress-related processes. Additionally, the STRING database advocated the concerting role of CsTALE proteins with other key transcription factors potent in plant developmental biology. The CsmiR319 and CsmiR167a-3p targeting the CsTALE15 and CsTALE16, respectively, further assert the importance of the CsTALE gene family posttranscriptional-related processes. Tissue-specific gene expression unfolded the fundamental involvement of CsTALE genes as they were expressed throughout the developmental stages. Under waterlogging stress, the CsTALE17 expressed significantly higher values in WL, WL-NAA, and WL-ETH but not in WL-MeJA-treated samples. CONCLUSIONS: The present study reveals the evolution and functions of the CsTALE gene family in cucumber. Our work will provide a platform that will help future researchers address the issue of waterlogging stress in the Yangtze River Delta.


Assuntos
Cucumis sativus , Regulação da Expressão Gênica de Plantas , Família Multigênica , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Estresse Fisiológico , Cucumis sativus/genética , Cucumis sativus/fisiologia , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Evolução Molecular , Filogenia , Genes de Plantas
2.
Theor Appl Genet ; 137(7): 151, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849610

RESUMO

Dwarfing is an ideal agronomic trait in crop breeding, which can improve lodging resistance and increase crop productivity. In this study, we identified a dwarf mutant cp-3 from an EMS-mutagenized population, which had extremely short internodes, and the cell length and number of internodes were significantly reduced. Meanwhile, exogenous GA3 treatment partially rescued the plant height of the cp-3. Inheritance analysis showed that the cp-3 mutant was regulated via a recessive nuclear locus. A candidate gene, CsERECTA, encoding an LRR receptor-like serine/threonine-protein kinase, was cloned through a map-based cloning strategy. Sequence analysis showed that a nucleotide mutation (C ~ T) in exon 26 of CsERECTA led to premature termination of the protein. Subsequently, two transgenic lines were generated using the CRISPR/Cas9 system, and they showed plant dwarfing. Plant endogenous hormones quantitative and RNA-sequencing analysis revealed that GA3 content and the expression levels of genes related to GA biosynthesis were significantly reduced in Cser knockout mutants. Meanwhile, exogenous GA3 treatment partially rescued the dwarf phenotype of Cser knockout mutants. These findings revealed that CsERECTA controls stem elongation by regulating GA biosynthesis in cucumber.


Assuntos
Cucumis sativus , Regulação da Expressão Gênica de Plantas , Giberelinas , Fenótipo , Proteínas de Plantas , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Genes de Plantas , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/genética , Mutação , Clonagem Molecular
3.
Genes (Basel) ; 15(5)2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38790241

RESUMO

To investigate the role of candidate genes for salt-alkali tolerance in cucumber (Cucumis sativus L.), this study screened CsTAU1 in the glutathione pathway from previous transcriptome data for cloning and functional analysis. Clone cucumber CsTAU1 contains one 675 bp open reading frame, containing one GST-N-Tau domain and one GST-C-Tau domain, and is expressed in cytoplasm. After successfully constructing overexpression vectors of CsTAU1 (+) and CsTAU1 (-), they were transferred into cucumber varieties 'D1909' (high salt alkali resistance) and 'D1604' (low salt alkali resistance) for salt-alkali resistance identification. It was found that under salt-alkali stress, CsTAU1 (+)-overexpressing plants showed strong resistance to salt-alkali stress, while CsTAU1 (-)-overexpressing plants showed the opposite situation. qRT-PCR analysis was performed on other glutathione pathway-related genes in CsTAU1-overexpressing plants. The expression patterns of LOC101219529 and LOC105434443 were the same as CsTAU1, and the introduction of CsTAU1 (+) increased the chlorophyll, α-Naphthylamine oxidation, glutathione S-transferase (GST), and catalase (CAT) content of cucumber. The research results provide a theoretical basis for cultivating salt-alkali-tolerant cucumber varieties.


