Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Biomolecules ; 11(8)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34439770

RESUMO

Climate change is a pressing matter of anthropogenic nature to which agriculture contributes by abusing production inputs such as inorganic fertilizers and fertigation water, thus degrading land and water sources. Moreover, as the increase in the demand of food in 2050 is estimated to be 25 to 70% more than what is currently produced today, a sustainable intensification of agriculture is needed. Biostimulant substances are products that the EU states work by promoting growth, resistance to plant abiotic stress, and increasing produce quality, and may be a valid strategy to enhance sustainable agricultural practice. Presented in this review is a comprehensive look at the scientific literature regarding the widely used and EU-sanctioned biostimulant substances categories of silicon, seaweed extracts, protein hydrolysates, and humic substances. Starting from their origin, the modulation of plants' hormonal networks, physiology, and stress defense systems, their in vivo effects are discussed on some of the most prominent vegetable species of the popular plant groupings of cucurbits, leafy greens, and nightshades. The review concludes by identifying several research areas relevant to biostimulant substances to exploit and enhance the biostimulant action of these substances and signaling molecules in horticulture.


Assuntos
Agricultura/métodos , Agricultura/tendências , Cucurbita/crescimento & desenvolvimento , Fertilizantes , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Solanum/efeitos dos fármacos , Verduras , Mudança Climática , Cucurbita/efeitos dos fármacos , Substâncias Húmicas , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Hidrolisados de Proteína , Espécies Reativas de Oxigênio , Alga Marinha , Silicatos , Silício/química
2.
Molecules ; 26(8)2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919567

RESUMO

Essential oils are gaining interest as environmentally friendly alternatives to synthetic fungicides for management of seedborne pathogens. Here, seven essential oils were initially tested in vivo for disinfection of squash seeds (Cucurbita maxima) naturally contaminated by Stagonosporopsis cucurbitacearum, Alternaria alternata, Fusarium fujikuro, Fusarium solani, Paramyrothecium roridum, Albifimbria verrucaria, Curvularia spicifera, and Rhizopus stolonifer. The seeds were treated with essential oils from Cymbopogon citratus, Lavandula dentata, Lavandula hybrida, Melaleuca alternifolia, Laurus nobilis, and Origanum majorana (#1 and #2). Incidence of S. cucurbitacearum was reduced, representing a range between 67.0% in L. nobilis to 84.4% in O. majorana #2. Treatments at 0.5 mg/mL essential oils did not affect seed germination, although radicles were shorter than controls, except with C. citratus and O. majorana #1 essential oils. Four days after seeding, seedling emergence was 20%, 30%, and 10% for control seeds and seeds treated with C. citratus essential oil (0.5 mg/mL) and fungicides (25 g/L difenoconazole plus 25 g/L fludioxonil). S. cucurbitacearum incidence was reduced by ~40% for plantlets from seeds treated with C. citratus essential oil. These data show the effectiveness of this essential oil to control the transmission of S. cucurbitacearum from seeds to plantlets, and thus define their potential use for seed decontamination in integrated pest management and organic agriculture.


Assuntos
Cucurbita/microbiologia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Sementes/efeitos dos fármacos , Alternaria/efeitos dos fármacos , Alternaria/patogenicidade , Ascomicetos/patogenicidade , Cucurbita/efeitos dos fármacos , Curvularia/efeitos dos fármacos , Curvularia/patogenicidade , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Fusarium/patogenicidade , Hypocreales/efeitos dos fármacos , Hypocreales/patogenicidade , Óleos Voláteis/química , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Óleos de Plantas/química , Rhizopus/efeitos dos fármacos , Rhizopus/patogenicidade , Sementes/microbiologia
3.
J Food Sci ; 86(5): 2035-2044, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33876846

RESUMO

To improve fresh-cut produce quality and shelf life, 0.5% or 1.0% MicroGARD® 730 (MG) as a natural alternative to synthetic chemical preservatives, 2.5% NatureSeal® (NS) product (vitamin/mineral-based blends), 0.5% MG combined with 2.5% NS, and 1% MG combined with 2.5% NS were used to treat fresh-cut butternut squash (Cucurbita moschata). The 240 g samples were put into food grade bags and stored at 4 or 7 °C. Microbial population, including aerobic plate counts (APCs), yeast and molds, total coliforms, and quality parameters, including head space O2 /CO2 concentration in package, pH, soluble solids, color, and conductivity, were evaluated after 0, 3, 6, 9, 12, and 20 days of storage. Results showed that after 6 days of storage at 7 °C, APC of check and control samples reached to 2.6 × 108 and 1.5 × 107 CFU/g, respectively; while they were kept at 104 CFU/g (3 to 4 log reduction) in the squash samples treated with 0.5% or 1% MG combined with NS at 7 °C. Similar results were found on squash samples stored at 4 °C for 9 days. The cut squash treated with MG combined with NS had APC ≤ 107 CFU/g at 4 °C for about 20 days compared to 9 days in controls or 0.5% MG-treated samples, and 12 days in 1% MG-treated or NS-treated samples, respectively. Considering overall quality and extended shelf life, MG combined with NS was recommended to apply to cut squashes stored at 4 °C. PRACTICAL APPLICATION: This research provided useful information and practical treatment application for developing fresh-cut produce with good quality and extended shelf life up to 20 days at 4 °C.


