Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 168(2): 57, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36617596

RESUMO

We detected a virus-like sequence in Cynanchum rostellatum leaves showing yellow mottle symptoms, found in Tokyo, Japan. RNA-Seq analysis revealed that the complete nucleotide sequence of the virus genome was 5,878 nucleotides in length and that it contained seven open reading frames (ORFs) specific to members of the genus Polerovirus. Accordingly, phylogenetic analysis revealed that the virus clustered with poleroviruses in the family Solemoviridae. The amino acid sequence identity values obtained by comparison of the deduced proteins of this virus and those of known members of the genus Polerovirus were lower than 90%, which is the species demarcation criterion of the taxon. The results indicate that this virus is a novel member of the genus Polerovirus, for which the name "cynanchum yellow mottle-associated virus" is proposed.


Assuntos
Cynanchum , Luteoviridae , Luteoviridae/genética , Cynanchum/genética , Filogenia , RNA Viral/genética , Doenças das Plantas , Genoma Viral , Fases de Leitura Aberta
2.
PeerJ ; 10: e14436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518281

RESUMO

Cynanchum thesioides (Freyn) K. Schum. is an important economic and medicinal plant widely distributed in northern China. WRKY transcription factors (TFs) play important roles in plant growth, development and regulating responses. However, there is no report on the WRKY genes in Cynanchum thesioides. A total of 19 WRKY transcriptome sequences with complete ORFs were identified as WRKY transcriptome sequences by searching for WRKYs in RNA sequencing data. Then, the WRKY genes were classified by phylogenetic and conserved motif analysis of the WRKY family in Cynanchum thesioides and Arabidopsis thaliana. qRT-PCR was used to determine the expression patterns of 19 CtWRKY genes in different tissues and seedlings of Cynanchum thesioides under plant hormone (ABA and ETH) and abiotic stresses (cold and salt). The results showed that 19 CtWRKY genes could be divided into groups I-III according to their structure and phylogenetic characteristics, and group II could be divided into five subgroups. The prediction of CtWRKY gene protein interactions indicates that CtWRKY is involved in many biological processes. In addition, the CtWRKY gene was differentially expressed in different tissues and positively responded to abiotic stress and phytohormone treatment, among which CtWRKY9, CtWRKY18, and CtWRKY19 were significantly induced under various stresses. This study is the first to identify the WRKY gene family in Cynanchum thesioides, and the systematic analysis lays a foundation for further identification of the function of WRKY genes in Cynanchum thesioides.


Assuntos
Cynanchum , Fatores de Transcrição , Fatores de Transcrição/genética , Transcriptoma/genética , Cynanchum/genética , Filogenia , Proteínas de Plantas/genética , Reguladores de Crescimento de Plantas/farmacologia
3.
BMC Plant Biol ; 22(1): 4, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979940

RESUMO

BACKGROUND: Cynanchum wilfordii (Cw) and Cynanchum auriculatum (Ca) have long been used in traditional medicine and as functional food in Korea and China, respectively. They have diverse medicinal functions, and many studies have been conducted, including pharmaceutical efficiency and metabolites. Especially, Cw is regarded as the most famous medicinal herb in Korea due to its menopausal symptoms relieving effect. Despite the high demand for Cw in the market, both species are cultivated using wild resources with rare genomic information. RESULTS: We collected 160 Cw germplasm from local areas of Korea and analyzed their morphological diversity. Five Cw and one Ca of them, which were morphologically diverse, were sequenced, and nuclear ribosomal DNA (nrDNA) and complete plastid genome (plastome) sequences were assembled and annotated. We investigated the genomic characteristics of Cw as well as the genetic diversity of plastomes and nrDNA of Cw and Ca. The Cw haploid nuclear genome was approximately 178 Mbp. Karyotyping revealed the juxtaposition of 45S and 5S nrDNA on one of 11 chromosomes. Plastome sequences revealed 1226 interspecies polymorphisms and 11 Cw intraspecies polymorphisms. The 160 Cw accessions were grouped into 21 haplotypes based on seven plastome markers and into 108 haplotypes based on seven nuclear markers. Nuclear genotypes did not coincide with plastome haplotypes that reflect the frequent natural outcrossing events. CONCLUSIONS: Cw germplasm had a huge morphological diversity, and their wide range of genetic diversity was revealed through the investigation with 14 molecular markers. The morphological and genomic diversity, chromosome structure, and genome size provide fundamental genomic information for breeding of undomesticated Cw plants.