Assuntos
Clonagem Molecular , Cucumis sativus , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Tolerância ao Sal , Cucumis sativus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tolerância ao Sal/genética , Álcalis/efeitos adversos , Estresse Salino/genética , Estresse Fisiológico/genética , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Plantas Geneticamente Modificadas/genética
4.
Theor Appl Genet ; 137(6): 127, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733416

RESUMO

KEY MESSAGE: Quantitative trait locus analysis identified independent novel loci in cucumbers responsible for resistance to races 0 and 1 of the anthracnose fungal pathogen Colletotrichum orbiculare. Cucumbers have been reported to be vulnerable to Colletotrichum orbiculare, causing anthracnose disease with significant yield loss under favorable conditions. The deployment of a single recessive Cssgr gene in cucumber breeding for anthracnose resistance was effective until a recent report on high-virulent strains infecting cucumbers in Japan conquering the resistance. QTL mapping was conducted to identify the resistance loci in the cucumber accession Ban Kyuri (G100) against C. orbiculare strains 104-T and CcM-1 of pathogenic races 0 and 1, respectively. A single dominant locus An5 was detected in the disease resistance hotspot on chromosome 5 for resistance to 104-T. Resistance to CcM-1 was governed by three loci with additive effects located on chromosomes 2 (An2) and 1 (An1.1 and An1.2). Molecular markers were developed based on variant calling between the corresponding QTL regions in the de novo assembly of the G100 genome and the publicly available cucumber genomes. Multiple backcrossed populations were deployed to fine-map An5 locus and narrow the region to approximately 222 kbp. Accumulation of An2 and An1.1 alleles displayed an adequate resistance to CcM-1 strain. This study provides functional molecular markers for pyramiding resistance loci that confer sufficient resistance against anthracnose in cucumbers.


Assuntos
Mapeamento Cromossômico , Colletotrichum , Cucumis sativus , Resistência à Doença , Doenças das Plantas , Locos de Características Quantitativas , Cucumis sativus/microbiologia , Cucumis sativus/genética , Colletotrichum/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Marcadores Genéticos , Fenótipo , Ligação Genética , Genes de Plantas , Melhoramento Vegetal
5.
Gene ; 923: 148588, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-38763363

RESUMO

Polygalacturonase inhibitor protein (PGIP) restricts fungal growth and colonization and functions in plant immunity. Gray mold in cucumber is a common fungal disease caused by Botrytis cinerea, and is widespread and difficult to control in cucumber (Cucumis sativus L.) production. In this study, Cucumis sativus polygalacturonase-inhibiting protein 2 (CsPGIP2) was found to be upregulated in response to gray mold in cucumber. CsPGIP2 was detected in the endoplasmic reticulum, cell membrane, and cell wall after transient transformation of protoplasts and tobacco. A possible interaction between Botrytis cinerea polygalacturonase 3 (BcPG3) and CsPGIP2 was supported by protein interaction prediction and BiFC analysis. Transgenic Arabidopsis plants expressing CsPGIP2 were constructed and exhibited smaller areas of gray mold infection compared to wild type (WT) plants after simultaneous inoculation. Evans blue dye (EBD) confirmed greater damage for WT plants, with more intense dyeing than for the transgenic Arabidopsis. Interestingly, compared to WT, transgenic Arabidopsis exhibited higher superoxide dismutase (AtSOD1) expression, antioxidant enzyme activities, lignin content, net photosynthetic rate (Pn), and photochemical activity. Our results suggest that CsPGIP2 stimulates a variety of plant defense mechanisms to enhance transgenic Arabidopsis resistance against gray mold disease.


Assuntos
Arabidopsis , Botrytis , Cucumis sativus , Resistência à Doença , Doenças das Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Cucumis sativus/microbiologia , Cucumis sativus/genética , Cucumis sativus/imunologia , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Botrytis/patogenicidade , Resistência à Doença/genética , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Plant Physiol Biochem ; 212: 108681, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776825