Assuntos
Anti-Infecciosos/farmacologia , Cucurbita/química , Filmes Comestíveis/estatística & dados numéricos , Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Fungos/efeitos dos fármacos , Contagem de Colônia Microbiana , Cucurbita/efeitos dos fármacos
4.
Plant J ; 105(3): 580-599, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33119149

RESUMO

Floral nectar is a sugary solution produced by nectaries to attract and reward pollinators. Nectar metabolites, such as sugars, are synthesized within the nectary during secretion from both pre-stored and direct phloem-derived precursors. In addition to sugars, nectars contain nitrogenous compounds such as amino acids; however, little is known about the role(s) of nitrogen (N) compounds in nectary function. In this study, we investigated N metabolism in Cucurbita pepo (squash) floral nectaries in order to understand how various N-containing compounds are produced and determine the role of N metabolism in nectar secretion. The expression and activity of key enzymes involved in primary N assimilation, including nitrate reductase (NR) and alanine aminotransferase (AlaAT), were induced during secretion in C. pepo nectaries. Alanine (Ala) accumulated to about 35% of total amino acids in nectaries and nectar during peak secretion; however, alteration of vascular nitrate supply had no impact on Ala accumulation during secretion, suggesting that nectar(y) amino acids are produced by precursors other than nitrate. In addition, nitric oxide (NO) is produced from nitrate and nitrite, at least partially by NR, in nectaries and nectar. Hypoxia-related processes are induced in nectaries during secretion, including lactic acid and ethanolic fermentation. Finally, treatments that alter nitrate supply affect levels of hypoxic metabolites, nectar volume and nectar sugar composition. The induction of N metabolism in C. pepo nectaries thus plays an important role in the synthesis and secretion of nectar sugar.


Assuntos
Alanina/biossíntese , Cucurbita/metabolismo , Óxido Nítrico/metabolismo , Néctar de Plantas/metabolismo , Alanina Transaminase/genética , Alanina Transaminase/metabolismo , Aminoácidos/metabolismo , Cucurbita/efeitos dos fármacos , Cucurbita/fisiologia , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Hipóxia , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Nitratos/farmacologia , Nitrogênio/metabolismo , Néctar de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/fisiologia , Açúcares/metabolismo
5.
Sci Rep ; 10(1): 3354, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32098979

RESUMO

Powdery mildew (PM) caused by Podosphaera xanthii is one of the most important courgette diseases with high yield losses and is currently controlled by fungicides and sulphur applications in conventional and organic production. Plant derived elicitors/inducers of resistance are natural compounds that induce resistance to pathogen attack and promote a faster and/or more robust activation of plant defense responses. Giant knotweed (Reynoutria sachalinensis, RS) extract is a known elicitor of plant defenses but its mode of action remains elusive. The aim of this study was to investigate the mechanisms of foliar RS applications and how these affect PM severity and crop performance when used alone or in combination with genetic resistance. RS foliar treatments significantly reduced conidial germination and PM severity on both an intermediate resistance (IR) and a susceptible (S) genotype. RS application triggered plant defense responses, which induced the formation of callose papillae, hydrogen peroxide accumulation and the Salicylic acid (SA) - dependent pathway. Increased SA production was detected along with increased p-coumaric and caffeic acid concentrations. These findings clearly indicate that RS elicits plant defenses notably as a consequence of SA pathway induction.


Assuntos
Cucurbita/genética , Doenças das Plantas/genética , Extratos Vegetais/farmacologia , Polygonum/química , Ascomicetos/patogenicidade , Cucurbita/efeitos dos fármacos , Cucurbita/crescimento & desenvolvimento , Cucurbita/microbiologia , Fungicidas Industriais/farmacologia , Genótipo , Glucanos/metabolismo , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas/microbiologia , Extratos Vegetais/química , Ácido Salicílico/metabolismo
6.
Environ Sci Pollut Res Int ; 26(31): 31822-31833, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31487012