Assuntos
Cynanchum/genética , Variação Genética , Genoma de Planta , República da Coreia
4.
Sci Rep ; 10(1): 6112, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273595

RESUMO

The transfer of ancestral plastid genomes into mitochondrial genomes to generate mitochondrial plastid DNA (MTPT) is known to occur in plants, but its impacts on mitochondrial genome complexity and the potential for causing a false-positive DNA barcoding paradox have been underestimated. Here, we assembled the organelle genomes of Cynanchum wilfordii and C. auriculatum, which are indigenous medicinal herbs in Korea and China, respectively. In both species, it is estimated that 35% of the ancestral plastid genomes were transferred to mitochondrial genomes over the past 10 million years and remain conserved in these genomes. Some plastid barcoding markers co-amplified the conserved MTPTs and caused a barcoding paradox, resulting in mis-authentication of botanical ingredients and/or taxonomic mis-positioning. We identified dynamic and lineage-specific MTPTs that have contributed to mitochondrial genome complexity and might cause a putative barcoding paradox across 81 plant species. We suggest that a DNA barcoding guidelines should be developed involving the use of multiple markers to help regulate economically motivated adulteration.


Assuntos
Cynanchum/genética , Código de Barras de DNA Taxonômico/normas , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , Cynanchum/classificação , Código de Barras de DNA Taxonômico/métodos , Evolução Molecular , Filogenia
5.
Gene ; 710: 375-386, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31200084

RESUMO

Cynanchum thesioides are upright, xerophytic shrubs that are widely distributed in arid and semi-arid areas of China, North Korea, Mongolia and Siberia. To date, little is known about the molecular mechanisms of drought resistance in C. thesioides. To better understand drought resistance, we used transcriptome analysis and Illumina sequencing technology on C. thesioides, to identify drought-responsive genes. Using de novo assembly 55,268 unigenes were identified from 207.58 Gb of clean data. Amongst these, 36,265 were annotated with gene descriptions, conserved domains, gene ontology terms and metabolic pathways. The sequencing results showed that genes that were differentially expressed (DEGs) under drought stress were enriched in pathways such as carbon metabolism, starch and sucrose metabolism, amino acid biosynthesis, phenylpropanoid biosynthesis and plant hormone signal transduction. Moreover, many functional genes were up-regulated under severe drought stress to enhance tolerance. Weighted gene co-expression network analysis showed that there were key hub genes related to drought stress. Hundreds of candidate genes were identified under severe drought stress, including transcriptional factors such as MYB, G2-like, ERF, C2H2, NAC, NF-X1, GRF, HD-ZIP, HB-other, HSF, C3H, GRAS, WRKY, bHLH and Trihelix. These data are a valuable resource for further investigation into the molecular mechanism for drought stress in C. thesioides and will facilitate exploration of drought resistance genes.


Assuntos
Cynanchum/genética , Secas , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular , Proteínas de Plantas/genética , Análise de Sequência de RNA/métodos , Estresse Fisiológico
6.
Molecules ; 23(6)2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29865213