RESUMO

Parthenocarpy is one of the most important agronomic traits for fruit yield in cucumbers. However, the precise gene regulation and the posttranscriptional mechanism are elusive. In the presented study, one parthenocarpic line DDX and non-parthenocarpic line ZK were applied to identify the microRNAs (miRNAs) involved in parthenocarpic fruit formation. The differential expressed miRNAs among parthenocarpic fruit of forchlorfenuron (CPPU) treated ZK (ZK-CPPU), pollinated ZK (ZK-P), non-pollinated DDX (DDX-NP) were compared with the non-parthenocarpic fruits of non-pollinated ZK (ZK-NP). It indicated 98 miRNAs exhibited differential expression were identified. Notably, a significant proportion of these miRNAs were enriched in the signal transduction pathway of plant hormones, as identified by the KEGG pathway analysis. qRT-PCR validation indicated that CsmiR156 family was upregulated in the ZK-NP while downregulated in ZK-CPPU, ZK-P, and DDX-NP at 1 day after anthesis. Meanwhile, the opposite trend was observed for CsmiR164a. In ZK-CPPU, ZK-P, and DDX-NP, CsmiRNA156 genes (CsSPL16 and CsARR9-like) were upregulated while CsmiRNA164a genes (CsNAC6, CsCUC1, and CsNAC100) were downregulated. The GUS and dual luciferase assay validated that CsmiR156a inhibited while CsmiR164a induced their target genes' transcription. This study presents novel insights into the involvement of CsmiR156a and CsmiR164a in the CK-mediated posttranscriptional regulation of cucumber parthenocarpy, which will aid future breeding programs.


Assuntos
Cucumis sativus , Citocininas , Regulação da Expressão Gênica de Plantas , MicroRNAs , Cucumis sativus/genética , Cucumis sativus/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Citocininas/metabolismo , Frutas/genética , Frutas/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Compostos de Fenilureia/farmacologia , Piridinas
7.
Plant Mol Biol ; 114(3): 52, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696020

RESUMO

Salt stress is one of the major factors limiting plant growth and productivity. Many studies have shown that serine hydroxymethyltransferase (SHMT) gene play an important role in growth, development and stress response in plants. However, to date, there have been few studies on whether SHMT3 can enhance salt tolerance in plants. Therefore, the effects of overexpression or silencing of CsSHMT3 gene on cucumber seedling growth under salt stress were investigated in this study. The results showed that overexpression of CsSHMT3 gene in cucumber seedlings resulted in a significant increase in chlorophyll content, photosynthetic rate and proline (Pro) content, and antioxidant enzyme activity under salt stress condition; whereas the content of malondialdehyde (MDA), superoxide anion (H2O2), hydrogen peroxide (O2·-) and relative conductivity were significantly decreased when CsSHMT3 gene was overexpressed. However, the content of chlorophyll and Pro, photosynthetic rate, and antioxidant enzyme activity of the silenced CsSHMT3 gene lines under salt stress were significantly reduced, while MDA, H2O2, O2·- content and relative conductivity showed higher level in the silenced CsSHMT3 gene lines. It was further found that the expression of stress-related genes SOD, CAT, SOS1, SOS2, NHX, and HKT was significantly up-regulated by overexpressing CsSHMT3 gene in cucumber seedlings; while stress-related gene expression showed significant decrease in silenced CsSHMT3 gene seedlings under salt stress. This suggests that overexpression of CsSHMT3 gene increased the salt tolerance of cucumber seedlings, while silencing of CsSHMT3 gene decreased the salt tolerance. In conclusion, CsSHMT3 gene might positively regulate salt stress tolerance in cucumber and be involved in regulating antioxidant activity, osmotic adjustment, and photosynthesis under salt stress. KEY MESSAGE: CsSHMT3 gene may positively regulate the expression of osmotic system, photosynthesis, antioxidant system and stress-related genes in cucumber.


Assuntos
Clorofila , Cucumis sativus , Regulação da Expressão Gênica de Plantas , Fotossíntese , Estresse Salino , Tolerância ao Sal , Plântula , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/fisiologia , Cucumis sativus/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Tolerância ao Sal/genética , Estresse Salino/genética , Clorofila/metabolismo , Fotossíntese/genética , Fotossíntese/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Antioxidantes/metabolismo , Malondialdeído/metabolismo , Plantas Geneticamente Modificadas , Inativação Gênica
8.
Plant Cell Physiol ; 65(5): 809-822, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38564325