RESUMO

Remediation of heavy metal-contaminated soils is essential for safe agricultural or urban land use, and phytoremediation is among the most effective methods. The success of phytoremediation relies on the size of the plant biomass and bioavailability of the metal for plant uptake. This research was carried out to determine the effect of Ethylenediaminetetraacetic acid (EDTA) ligand and Cu-resistant plant growth-promoting rhizobacteria (PGPR) on phytoremediation efficiency of selected plants as well as fractionation and bioavailability of copper (Cu) in a contaminated soil. The test conditions included three plant species (maize: Zea mays L., sunflower: Helianthus annuus L., and pumpkin: Cucurbita pepo L.) and six treatments, comprising two PGPR strains (Pseudomonas cedrina K4 and Stenotrophomonas sp. A22), two PGPR strains with EDTA, EDTA, and control (without PGPR and EDTA). The combination of EDTA and PGPR enhanced the Cu concentration in both shoot and root tissues and increased the plant biomass. The Cu specific uptake was at a maximum level in the shoots of pumpkin plants when treated with the PGPR strain K4 + EDTA (202 µg pot-1), and the minimum amount of Cu was recorded for sunflower with no PGPR or EDTA addition (29.6 µg pot-1). The result of the PGPR-EDTA treatments showed that the combined application of EDTA and PGPR increased the shoot Cu-specific uptake approximately fourfold in pumpkin. Pumpkin with the highest shoot Cu specific uptake and maize with the highest root Cu specific uptake were the most effective plants in phytoextraction and phytostabilization, respectively. The effectiveness of different PGPR-EDTA treatments in increasing Cu specific uptake by crop plants was assessed by measuring the amount of Cu extracted from the rhizosphere soil adhering to the roots of crop species, by the use of the single extractants Diethylenetriamine pentaacetic acid (DTPA), H2O, NH4NO3, and NH4OAc. PGPR-EDTA treatments increased the amount of water-extractable Cu from rhizosphere soils more than ten times that of the control. The combined application of the EDTA and PGPR reduced the carbonated Fe and Mn oxide-bound Cu in the contaminated soil, and increased the soluble and exchangeable concentration of Cu. Pumpkin, with high shoot biomass and the highest shoot Cu specific uptake was found to be the most effective field crop in phytoextraction of Cu from the contaminated soil. The results of this pot study demonstrated that the EDTA+PGPR treatment could play an important role in increasing the Cu bioavailability and specific uptake by plants, and thus increasing the phytoremediation efficiency of plants in Cu-contaminated areas.


Assuntos
Biodegradação Ambiental/efeitos dos fármacos , Cobre/toxicidade , Ácido Edético/farmacologia , Pseudomonas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Inoculantes Agrícolas , Disponibilidade Biológica , Biomassa , Cobre/análise , Cobre/farmacocinética , Cucurbita/efeitos dos fármacos , Cucurbita/microbiologia , Helianthus/efeitos dos fármacos , Helianthus/microbiologia , Brotos de Planta/efeitos dos fármacos , Pseudomonas/fisiologia , Rizosfera , Poluentes do Solo/farmacocinética , Zea mays/efeitos dos fármacos , Zea mays/microbiologia
7.
J Exp Bot ; 70(20): 5879-5893, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31290978

RESUMO

Potassium (K+) is a critical determinant of salinity tolerance, and H2O2 has been recognized as an important signaling molecule that mediates many physiological responses. However, the details of how H2O2 signaling regulates K+ uptake in the root under salt stress remain elusive. In this study, salt-sensitive cucumber and salt-tolerant pumpkin which belong to the same family, Cucurbitaceae, were used to answer the above question. We show that higher salt tolerance in pumpkin was related to its superior ability for K+ uptake and higher H2O2 accumulation in the root apex. Transcriptome analysis showed that salinity induced 5816 (3005 up- and 2811 down-) and 4679 (3965 up- and 714 down-) differentially expressed genes (DEGs) in cucumber and pumpkin, respectively. DEGs encoding NADPH oxidase (respiratory burst oxidase homolog D; RBOHD), 14-3-3 protein (GRF12), plasma membrane H+-ATPase (AHA1), and potassium transporter (HAK5) showed higher expression in pumpkin than in cucumber under salinity stress. Treatment with the NADPH oxidase inhibitor diphenylene iodonium resulted in lower RBOHD, GRF12, AHA1, and HAK5 expression, reduced plasma membrane H+-ATPase activity, and lower K+ uptake, leading to a loss of the salinity tolerance trait in pumpkin. The opposite results were obtained when the plants were pre-treated with exogenous H2O2. Knocking out of RBOHD in pumpkin by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9] editing of coding sequences resulted in lower root apex H2O2 and K+ content and GRF12, AHA1, and HAK5 expression, ultimately resulting in a salt-sensitive phenotype. However, ectopic expression of pumpkin RBOHD in Arabidopsis led to the opposite effect. Taken together, this study shows that RBOHD-dependent H2O2 signaling in the root apex is important for pumpkin salt tolerance and suggests a novel mechanism that confers this trait, namely RBOHD-mediated transcriptional and post-translational activation of plasma membrane H+-ATPase operating upstream of HAK5 K+ uptake transporters.


Assuntos
Membrana Celular/metabolismo , Cucurbitaceae/metabolismo , Potássio/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Membrana Celular/efeitos dos fármacos , Cucurbita/efeitos dos fármacos , Cucurbita/metabolismo , Cucurbitaceae/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Oniocompostos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia
8.
Plant Physiol Biochem ; 139: 56-65, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30878838

RESUMO

This study investigates the effect of SPIONs (superparamagnetic iron oxide nanoparticles, ∼12.5 nm in size) on summer squash plant (Cucurbita pepo) in the presence and absence of supplementary iron (Fe(II)-EDTA). The plants were grown in nutrient solution with different iron sources: (i) Fe(II)-EDTA, (ii) without Fe(II)-EDTA (iii) SPIONs only, and (iv) Fe(II)-EDTA with SPIONs. Plant growth and development were assessed after 20 days of soaking by measuring phenological parameters such as plant biomass, chlorophyll content, amount of carotenoids, and the catalase enzyme activity. Transmission electron microscopy, inductively coupled plasma atomic emission spectroscopy, X-ray diffraction, and vibrating sample magnetometer methods were used to detect uptake and translocation of SPIONs in plant tissues. Our results showed that SPIONs treatment (without Fe(II)-EDTA) caused growth retardation and decreased the plant biomass and chlorophyll content. Hence, they are not efficient sources to compensate for iron demand of squash plant. Electron microscopy observations, magnetization and elemental analyses revealed that SPIONs are taken-up by plant roots but not translocate to upper organs. In roots, SPIONs use a symplastic route for intercellular transfer. These findings suggest that as an iron source, SPIONs alone are not efficient for plant growth, but can contribute it together with Fe(II)-EDTA.