RESUMO

The tuber of Cynanchum wilfordii (Baekshuoh Radix in Korean) is an important medicinal herb in Korea and China; however, it is difficult to differentiate C. wilfordii from a related medicinal herb, C. auriculatum (Baishouwu Radix in Chinese). We sought to develop a molecular method that could be used to distinguish between the tubers of C. wilfordii and C. auriculatum. We aligned the chloroplast genome sequences (available in the NCBI database) of the two species and identified three species-specific insertion and deletion (InDel) sites in the trnQ-psbK, rps2-rpoC2, and psaJ-rpl33 intergenic spacer (IGS) regions. To confirm the presence of these three InDels and validate their use as markers, we designed three primer pairs to amplify the trnQ-psbK, rps2-rpoC2, and psaJ-rpl33 IGS regions. Polymerase chain reaction (PCR) amplification of the trnQ-psbK IGS region yielded a 249 bp fragment for C. wilfordii, and 419 bp fragment for C. auriculatum, whereas the rps2-rpoC2 IGS primers produced a 629 bp fragment from C. wilfordii and a 282 bp fragment from C. auriculatum. In the psaJ-rpl33 IGS region, allele fragments of 342 and 360 bp in length were amplified from C. wilfordii, whereas 249 and 250 bp fragment were amplified from C. auriculatum. We propose these three InDel markers as a valuable, simple, and efficient tool for identifying these medicinal herbs and will thus reduce adulteration of these herbal materials in commercial markets.


Assuntos
Cynanchum/genética , DNA de Cloroplastos/genética , Marcadores Genéticos , Mutação INDEL , Primers do DNA , Reação em Cadeia da Polimerase
7.
Biol Pharm Bull ; 40(10): 1693-1699, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28966240

RESUMO

Cynanchi Wilfordii Radix (CWR) is used in Korea as a substitute for Polygoni Multiflori Radix (PMR), which is a crude drug traditionally used in East Asian countries. Recently, the use of Cynanchi Auriculati Radix (CAR) in place of PMR and CWR has emerged a major concern in the Korean market. In Japan, PMR is permitted to be distributed as a pharmaceutical regulated by the Japanese Pharmacopoeia 17th edition (JP17). Although CWR and CAR have not traditionally been used as medicines, CWR was recently introduced as a health food. The distribution of unfamiliar CWR-containing products could lead to the misuse of original species for PMR and CWR like in Korea. To prevent this situation, the original species of plant products distributed as PMR, CWR, and CAR in the Korean and Chinese markets were surveyed and identified by their genes and components. The results revealed that all two PMR in the Korean market were misapplied as CAR, and that CAR was incorrectly used in eight of thirteen products distributed as CWR in both markets. As PMR is strictly controlled by JP17, the risk of mistaking PMR for CWR and CAR would be low in Japan. In contrast, the less stringent regulation of health food products and the present situation of misidentification of CWR in the Korean and Chinese markets could lead to unexpected health hazards. To ensure the quality and safety of crude drugs, it is important to use the information about the genes and components of these crude drugs.


Assuntos
Cynanchum/química , Cynanchum/genética , DNA de Plantas/análise , Preparações de Plantas/química , China , Cromatografia Líquida de Alta Pressão , República da Coreia , Análise de Sequência de DNA
8.
PLoS One ; 12(6): e0178101, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28575006

RESUMO

SNARE proteins are essential to vesicle trafficking and membrane fusion in eukaryotic cells. In addition, the SNARE-mediated secretory pathway can deliver diverse defense products to infection sites during exocytosis-associated immune responses in plants. In this study, a novel gene (CkSNAP33) encoding a synaptosomal-associated protein was isolated from Cynanchum komarovii and characterized. CkSNAP33 contains Qb- and Qc-SNARE domains in the N- and C-terminal regions, respectively, and shares high sequence identity with AtSNAP33 from Arabidopsis. CkSNAP33 expression was induced by H2O2, salicylic acid (SA), Verticillium dahliae, and wounding. Arabidopsis lines overexpressing CkSNAP33 had longer primary roots and larger seedlings than the wild type (WT). Transgenic Arabidopsis lines showed significantly enhanced resistance to V. dahliae, and displayed reductions in disease index and fungal biomass, and also showed elevated expression of PR1 and PR5. The leaves of transgenic plants infected with V. dahliae showed strong callose deposition and cell death that hindered the penetration and spread of the fungus at the infection site. Taken together, these results suggest that CkSNAP33 is involved in the defense response against V. dahliae and enhanced disease resistance in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Cynanchum/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Verticillium/fisiologia , Sequência de Aminoácidos , Arabidopsis/química , Proteínas de Arabidopsis/química , Cynanchum/química , Cynanchum/microbiologia , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/química , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Domínios Proteicos , Proteínas Qb-SNARE/química , Proteínas Qc-SNARE/química , Alinhamento de Sequência
9.
Mol Biol Rep ; 43(4): 323-32, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26902862