RESUMO

Drought is the most severe form of stress experienced by plants worldwide. Cucumber is a vegetable crop that requires a large amount of water throughout the growth period. In our previous study, we identified that overexpression of CsHSFA1d could improve cold tolerance and the content of endogenous jasmonic acid in cucumber seedlings. To explore the functional diversities of CsHSFA1d, we treat the transgenic plants under drought conditions. In this study, we found that the heat shock transcription factor HSFA1d (CsHSFA1d) could improve drought stress tolerance in cucumber. CsHSFA1d overexpression increased the expression levels of galactinol synthase (CsGolS3) and raffinose synthase (CsRS) genes, encoding the key enzymes for raffinose family oligosaccharide (RFO) biosynthesis. Furthermore, the lines overexpressing CsHSFA1d showed higher enzymatic activity of GolS and raffinose synthase to increase the content of RFO. Moreover, the CsHSFA1d-overexpression lines showed lower reactive oxygen species (ROS) accumulation and higher ROS-scavenging enzyme activity after drought treatment. The expressions of antioxidant genes CsPOD2, CsAPX1 and CsSOD1 were also upregulated in CsHSFA1d-overexpression lines. The expression levels of stress-responsive genes such as CsRD29A, CsLEA3 and CsP5CS1 were increased in CsHSFA1d-overexpression lines after drought treatment. We conclude that CsHSFA1d directly targets and regulates the expression of CsGolS3 and CsRS to promote the enzymatic activity and accumulation of RFO to increase the tolerance to drought stress. CsHSFA1d also improves ROS-scavenging enzyme activity and gene expression indirectly to reduce drought-induced ROS overaccumulation. This study therefore offers a new gene target to improve drought stress tolerance in cucumber and revealed the underlying mechanism by which CsHSFA1d functions in the drought stress by increasing the content of RFOs and scavenging the excessive accumulation of ROS.


Assuntos
Cucumis sativus , Galactosiltransferases , Regulação da Expressão Gênica de Plantas , Oligossacarídeos , Proteínas de Plantas , Plantas Geneticamente Modificadas , Rafinose , Espécies Reativas de Oxigênio , Cucumis sativus/genética , Cucumis sativus/fisiologia , Cucumis sativus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rafinose/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Oligossacarídeos/metabolismo , Galactosiltransferases/metabolismo , Galactosiltransferases/genética , Secas , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Estresse Fisiológico/genética
9.
PeerJ ; 12: e17162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560464

RESUMO

The cytochrome P450 (CYP450) gene family plays a vital role in basic metabolism, hormone signaling, and enhances plant resistance to stress. Among them, the CYP82 gene family is primarily found in dicots, and they are typically activated in response to various specific environmental stresses. Nevertheless, their roles remain considerably obscure, particularly within the context of cucumber. In the present study, 12 CYP82 subfamily genes were identified in the cucumber genome. Bioinformatics analysis included gene structure, conserved motif, cis-acting promoter element, and so on. Subcellular localization predicted that all CYP82 genes were located in the endoplasmic reticulum. The results of cis element analysis showed that CYP82s may significantly affect the response to stress, hormones, and light exposure. Expression patterns of the CYP82 genes were characterized by mining available RNA-seq data followed by qRT-PCR (quantitative real-time polymerase chain reaction) analysis. Members of CYP82 genes display specific expression profiles in different tissues, and in response to PM and abiotic stresses in this study, the role of CsCYP82D102, a member of the CYP82 gene family, was investigated. The upregulation of CsCYP82D102 expression in response to powdery mildew (PM) infection and treatment with methyl jasmonate (MeJA) or salicylic acid (SA) was demonstrated. Further research found that transgenic cucumber plants overexpressing CsCYP82D102 display heightened resistance against PM. Wild-type (WT) leaves exhibited average lesion areas of approximately 29.7% at 7 dpi upon powdery mildew inoculation. In contrast, the two independent CsCYP82D102 overexpression lines (OE#1 and OE#3) displayed significantly reduced necrotic areas, with average lesion areas of approximately 13.4% and 5.7%. Additionally, this enhanced resistance is associated with elevated expression of genes related to the SA/MeJA signaling pathway in transgenic cucumber plants. This study provides a theoretical basis for further research on the biological functions of the P450 gene in cucumber plants.