Assuntos
Cucurbita/efeitos dos fármacos , Ácido Edético/farmacologia , Compostos Ferrosos/farmacologia , Nanopartículas de Magnetita , Carotenoides/metabolismo , Catalase/metabolismo , Clorofila/metabolismo , Cucurbita/crescimento & desenvolvimento , Cucurbita/fisiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo
9.
Sci Total Environ ; 665: 100-106, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30772537

RESUMO

Numerous studies on short term effects of copper-based nanomaterials on plants have been published, however investigations with plants grown in a complex soil medium are lacking. In this study Grey Zucchini (Cucurbita pepo) was grown in an environmental growth chamber using a 1:1 (v/v) potting mix native soil mixture amended with Kocide 3000, nCuO, bCuO, or Cu NPs. After 3 weeks Cu concentrations in the root, stem, and leaves of treated plants were significantly higher than control plants. This increase in Cu concentration did not adversely affect plant growth or chlorophyll production. The activity ascorbate peroxidase (APX) in the roots tissues of plants treated with Kocide 3000, nCuO, and bCuO decreased by at least 45%. Catalase (CAT) activity in root tissues of plants treated with 50 mg/kg of Cu NP decreased by 77%, while those treated at 200 mg/kg were reduced by 80%, compared to controls. The activity of APX and CAT in the leaves of all treated plants remained similar to control plants. Based on the endpoints used in this study, with the exception of a decrease in the accumulation of Zn and B in the roots, the exposure of zucchini to the tested copper compounds resulted in no negative effects.


Assuntos
Cobre/toxicidade , Cucurbita/fisiologia , Nanopartículas Metálicas/toxicidade , Poluentes do Solo/toxicidade , Cobre/metabolismo , Cucurbita/efeitos dos fármacos , Nanopartículas Metálicas/análise , Poluentes do Solo/metabolismo
10.
Plant Physiol Biochem ; 136: 188-195, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30685698

RESUMO

This work examines the effect of a treatment with 1 mM of γ-aminobutyric acid (GABA) on zucchini fruit during postharvest cold storage. Specifically, the effect of GABA on postharvest quality was measured, as well as its implication in the GABA shunt and other related metabolic pathways. The treatments were performed in Sinatra, a variety of zucchini highly sensitive to low-temperature storage. The application of GABA improved the quality of zucchini fruit stored at 4 °C, with a reduction of chilling-injury index, weight loss, and cell death, as well as a lower rate of electrolyte leakage. GABA content was significantly higher in the treated fruit than in the control fruit at all times analyzed. At the end of the storage period, GABA-treated fruit had higher contents of both proline and putrescine. The catabolism of this polyamine was not affected by exogenous GABA. Also, over the long term, the treatment induced the GABA shunt by increasing the activities of the enzymes GABA transaminase (GABA-T) and glutamate decarboxylase (GAD). GABA-treated fruit contained higher levels of fumarate and malate than did non-treated fruit, as well as higher ATP and NADH contents. These results imply that the GABA shunt is involved in providing metabolites to produce energy, reduce power, and help the fruit to cope with cold stress over the long term.


Assuntos
Cucurbita/efeitos dos fármacos , Armazenamento de Alimentos , Frutas/efeitos dos fármacos , 4-Aminobutirato Transaminase/metabolismo , Trifosfato de Adenosina/metabolismo , Alanina/metabolismo , Amina Oxidase (contendo Cobre)/metabolismo , Morte Celular/efeitos dos fármacos , Temperatura Baixa , Cucurbita/metabolismo , Armazenamento de Alimentos/métodos , Frutas/metabolismo , Fumaratos/metabolismo , Glutamato Descarboxilase/metabolismo , Ácido Glutâmico/metabolismo , Malatos/metabolismo , NAD/metabolismo , Prolina/metabolismo , Putrescina/metabolismo , Ácido gama-Aminobutírico/farmacologia
11.
Acta Biol Hung ; 69(2): 182-196, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29888670