RESUMO

Identification of plant species is important for standardizing herbal medicine. Cynanchum wilfordii (Baekshuoh in Korean) and Polygonum multiflorum (Hashuoh in Korean) are important oriental medicinal herbs in Korea, Japan, and China. Cynanchum auriculatum is a faster growing and more productive plant than C. wilfordii; and, it is not recognized as a medicinal plant in the Korean Pharmacopoeia. C. wilfordii, P. multiflorum, and C. auriculatum are often misidentified in the Korean herbal medicine marketplace due to their morphological similarities and similar names. In this study, we investigated molecular authentication of these three medicinal plants using DNA sequences in the TrnL-F chloroplast intergenic region. Specific species identification was achieved by detecting allelic variations of single nucleotide polymorphisms (SNPs) using amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) and high resolution melting curve analysis. Our results demonstrate that the intraspecific genetic distance between C. wilfordii and C. auriculatum is relatively low. We also developed a quantitative PCR assay using species-specific TrnL-F primers, which allowed us to estimate the ratio of C. wilfordii and C. auriculatum using varying ratios of mixed genomic DNA template from the two species. Additionally, to identify species in hybrid plants produced by cross-fertilization, we analyzed nuclear ribosomal DNA internal transcribed spacer regions in C. wilfordii and C. auriculatum by ARMS-PCR. Our results indicate that SNP-based molecular markers, usable to barcode tools could provide efficient and rapid authentication of these closely related medicinal plant species, and will be useful for preventing the distribution of products contaminated with adulterants.


Assuntos
Cynanchum/genética , Código de Barras de DNA Taxonômico , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Fallopia multiflora/genética , Polimorfismo de Nucleotídeo Único , Sequência de Bases , Cynanchum/classificação , DNA de Cloroplastos/genética , Fallopia multiflora/classificação , Dados de Sequência Molecular , Plantas Medicinais/classificação , Plantas Medicinais/genética , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência
10.
PLoS One ; 11(1): e0146959, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26752638

RESUMO

Compliance with ethical standards: This study did not involve human participants and animals, and the plant of interest is not an endangered species. Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat proteins that plants produce against polygalacturonase, a key virulence agent in pathogens. In this paper, we cloned and purified CkPGIP1, a gene product from Cynanchum komarovii that effectively inhibits polygalacturonases from Botrytis cinerea and Rhizoctonia solani. We found the expression of CkPGIP1 to be induced in response to salicylic acid, wounding, and infection with B. cinerea and R. solani. In addition, transgenic overexpression in Arabidopsis enhanced resistance against B. cinerea. Furthermore, CkPGIP1 obtained from transgenic Arabidopsis inhibited the activity of B. cinerea and R. solani polygalacturonases by 62.7-66.4% and 56.5-60.2%, respectively. Docking studies indicated that the protein interacts strongly with the B1-sheet at the N-terminus of the B. cinerea polygalacturonase, and with the C-terminus of the polygalacturonase from R. solani. This study highlights the significance of CkPGIP1 in plant disease resistance, and its possible application to manage fungal pathogens.


Assuntos
Arabidopsis/microbiologia , Cynanchum/metabolismo , Doenças das Plantas/microbiologia , Extratos Vegetais/química , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Botrytis/enzimologia , Clonagem Molecular , Cynanchum/genética , Resistência à Doença/genética , Regulação da Expressão Gênica , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Poligalacturonase/antagonistas & inibidores , Reação em Cadeia da Polimerase , Ligação Proteica , Estrutura Terciária de Proteína , Rhizoctonia/enzimologia , Ácido Salicílico/química , Homologia de Sequência de Aminoácidos
11.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(5): 3747-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26358391

RESUMO

Cynanchum wilfordii (Maxim.) Hemsl. is a traditional medicinal herb belonging to the Asclepiadoideae subfamily, whose dried roots have been used as traditional medicine in Asia. The complete chloroplast genome of C. wilfordii was generated by de novo assembly using the small amount of whole genome sequencing data. The chloroplast genome of C. wilfordii was 161 241 bp long, composed of large single copy region (91 995 bp), small single copy region (19 930 bp) and a pair of inverted repeat regions (24 658 bp). The overall GC contents of the chloroplast genome was 37.8%. A total of 114 genes were annotated, which included 80 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Phylogenetic analysis with the reported chloroplast genomes revealed that C. wilfordii is most closely related to Asclepias nivea (Caribbean milkweed) and Asclepias syriaca (common milkweed) within the Asclepiadoideae subfamily.