Assuntos
Cucumis sativus , Cucumis sativus/genética , Resistência à Doença/genética , Genoma de Planta/genética , Erysiphe/genética , Biologia Computacional
10.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612626

RESUMO

The family of phosphatidylethanolamine-binding proteins (PEBPs) participates in various plant biological processes, mainly flowering regulation and seed germination. In cucurbit crops, several PEBP genes have been recognized to be responsible for flowering time. However, the investigation of PEBP family members across the genomes of cucurbit species has not been reported, and their conservation and divergence in structure and function remain largely unclear. Herein, PEBP genes were identified from seven cucurbit crops and were used to perform a comparative genomics analysis. The cucurbit PEBP proteins could be classified into MFT, FT, TFL, and PEBP clades, and further, the TFL clade was divided into BFT-like, CEN-like, and TFL1-like subclades. The MFT-like, FT-like, and TFL-like proteins were clearly distinguished by a critical amino acid residue at the 85th position of the Arabidopsis FT protein. In gene expression analysis, CsaPEBP1 was highly expressed in flowers, and its expression levels in females and males were 70.5 and 89.2 times higher, respectively, than those in leaves. CsaPEBP5, CsaPEBP6, and CsaPEBP7 were specifically expressed in male flowers, with expression levels 58.1, 17.3, and 15.7 times higher, respectively, than those of leaves. At least five CsaPEBP genes exhibited the highest expression during the later stages of corolla opening. Through clustering of time-series-based RNA-seq data, several potential transcription factors (TFs) interacting with four CsaPEBPs were identified during cucumber corolla opening. Because of the tandem repeats of binding sites in promoters, NF-YB (Csa4G037610) and GATA (Csa7G64580) TFs appeared to be better able to regulate the CsaPEBP2 and CsaPEBP5 genes, respectively. This study would provide helpful information for further investigating the roles of PEBP genes and their interacting TFs in growth and development processes, such as flowering time regulation in cucurbit crops.


Assuntos
Cucumis sativus , Gastrópodes , Feminino , Masculino , Animais , Cucumis sativus/genética , Reprodução , Hibridização Genômica Comparativa , Fatores de Tempo , Produtos Agrícolas , Genômica
11.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673993

RESUMO

Cucumber (Cucumis sativus L.) is a globally prevalent and extensively cultivated vegetable whose yield is significantly influenced by various abiotic stresses, including drought, heat, and salinity. Transcription factors, such as zinc finger-homeodomain proteins (ZHDs), a plant-specific subgroup of Homeobox, play a crucial regulatory role in stress resistance. In this study, we identified 13 CsZHDs distributed across all six cucumber chromosomes except chromosome 7. Phylogenetic analysis classified these genes into five clades (ZHDI-IV and MIF) with different gene structures but similar conserved motifs. Collinearity analysis revealed that members of clades ZHD III, IV, and MIF experienced amplification through segmental duplication events. Additionally, a closer evolutionary relationship was observed between the ZHDs in Cucumis sativus (C. sativus) and Arabidopsis thaliana (A. thaliana) compared to Oryza sativa (O. sativa). Quantitative real-time PCR (qRT-PCR) analysis demonstrated the general expression of CsZHD genes across all tissues, with notable expression in leaf and flower buds. Moreover, most of the CsZHDs, particularly CsZHD9-11, exhibited varying responses to drought, heat, and salt stresses. Virus-induced gene silencing (VIGS) experiments highlighted the potential functions of CsZHD9 and CsZHD10, suggesting their positive regulation of stomatal movement and responsiveness to drought stress. In summary, these findings provide a valuable resource for future analysis of potential mechanisms underlying CsZHD genes in response to stresses.


Assuntos
Cucumis sativus , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Cucumis sativus/genética , Cucumis sativus/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética , Secas , Cromossomos de Plantas/genética , Perfilação da Expressão Gênica
12.
J Integr Plant Biol ; 66(5): 1024-1037, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38578173

RESUMO

Leaves are the main photosynthesis organ that directly determines crop yield and biomass. Dissecting the regulatory mechanism of leaf development is crucial for food security and ecosystem turn-over. Here, we identified the novel function of R2R3-MYB transcription factors CsRAXs in regulating cucumber leaf size and fruiting ability. Csrax5 single mutant exhibited enlarged leaf size and stem diameter, and Csrax1/2/5 triple mutant displayed further enlargement phenotype. Overexpression of CsRAX1 or CsRAX5 gave rise to smaller leaf and thinner stem. The fruiting ability of Csrax1/2/5 plants was significantly enhanced, while that of CsRAX5 overexpression lines was greatly weakened. Similarly, cell number and free auxin level were elevated in mutant plants while decreased in overexpression lines. Biochemical data indicated that CsRAX1/5 directly promoted the expression of auxin glucosyltransferase gene CsUGT74E2. Therefore, our data suggested that CsRAXs function as repressors for leaf size development by promoting auxin glycosylation to decrease free auxin level and cell division in cucumber. Our findings provide new gene targets for cucumber breeding with increased leaf size and crop yield.