RESUMO

Brassinosteroids (BRs) are considered to possess protective activity in plants exposed to various stresses. The present study was conducted to evaluate the effects of 24-epibrassinolide (EBL) on salt stressed summer squash cv. Eskandrani seedlings, whether it can alleviate the deleterious effects of salt stress in growing seedlings or not. For this, summer squash seeds were germinated in solidified half strength MS (Murashige and Skoog) medium supplemented with different concentrations and combinations of EBL (0, 5, 10 and 20 µM) and NaCl (0, 50, 100 and 150 mM). The different concentrations (5, 10, 20 µM) of EBL significantly increased germination percentage and seedling growth capacity and the greatest increase was observed at 10 µM EBL. EBL application significantly increased the contents of photosynthetic pigments, the relative water content and the uptake of K and Ca. However, the different concentrations (50, 100 and 150 mM) of NaCl significantly decreased the above-mentioned attributes. The different concentrations (50, 100 and 150 mM) of NaCl significantly increased the electrolyte leakage, the lipid peroxidation and the Na uptake, but the interaction between EBL and NaCl significantly decreased these parameters. The results of this study proved that the application of 24-epibrassinolide to growing squash seedlings under salt stress conditions reduced the deleterious effects of salt stress and increased the tolerance of seedlings to its detrimental effects.


Assuntos
Brassinosteroides/farmacologia , Cucurbita/efeitos dos fármacos , Germinação/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Cloreto de Sódio/farmacologia , Esteroides Heterocíclicos/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Corantes/metabolismo , Cucurbita/crescimento & desenvolvimento , Cucurbita/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
12.
Ecotoxicol Environ Saf ; 147: 151-156, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28841531

RESUMO

Phytoremediation is a low cost technology based on the use of plants to remove a wide range of pollutants from the environment, including the insecticide DDT. However, some pollutants are known to enhance generation of reactive oxygen species (ROS), which can generate toxic effects on plants affecting the phytoremediation efficiency. This study aims to analyze the potential use of antioxidant responses as a measure of tolerance to select plants for phytoremediation purposes. Tomato and zucchini plants were grown for 15 days in soils contaminated with DDTs (DDT + DDE + DDD). Protein content, glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and catalase (CAT) activities were measured in plant tissues. Exposure to DDTs did not affect protein content or CAT activity in any of the species. GST, GR and GPx activity showed different responses in exposed and control tomato plants. After DDTs exposure, tomato showed increased GR and GPX activity in stems and leaves, respectively, and a decrease in the GST activity in roots. As no effects were observed in zucchini, results suggest different susceptibility and/or defense mechanisms involved after pesticide exposure. Finally, both species differed also in terms of DDTs uptake and translocation. The knowledge about antioxidant responses induced by pesticides exposure could be helpful for planning phytoremediation strategies and for the selection of tolerant species according to particular scenarios.


Assuntos
Antioxidantes/metabolismo , Cucurbita/efeitos dos fármacos , DDT/toxicidade , Poluentes do Solo/toxicidade , Solanum lycopersicum/efeitos dos fármacos , Biodegradação Ambiental , Cucurbita/enzimologia , DDT/metabolismo , Solanum lycopersicum/enzimologia , Solo/química , Poluentes do Solo/metabolismo
13.
Environ Toxicol Chem ; 37(4): 1122-1130, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29193285

RESUMO

Since the detection of active pharmaceutical ingredients (APIs) in various environmental media, research has explored the potential uptake and toxicity of these chemicals to species inhabiting these matrices. Specifically, pharmaceuticals, including the antiepileptic API carbamazepine (CBZ), are taken up from soil by a range of plants. Many short-term studies have also suggested that certain APIs induce toxicity in plants. However, the effects of APIs on fruiting plants remain relatively unexplored. The present study investigated the uptake, bioaccumulation, and toxicity of CBZ in Cucurbita pepo (zucchini) from seed to full maturity across a range of CBZ exposure concentrations in soil (0.1-20 mg/kg). Results of biomass, chlorophyll, starch and total nitrogen (N) concentration in C. pepo indicated toxicity at soil concentrations of ≥10 mg/kg. There were clear visual indications of increasing toxicity on leaves, including chlorosis and necrosis, from soil concentrations of 1 up to 20 mg/kg. The present study also revealed novel insights into the effect of CBZ accumulation on C. pepo fruiting: female C. pepo flowers were unable to set fruit when leaf concentrations were ≥14 mg/kg. These findings may have implications for future agricultural productivity in areas where reclaimed wastewater containing APIs is a source of irrigation. Detectable CBZ concentrations were found in edible C. pepo fruit, indicating the possibility of trophic transfer. Environ Toxicol Chem 2018;37:1122-1130. © 2017 SETAC.


Assuntos
Carbamazepina/metabolismo , Carbamazepina/toxicidade , Cucurbita/metabolismo , Solo/química , Testes de Toxicidade , Biomassa , Carbamazepina/química , Clorofila/análise , Cucurbita/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Amido/análise
14.
Ecotoxicol Environ Saf ; 142: 274-283, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28433592