Assuntos
Cynanchum/genética , Genoma de Cloroplastos , Composição de Bases , Evolução Molecular , Medicina Tradicional Coreana , Filogenia , Plantas Medicinais/genética , Sequenciamento Completo do Genoma
12.
BMC Genomics ; 16: 753, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26444539

RESUMO

BACKGROUND: Cynanchum komarovii Al Iljinski is a xerophytic plant species widely distributing in the severely adverse environment of the deserts in northwest China. At present, the detailed transcriptomic and genomic data for C. komarovii are still insufficient in public databases. RESULTS: To investigate changes of drought-responsive genes and explore the mechanisms of drought tolerance in C. komarovii, approximately 27.5 GB sequencing data were obtained using Illumina sequencing technology. After de novo assembly 148,715 unigenes were generated with an average length of 604 bp. Among these unigenes, 85,106 were annotated with gene descriptions, conserved domains, gene ontology terms, and metabolic pathways. The results showed that a great number of unigenes were significantly affected by drought stress. We identified 3134 unigenes as reliable differentially expressed genes (DEGs). During drought stress, the regulatory genes were involved in signaling transduction pathways and in controlling the expression of functional genes. Moreover, C. komarovii activated many functional genes that directly protected against stress and improved tolerance to adapt drought condition. Importantly, the DEGs were involved in biosynthesis, export, and regulation of plant cuticle, suggesting that plant cuticle may play a vital role in response to drought stress and the accumulation of cuticle may allow C. komarovii to improve the tolerance to drought stress. CONCLUSION: This is the first large-scale reference sequence data of C. komarovii, which enlarge the genomic resources of this species. Our comprehensive transcriptome analysis will provide a valuable resource for further investigation into the molecular adaptation of desert plants under drought condition and facilitate the exploration of drought-tolerant candidate genes.


Assuntos
Adaptação Fisiológica/genética , Cynanchum/genética , Secas , Transcriptoma/genética , Aclimatação , China , Cynanchum/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Estresse Fisiológico/genética
13.
Protein Sci ; 21(6): 865-75, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22532259

RESUMO

Cynanchum komarovii Al Iljinski is a desert plant that has been used as analgesic, anthelminthic, and antidiarrheal, but also as herbal medicine to treat cholecystitis in people. In this work, an antifungal protein with sequence homology to chitinase was isolated from C. komarovii seeds and named CkChn134. The three-dimensional structure prediction of CkChn134 indicated that the protein has a loop domain formed a thin cleft, which is able to bind molecules and substrates. The protein and CkTLP synergistically inhibited the fungal growth of Verticillium dahliae, Fusarium oxysporum, Rhizoctonia solani, Botrytis cinerea, and Valsa mali in vitro. The full-length cDNA was cloned by RT-PCR and RACE-PCR according to the partial protein sequences obtained by nanoESI-MS/MS. The real-time PCR showed that the transcription level of CkChn134 had a significant increase under the stress of ethylene, NaCl, low temperature, drought, and pathogen infection, which indicates that CkChn134 may play an important role in response to abiotic and biotic stresses. The CkChn134 protein was located in the extracellular space/cell wall by CkChn134::GFP fusion protein in transgenic Arabidopsis. Furthermore, overexpression of CkChn134 significantly enhanced the resistance of transgenic Arabidopsis against V. dahliae. Interestingly, the coexpression of CkChn134 and CkTLP showed substantially greater protection against the fungal pathogen V. dahliae than either transgene alone. The results suggest that the CkChn134 is a good candidate protein or gene, and it had a potential synergistic effect with CkTLP for contributing to the development of disease-resistant crops.