Assuntos
Cucumis sativus , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Folhas de Planta , Proteínas de Plantas , Ácidos Indolacéticos/metabolismo , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Glicosilação , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/genética , Mutação/genética
13.
Plant Biol (Stuttg) ; 26(4): 583-591, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38607927

RESUMO

Cucumber blight is a destructive disease. The best way to control this disease is resistance breeding. This study focuses on disease resistance gene mapping and molecular marker development. We used the resistant cucumber, JSH, and susceptible cucumber, B80, as parents to construct F2 populations. Bulked segregant analysis (BSA) combined with specific length amplified fragment sequencing (SLAF-seq) were used, from which we developed cleaved amplified polymorphic sequence (CAPs) markers to map the resistance gene. Resistance in F2 individuals showed a segregation ratio of resistance:susceptibility close to 3:1. The gene in JSH resistant cucumber was mapped to an interval of 9.25 kb, and sequencing results for the three genes in the mapped region revealed three mutations at base sites 225, 302, and 591 in the coding region of Csa5G139130 between JSH and B80, but no mutations in coding regions of Csa5G139140 and Csa5G139150. The mutations caused changes in amino acids 75 and 101 of the protein encoded by Csa5G139130, suggesting that Csa5G139130 is the most likely resistance candidate gene. We developed a molecular marker, CAPs-4, as a closely linked marker for the cucumber blight resistance gene. This is the first report on mapping of a cucumber blight resistance gene and will provideg a useful marker for molecular breeding of cucumber resistance to Phytophthora blight.


Assuntos
Mapeamento Cromossômico , Cucumis sativus , Resistência à Doença , Phytophthora , Doenças das Plantas , Cucumis sativus/genética , Cucumis sativus/microbiologia , Cucumis sativus/imunologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Resistência à Doença/genética , Phytophthora/fisiologia , Genes de Plantas , Marcadores Genéticos
14.
Theor Appl Genet ; 137(5): 114, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678513

RESUMO

KEY MESSAGE: Map-based cloning revealed that a mutation in a highly conserved amino acid of the CsGME gene encoding GDP-mannose 3,5-epimerase, causes the phenotype of little and wrinkled leaves in cucumbers. Leaf size is a critical determinant of plant architecture in cucumbers, yet only a few genes associated with this trait have been mapped or cloned. Here, we identified and characterized a mutant with little and wrinkled leaves, named lwl-1. Genetic analysis revealed that the phenotype of the lwl-1 was controlled by a single recessive gene. Through map-based cloning, the lwl-1 locus was narrowed down to a 12.22-kb region exclusively containing one fully annotated gene CsGME (CsaV3_2G004170). CsGME encodes GDP-mannose 3,5-epimerase, which is involved in the synthesis of ascorbic acid (ASA) and one of the components of pectin, RG-II. Whole-length sequencing of the 12.22 kb DNA fragment revealed the presence of only a non-synonymous mutation located in the sixth exon of CsGME in lwl-1, resulting in an amino acid alteration from Pro363 to Leu363. This mutation was unique among 118 inbred lines from cucumber natural populations. CsGME expression significantly reduced in various organs of lwl-1, accompanied by a significant decrease in ASA and pectin content in leaves. Both CsGME and Csgme proteins were localized to the cytoplasm. The mutant phenotype exhibited partial recovery after the application of exogenous boric acid. Silencing CsGME in cucumber through VIGS confirmed its role as the causal gene for lwl-1. Transcriptome profiling revealed that CsGME greatly affected the expression of genes related to the cell division process and cell plate formation. This study represents the first report to characterize and clone the CsGME in cucumber, indicating its crucial role in regulating leaf size and development.