RESUMO

The rapid increase in the production and application of various types of nanomaterials increases the possibility of their presence in total environment, which subsequently raises concerns about their potential threats to the first trophic level of organisms, specifically under varying environmental constraints. In this work, seeds of Cucurbita pepo L. were cultured in MS basal medium exposed to multi-walled carbon nanotubes (MWCNTs) at different concentrations (0, 125, 250, 500 and 1000µgmL-1) under two levels of water potential, well-watered (0MPa) and water stress (-1.5MPa) induced by polyethylene glycol (PEG 6000) for 14 days. Seeds exposed to MWCNTs showed reduction in germination percentage, root and shoot length, biomass accumulation and vigor index in a dose-dependent manner. However, seedlings germinated in MWCNTs-fortified media had significantly lower germination and growth attributes than those of control under water stress conditions. This happened due to increased oxidative injury indices including hydrogen peroxide (H2O2), and malondialdehyde (MDA) contents, as well as electrolyte leakage index (ELI) of tissues. The impaired morpho-physiological and biochemical processes of seedlings exposed to different concentrations of MWCNTs under both PEG-induced stress and non-stress growing conditions were consequence of changes in the activation of various cellular antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (POD). Taken together, our findings reveal that MWCNTs played negative role on seed germination and subsequent growth of C. pepo L. seedlings under both levels of water potential.


Assuntos
Antioxidantes/metabolismo , Cucurbita/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Água/metabolismo , Catalase/metabolismo , Cucurbita/crescimento & desenvolvimento , Cucurbita/metabolismo , Desidratação/metabolismo , Relação Dose-Resposta a Droga , Germinação/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Nanotubos de Carbono/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Poluentes do Solo/química , Superóxido Dismutase/metabolismo
15.
Rev. cuba. plantas med ; 22(1)ene.-mar. 2017. ilus, tab
Artigo em Espanhol | LILACS, CUMED | ID: biblio-901504

RESUMO

Introduction: Cucurbita moschata Duchesne (ahuyama) is grown across America as well as in the Middle East and Europe. It has been used as alternative medicine since ancient times. In the northern section of the department of Bolívar, Colombia, the plant is used by peasants to treat skin infections, hence our interest in conducting this study. Objective: Evaluate the antibacterial activity of total extract from leaves ofC. moschata against Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Methods: Fresh leaves of C. moschata were classified taxonomically using standard methods. The leaves were dried in an oven and pulverized in a blade mill. Extraction was performed by cold solid-liquid percolation and concentration in a rotary evaporator. Antibacterial activity of the ethanolic and hexanic extracts was evaluated in vitro against methicillin-resistant Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae, using the minimum inhibitory concentration (MIC) method, in compliance with guidelines from the Clinical and Laboratory Standards Institute (CLSI). Results: The hexanic extract caused significant inhibition from dilution 0.16 µg/mL for S. aureus strain ATCC 43300, and from dilution 19.5 µg/mL for strain ATCC 25923 (MSSA). The ethanolic and hexanic extracts significantly inhibited the growth of the clinical E. coli strain, whereas no significant inhibition was observed for K. pneumoniae at any of the concentrations tested. Conclusions: For the first time it was shown that the total hexanic extract of leaves of C. moschata had the greatest inhibition power against clinical strains of S. aureus and E. coli. The antimicrobial potential of this native species from the Colombian Caribbean has been recognized, and it is recommended to conduct assays with a larger number of human pathogens(AU)


Introducción: Cucurbita moschata Duchesne (Ahuyama) es cultivada en toda América, así como en Medio Oriente y Europa. Es utilizada desde la antigüedad como medicina alternativa. En la zona norte del departamento de Bolívar-Colombia es empleada por los campesinos para tratar infecciones en la piel, lo que generó el interés por desarrollar esta investigación. Objetivo: evaluar la actividad antibacteriana del extracto total de hojas de C. moschata frente a Staphylococcus aureus, Klebsiella pneumoniae y Escherichia coli. Métodos: hojas frescas de C. moschata fueron clasificadas taxonómicamente de acuerdo a métodos estándares. La obtención de los extractos se realizó por secado en horno, pulverización en molino de cuchilla, extracción por percolación sólido-líquido en frío y concentración en evaporador rotatorio. La actividad antibacteriana de los extractos etanólicos y hexánicos se evaluó in vitro frente a Staphylococcus aureus meticilino resistente, Escherichia coli y Klebsiella pneumoniae, mediante el método de Concentración Inhibitoria Mínima (CIM), siguiendo los lineamientos establecidos por Clinical and Laboratory Standards Institute (CLSI). Resultados: el extracto hexánico generó inhibición significativa desde la dilución 0,16 µg/mL para la cepa de S. aureus ATCC 43300. Para la cepa ATCC 25923 (MSSA) el extracto hexánico generó inhibición significativa desde la dilución 19,5 µg/mL. Los extractos etanólico y hexánico inhibieron significativamente el crecimiento de la cepa clínica de E. coli., mientras que para K. pneumoniae no hubo inhibición significativa en ninguna de las concentraciones evaluadas. Conclusiones: se demostró por primera vez que el extracto hexánico total de hojas de C. moschata tuvo el mayor poder de inhibición frente a las cepas clínicas de S. aureus y E. coli. Se reconoce el potencial antimicrobiano de esta especie autóctona de la costa del Caribe colombiano y se recomienda realizar ensayos en un número mayor de patógenos humanos(AU)


Assuntos
Humanos , Colômbia/etnologia , Cucurbita/efeitos dos fármacos , Preparações de Plantas/uso terapêutico , Antibacterianos/uso terapêutico
16.
Plant Physiol Biochem ; 110: 147-157, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27288265