Assuntos
Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Quitinases/isolamento & purificação , Quitinases/farmacologia , Cynanchum/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Sequência de Aminoácidos , Antifúngicos/química , Arabidopsis/genética , Arabidopsis/microbiologia , Sequência de Bases , Quitinases/química , Quitinases/genética , Cynanchum/genética , Fungos/efeitos dos fármacos , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Sementes/química , Sementes/genética , Verticillium/efeitos dos fármacos
14.
PLoS One ; 6(2): e16930, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21364945

RESUMO

BACKGROUND: Cynanchum komarovii Al Iljinski is a desert plant that has been used as analgesic, anthelminthic and antidiarrheal, but also as a herbal medicine to treat cholecystitis in people. We have found that the protein extractions from C. komarovii seeds have strong antifungal activity. There is strong interest to develop protein medication and antifungal pesticides from C. komarovii for pharmacological or other uses. METHODOLOGY/PRINCIPAL FINDINGS: An antifungal protein with sequence homology to thaumatin-like proteins (TLPs) was isolated from C. komarovii seeds and named CkTLP. The three-dimensional structure prediction of CkTLP indicated the protein has an acid cleft and a hydrophobic patch. The protein showed antifungal activity against fungal growth of Verticillium dahliae, Fusarium oxysporum, Rhizoctonia solani, Botrytis cinerea and Valsa mali. The full-length cDNA was cloned by RT-PCR and RACE-PCR according to the partial protein sequences obtained by nanoESI-MS/MS. The real-time PCR showed the transcription level of CkTLP had a significant increase under the stress of abscisic acid (ABA), salicylic acid (SA), methyl jasmonate (MeJA), NaCl and drought, which indicates that CkTLP may play an important role in response to abiotic stresses. Histochemical staining showed GUS activity in almost the whole plant, especially in cotyledons, trichomes and vascular tissues of primary root and inflorescences. The CkTLP protein was located in the extracellular space/cell wall by CkTLP::GFP fusion protein in transgenic Arabidopsis. Furthermore, over-expression of CkTLP significantly enhanced the resistance of Arabidopsis against V. dahliae. CONCLUSIONS/SIGNIFICANCE: The results suggest that the CkTLP is a good candidate protein or gene for contributing to the development of disease-resistant crops.


Assuntos
Cynanchum/genética , Imunidade Inata/genética , Micoses/prevenção & controle , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/genética , Antifúngicos/análise , Antifúngicos/isolamento & purificação , Antifúngicos/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Clonagem Molecular , Cynanchum/química , Cynanchum/metabolismo , DNA Complementar/análise , DNA Complementar/isolamento & purificação , Terapia Genética , Micoses/genética , Micoses/imunologia , Doenças das Plantas/genética , Extratos Vegetais/química , Extratos Vegetais/genética , Proteínas de Plantas/análise , Proteínas de Plantas/isolamento & purificação , Plantas Geneticamente Modificadas , Sementes/química , Sementes/genética , Sementes/metabolismo , Estresse Fisiológico/genética , Verticillium/fisiologia
15.
Zhongguo Zhong Yao Za Zhi ; 35(12): 1537-40, 2010 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-20815202

RESUMO

OBJECTIVE: To study the genetic diversity of rDNA ITS sequences in different species of Bai Shouwu, utilize the molecular diversity of ITS sequences to authenticate the different species of Bai Shouwu. METHOD: Firstly, total DNA was extracted from the different species of Bai Shouwu. Secondly, the ITS sequence was amplified by PCR with universal primer of ITS and sequenced after cloning and purification. RESULT: From four species the complete sequence of ITS and 5.8 S rDNA, the partial sequences of 18S rDNA and 26S rDNA were obtained. The rDNA ITS sequences of Cynanchum bungei (sign in No. GU198970 and No. GU479037) were obtained. Ten variable sites among the sequences were found. CONCLUSION: ITS sequence could be used to authenticate the species. The method could be used to identify germplasm resources and authenticate.


Assuntos
Cynanchum/genética , DNA Espaçador Ribossômico/genética , Cynanchum/classificação , DNA de Plantas/genética , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...