Assuntos
Carboidratos Epimerases , Mapeamento Cromossômico , Cucumis sativus , Folhas de Planta , Ácido Ascórbico/metabolismo , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Clonagem Molecular , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/enzimologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genes Recessivos , Mutação , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Plant Signal Behav ; 19(1): 2345983, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38686613

RESUMO

The hairy root induction system was used to efficiently investigate gene expression and function in plant root. Cucumber is a significant vegetable crop worldwide, with shallow roots, few lateral roots, and weak root systems, resulting in low nutrient absorption and utilization efficiency. Identifying essential genes related to root development and nutrient absorption is an effective way to improve the growth and development of cucumbers. However, genetic mechanisms underlying cucumber root development have not been explored. Here, we report a novel, rapid, effective hairy root transformation system. Compared to the in vitro cotyledon transformation method, this method shortened the time needed to obtain transgenic roots by 13 days. Furthermore, we combined this root transformation method with CRISPR/Cas9 technology and validated our system by exploring the expression and function of CsMYB36, a pivotal gene associated with root development and nutrient uptake. The hairy root transformation system established in this study provides a powerful method for rapidly identifying essential genes related to root development in cucumber and other horticultural crop species. This advancement holds promise for expediting research on root biology and molecular breeding strategies, contributing to the broader understanding and improvements crop growth and development.


Assuntos
Cucumis sativus , Proteínas de Plantas , Raízes de Plantas , Plantas Geneticamente Modificadas , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Transformação Genética , Sistemas CRISPR-Cas/genética
17.
Plant Physiol ; 195(2): 958-969, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38447074

RESUMO

The fruit neck is an important agronomic trait of cucumber (Cucumis sativus). However, the underlying genes and regulatory mechanisms involved in fruit neck development are poorly understood. We previously identified a cucumber yellow-green peel (ygp) mutant, whose causal gene is MYB DOMAIN PROTEIN 36 (CsMYB36). This study showed that the ygp mutant exhibited a shortened fruit neck and repressed cell expansion in the fruit neck. Further functional analysis showed that CsMYB36 was also a target gene, and its expression was enriched in the fruit neck. Overexpression of CsMYB36 in the ygp mutant rescued shortened fruit necks. Furthermore, transcriptome analysis and reverse transcription quantitative PCR (RT-qPCR) assays revealed that CsMYB36 positively regulates the expression of an expansin-like A3 (CsEXLA3) in the fruit neck, which is essential for cell expansion. Yeast 1-hybrid and dual-luciferase assays revealed that CsMYB36 regulates fruit neck elongation by directly binding to the promoter of CsEXLA3. Collectively, these findings demonstrate that CsMYB36 is an important gene in the regulation of fruit neck length in cucumber plants.


Assuntos
Cucumis sativus , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
18.
Physiol Plant ; 176(2): e14232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450746

RESUMO

Grafting onto pumpkin rootstock is widely applied in cucumber production to improve growth and yield, as well as to overcome soil-borne diseases and enhance resistance to abiotic stresses. In this study, we constructed the cucumber-pumpkin heterografts with the one-cotyledon grafting method, and examined the effects of heterografting on biomass allocation and sugar partitioning, with cucumber and pumpkin self-grafts used as control. Compared with cucumber self-grafts, heterografting onto pumpkin rootstock promoted photosynthesis in cucumber scion, and led to higher sucrose contents in the 1st true leaf (source) and newly emerged leaf (sink). Thereby, the scion part of heterografts accumulated more biomass than cucumber self-grafts. In contrast, when compared to pumpkin self-grafts, grafting with cucumber scion reduced root vigor and biomass but promoted cotyledon growth in pumpkin rootstock. The roots (sink) of heterografts contained less sucrose and hexoses, and showed reduced sucrose synthase (SuSy) and hexokinase (HXK) activities. However, the rootstock cotyledon (source) contained more sucrose and starch, and showed higher activities of HXK, cell-wall invertase (CWIN), and enzymes for starch synthesis and degradation. Furthermore, removal or shade of rootstock cotyledon led to reduced growth of root and scion. Silencing of CmoMEX1a gene in rootstock cotyledon inhibited maltose export and reduced root growth of heterografts. These results indicated that rootstock cotyledon, especially its starch content, played a buffering role in the growth regulation of cucumber-pumpkin heterografts. Taken together, our results provided a major contribution to our understanding of source-sink sugar partitioning and scion-rootstock growth balancing in cucumber-pumpkin heterografts.