RESUMO

Biochar is seeing increased usage as an amendment in agricultural soils but the significance of nanoscale interactions between this additive and engineered nanoparticles (ENP) remains unknown. Corn, lettuce, soybean and zucchini were grown for 28 d in two different soils (agricultural, residential) amended with 0-2000 mg engineered nanoparticle (ENP) CeO2 kg-1 and biochar (350 °C or 600 °C) at application rates of 0-5% (w/w). At harvest, plants were analyzed for biomass, Ce content, chlorophyll and lipid peroxidation. Biomass from the four species grown in residential soil varied with species and biochar type. However, biomass in the agricultural soil amended with biochar 600 °C was largely unaffected. Biochar co-exposure had minimal impact on Ce accumulation, with reduced or increased Ce content occurring at the highest (5%) biochar level. Soil-specific and biochar-specific effects on Ce accumulation were observed in the four species. For example, zucchini grown in agricultural soil with 2000 mg CeO2 kg-1 and 350 °C biochar (0.5-5%) accumulated greater Ce than the control. However, for the 600 °C biochar, the opposite effect was evident, with decreased Ce content as biochar increased. A principal component analysis showed that biochar type accounted for 56-99% of the variance in chlorophyll and lipid peroxidation across the plants. SEM and µ-XRF showed Ce association with specific biochar and soil components, while µ-XANES analysis confirmed that after 28 d in soil, the Ce remained largely as CeO2. The current study demonstrates that biochar synthesis conditions significantly impact interactions with ENP, with subsequent effects on particle fate and effects.


Assuntos
Cério/toxicidade , Carvão Vegetal/toxicidade , Produtos Agrícolas/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Solo/química , Agricultura/métodos , Biomassa , Cério/química , Cério/metabolismo , Carvão Vegetal/química , Carvão Vegetal/metabolismo , Clorofila/metabolismo , Produtos Agrícolas/química , Produtos Agrícolas/metabolismo , Cucurbita/química , Cucurbita/efeitos dos fármacos , Cucurbita/metabolismo , Lactuca/química , Lactuca/efeitos dos fármacos , Lactuca/metabolismo , Peróxidos Lipídicos/metabolismo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Glycine max/química , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Especificidade da Espécie , Espectroscopia por Absorção de Raios X , Difração de Raios X , Zea mays/química , Zea mays/efeitos dos fármacos , Zea mays/metabolismo
17.
Nanotoxicology ; 10(9): 1243-53, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27308847

RESUMO

The effect of dissolved organic matter (DOM) on nanoparticle toxicity to plants is poorly understood. In this study, tannic acid (TA) was selected as a DOM surrogate to explore the mechanisms of neodymium oxide NPs (Nd2O3 NPs) phytotoxicity to pumpkin (Cucurbita maxima). The results from the tested concentrations showed that 100 mg L(-1) Nd2O3 NPs were significantly toxic to pumpkin in term of fresh biomass, and the similar results from the bulk particles and the ionic treatments were also evident. Exposure to 100 mg L(-1) of Nd2O3 NPs and BPs in 1/5 strength Hoagland's solution not only significantly inhibited pumpkin growth, but also decreased the S, Ca, K and Mg levels in plant tissues. However, 60 mg L(-1) TA significantly moderated the observed phytotoxicity, decreased Nd accumulation in the roots, and notably restored S, Ca, K and Mg levels in NPs and BPs treated pumpkin. TA at 60 mg L(-1) increased superoxide dismutase (SOD) activity in both roots (17.5%) and leaves (42.9%), and catalase (CAT) activity (243.1%) in the roots exposed to Nd2O3 NPs. This finding was confirmed by the observed up-regulation of transcript levels of SOD and CAT in Nd2O3 NPs treated pumpkin analyzed by quantitative reverse transcription polymerase chain reaction. These results suggest that TA alleviates Nd2O3 BPs/NPs toxicity through alteration of the particle surface charge, thus reducing the contact and uptake of NPs by pumpkin. In addition, TA promotes antioxidant enzymatic activity by elevating the transcript levels of genes involved in ROS scavenging. Our results shed light on the mechanisms underlying the influence of DOM on the bioavailability and toxicity of NPs to terrestrial plants.


Assuntos
Cucurbita/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Nanopartículas/toxicidade , Neodímio/toxicidade , Óxidos/toxicidade , Taninos/farmacologia , Antioxidantes/metabolismo , Cucurbita/enzimologia , Cucurbita/genética , Cucurbita/crescimento & desenvolvimento , Expressão Gênica/efeitos dos fármacos , Nanopartículas/química , Neodímio/química , Óxidos/química , Tamanho da Partícula , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Propriedades de Superfície
18.
Plant Signal Behav ; 11(4): e1151600, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26926652