Assuntos
Cucumis sativus , Cucurbita , Cucumis sativus/genética , Cucurbita/genética , Xenoenxertos , Cotilédone , Açúcares , Amido , Sacarose
19.
Plant Physiol ; 195(2): 1293-1311, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38428987

RESUMO

In plants, pollen-pistil interactions during pollination and fertilization mediate pollen hydration and germination, pollen tube growth, and seed set and development. Cell wall invertases (CWINs) help provide the carbohydrates for pollen development; however, their roles in pollination and fertilization have not been well established. In cucumber (Cucumis sativus), CsCWIN3 showed the highest expression in flowers, and we further examined CsCWIN3 for functions during pollination to seed set. Both CsCWIN3 transcript and CsCWIN3 protein exhibited similar expression patterns in the sepals, petals, stamen filaments, anther tapetum, and pollen of male flowers, as well as in the stigma, style, transmitting tract, and ovule funiculus of female flowers. Notably, repression of CsCWIN3 in cucumber did not affect the formation of parthenocarpic fruit but resulted in an arrested growth of stigma integuments in female flowers and a partially delayed dehiscence of anthers with decreased pollen viability in male flowers. Consequently, the pollen tube grew poorly in the gynoecia after pollination. In addition, CsCWIN3-RNA interference plants also showed affected seed development. Considering that sugar transporters could function in cucumber fecundity, we highlight the role of CsCWIN3 and a potential close collaboration between CWIN and sugar transporters in these processes. Overall, we used molecular and physiological analyses to determine the CsCWIN3-mediated metabolism during pollen formation, pollen tube growth, and plant fecundity. CsCWIN3 has essential roles from pollination and fertilization to seed set but not parthenocarpic fruit development in cucumber.


Assuntos
Parede Celular , Cucumis sativus , Proteínas de Plantas , Polinização , Cucumis sativus/genética , Cucumis sativus/fisiologia , Cucumis sativus/enzimologia , Cucumis sativus/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Açúcares/metabolismo , beta-Frutofuranosidase/metabolismo , beta-Frutofuranosidase/genética , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Flores/genética , Flores/fisiologia , Flores/crescimento & desenvolvimento , Fertilização , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/genética , Tubo Polínico/fisiologia
20.
Plant Physiol ; 195(2): 970-985, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38478469

RESUMO

The Xishuangbanna (XIS) cucumber (Cucumis sativus var. xishuangbannanesis) is a semiwild variety that has many distinct agronomic traits. Here, long reads generated by Nanopore sequencing technology helped assembling a high-quality genome (contig N50 = 8.7 Mb) of landrace XIS49. A total of 10,036 structural/sequence variations (SVs) were identified when comparing with Chinese Long (CL), and known SVs controlling spines, tubercles, and carpel number were confirmed in XIS49 genome. Two QTLs of hypocotyl elongation under low light, SH3.1 and SH6.1, were fine-mapped using introgression lines (donor parent, XIS49; recurrent parent, CL). SH3.1 encodes a red-light receptor Phytochrome B (PhyB, CsaV3_3G015190). A ∼4 kb region with large deletion and highly divergent regions (HDRs) were identified in the promoter of the PhyB gene in XIS49. Loss of function of this PhyB caused a super-long hypocotyl phenotype. SH6.1 encodes a CCCH-type zinc finger protein FRIGIDA-ESSENTIAL LIKE (FEL, CsaV3_6G050300). FEL negatively regulated hypocotyl elongation but it was transcriptionally suppressed by long terminal repeats retrotransposon insertion in CL cucumber. Mechanistically, FEL physically binds to the promoter of CONSTITUTIVE PHOTOMORPHOGENIC 1a (COP1a), regulating the expression of COP1a and the downstream hypocotyl elongation. These above results demonstrate the genetic mechanism of cucumber hypocotyl elongation under low light.


Assuntos
Cucumis sativus , Genoma de Planta , Hipocótilo , Locos de Características Quantitativas , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/genética , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Locos de Características Quantitativas/genética , Fitocromo B/genética , Fitocromo B/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...