RESUMO

Leon Chua, the discoverer of a memristor, theoretically predicted that voltage gated ion channels can be memristors. We recently found memristors in different plants such as the Venus flytrap, Mimosa pudica, Aloe vera, apple fruits, and in potato tubers. There are no publications in literature about the existence of memristors in seeds. The goal of this work was to discover if pumpkin seeds might have memristors. We selected Cucurbita pepo L., cv. Cinderella, Cucurbita maxima L. cv Warty Goblin, and Cucurbita maxima L., cv. Jarrahdale seeds for this analysis. In these seeds, we found the presence of resistors with memory. The analysis was based on cyclic voltammetry where a memristor should manifest itself as a nonlinear two-terminal electrical element, which exhibits a pinched hysteresis loop on a current-voltage plane for any bipolar cyclic voltage input signal. Dry dormant pumpkin seeds have very high electrical resistance without memristive properties. The electrostimulation by bipolar sinusoidal or triangular periodic waves induces electrical responses in imbibed pumpkin seeds with fingerprints of memristors. Tetraethylammonium chloride, an inhibitor of voltage gated K(+) channels, transforms a memristor to a resistor in pumpkin seeds. NPPB (5-Nitro-2-(3-phenylpropylamino)benzoic acid) inhibits the memristive properties of imbibed pumpkin seeds. The discovery of memristors in pumpkin seeds creates a new direction in the understanding of electrophysiological phenomena in seeds.


Assuntos
Cucurbita/fisiologia , Fenômenos Eletrofisiológicos , Sementes/fisiologia , Cucurbita/efeitos dos fármacos , Eletricidade , Técnicas Eletroquímicas , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Canais Iônicos/metabolismo , Nitrobenzoatos/farmacologia , Dormência de Plantas/efeitos dos fármacos , Sementes/efeitos dos fármacos
19.
Environ Pollut ; 209: 147-54, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26683261

RESUMO

2,2-bis(p-chlorophenyl)-1,1-dichloro-ethylene (DDE) is the most abundant and persistent degradation product of the pesticide 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT) and is encountered in contaminated soils worldwide. Both DDE and DDT are classified as Persistent Organic Pollutants (POPs) due to their high hydrophobicity and potential for bioaccumulation and biomagnification in the food chain. Zucchini (Cucurbita pepo ssp. pepo) has been shown to accumulate high concentrations of DDE and other POPs and has been proposed as a phytoremediation tool for contaminated soils. The endophytic bacteria associated with this plant may play an important role in the remedial process. Therefore, this research focuses on changes in endophytic bacterial communities caused by the exposure of C. pepo to DDE. The total bacterial community was investigated using cultivation-independent 454 pyrosequencing, while the cultivable community was identified using cultivation-dependent isolation procedures. For both procedures, increasing numbers of endophytic bacteria, as well as higher diversities of genera were observed when plants were exposed to DDE. Several bacterial genera such as Stenotrophomonas sp. and Sphingomonas sp. showed higher abundance when DDE was present, while, for example Pseudomonas sp. showed a significantly lower abundance in the presence of DDE. These findings suggest tolerance of different bacterial strains to DDE, which might be incorporated in further investigations to optimize phytoremediation with the possible use of DDE-degrading endophytes.


Assuntos
Bactérias/efeitos dos fármacos , Cucurbita/microbiologia , Diclorodifenil Dicloroetileno/toxicidade , Endófitos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Biodiversidade , Cucurbita/química , Cucurbita/efeitos dos fármacos , Cucurbita/metabolismo , Diclorodifenil Dicloroetileno/análise , Diclorodifenil Dicloroetileno/metabolismo , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Praguicidas/análise , Praguicidas/metabolismo , Praguicidas/toxicidade , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
20.
Bull Entomol Res ; 106(2): 191-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26693799

RESUMO

Silverleaf whitefly (SLW, Bemisia tabaci MEAM1) and aphids are sap-sucking insects, which pose a serious threat to Australian cucurbit crops and the horticulture industry. Traditional chemical control for these insect pests is becoming less effective, and there is a need to search for alternative or supplementary methods. This study aimed to manipulate the habitat of pumpkin crops in a tropical setting (Queensland, Australia), by growing pumpkins (var. Japanese pumpkin) alone and between lablab (Lablab purpureus L. Sweet). It was hypothesized that the presence of lablab will increase the populations of natural enemies, and through their control of insect pests such as SLW and aphids, will affect pumpkin yield. The population of arthropods (natural enemies and pests of pumpkin), with a focus on SLW and aphids, were sampled weekly on both lablab and pumpkin crop for a total of 21 weeks. Results showed that lablab hosted more enemies of SLW per plant than pumpkin in either treatment. In addition, adult SLW numbers were significantly higher in the pumpkin-only crop compared with the pumpkin grown between lablab, while pumpkin in the mixed plantings had significantly more ladybirds and lacewing larvae (P < 0.05). While there was no significant difference in the average fruit weight between treatments, the total weight (kg) and number of marketable pumpkins per hectare was greater (P < 0.05) for the pumpkin/lablab treatment than the pumpkin-only treatment. This study shows that growing lablab alongside a pumpkin crop may enhance natural enemies of SLW and could significantly increase the yield.


Assuntos
Cucurbita/parasitologia , Fabaceae/fisiologia , Hemípteros/fisiologia , Controle Biológico de Vetores/métodos , Animais , Afídeos/fisiologia , Cucurbita/efeitos dos fármacos , Cucurbita/crescimento & desenvolvimento , Ecossistema , Queensland
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...