Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(16): 9374-9388, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34390346

RESUMO

The Y-family DNA polymerase η (Polη) is critical for the synthesis past damaged DNA nucleotides in yeast through translesion DNA synthesis (TLS). TLS is initiated by monoubiquitination of proliferating cell nuclear antigen (PCNA) and the subsequent recruitment of TLS polymerases. Although individual structures of the Polη catalytic core and PCNA have been solved, a high-resolution structure of the complex of Polη/PCNA or Polη/monoubiquitinated PCNA (Ub-PCNA) still remains elusive, partly due to the disordered Polη C-terminal region and the flexibility of ubiquitin on PCNA. To circumvent these obstacles and obtain structural insights into this important TLS polymerase complex, we developed photo-activatable PCNA and Ub-PCNA probes containing a p-benzoyl-L-phenylalanine (pBpa) crosslinker at selected positions on PCNA. By photo-crosslinking the probes with full-length Polη, specific crosslinking sites were identified following tryptic digestion and tandem mass spectrometry analysis. We discovered direct interactions of the Polη catalytic core and its C-terminal region with both sides of the PCNA ring. Model building using the crosslinking site information as a restraint revealed multiple conformations of Polη in the polymerase complex. Availability of the photo-activatable PCNA and Ub-PCNA probes will also facilitate investigations into other PCNA-containing complexes important for DNA replication, repair and damage tolerance.


Assuntos
DNA Polimerase Dirigida por DNA/genética , DNA/biossíntese , Antígeno Nuclear de Célula em Proliferação/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/genética , Benzofenonas/farmacologia , DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/ultraestrutura , Substâncias Macromoleculares/química , Substâncias Macromoleculares/ultraestrutura , Mutação/genética , Fenilalanina/análogos & derivados , Fenilalanina/farmacologia , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/ultraestrutura , Ligação Proteica/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Ubiquitina/química , Ubiquitina/ultraestrutura
2.
Curr Genet ; 67(2): 225-230, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33237336

RESUMO

The coordinated action of DNA polymerases and DNA helicases is essential at genomic sites that are hard to replicate. Among these are sites that harbour G-quadruplex DNA structures (G4). G4s are stable alternative DNA structures, which have been implicated to be involved in important cellular processes like the regulation of gene expression or telomere maintenance. G4 structures were shown to hinder replication fork progression and cause genomic deletions, mutations and recombination events. Many helicases unwind G4 structures and preserve genome stability, but a detailed understanding of G4 replication and the re-start of stalled replication forks around formed G4 structures is not clear, yet. In our recent study, we identified that Mgs1 preferentially binds to G4 DNA structures in vitro and is associated with putative G4-forming chromosomal regions in vivo. Mgs1 binding to G4 motifs in vivo is partially dependent on the helicase Pif1. Pif1 is the major G4-unwinding helicase in S. cerevisiae. In the absence of Mgs1, we determined elevated gross chromosomal rearrangement (GCR) rates in yeast, similar to Pif1 deletion. Here, we highlight the recent findings and set these into context with a new mechanistic model. We propose that Mgs1's functions support DNA replication at G4-forming regions.


Assuntos
DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Quadruplex G , Conformação de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/genética , DNA Helicases/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura
3.
Mol Cell ; 79(6): 1037-1050.e5, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32882183

RESUMO

DNA double-stranded breaks (DSBs) are dangerous lesions threatening genomic stability. Fidelity of DSB repair is best achieved by recombination with a homologous template sequence. In yeast, transcript RNA was shown to template DSB repair of DNA. However, molecular pathways of RNA-driven repair processes remain obscure. Utilizing assays of RNA-DNA recombination with and without an induced DSB in yeast DNA, we characterize three forms of RNA-mediated genomic modifications: RNA- and cDNA-templated DSB repair (R-TDR and c-TDR) using an RNA transcript or a DNA copy of the RNA transcript for DSB repair, respectively, and a new mechanism of RNA-templated DNA modification (R-TDM) induced by spontaneous or mutagen-induced breaks. While c-TDR requires reverse transcriptase, translesion DNA polymerase ζ (Pol ζ) plays a major role in R-TDR, and it is essential for R-TDM. This study characterizes mechanisms of RNA-DNA recombination, uncovering a role of Pol ζ in transferring genetic information from transcript RNA to DNA.


Assuntos
DNA/genética , RNA/genética , Saccharomyces cerevisiae/genética , Adolescente , Adulto , DNA/ultraestrutura , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Replicação do DNA/genética , DNA Complementar/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/ultraestrutura , Instabilidade Genômica/genética , Humanos , Pessoa de Meia-Idade , RNA/ultraestrutura , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Adulto Jovem
4.
Nucleic Acids Res ; 48(6): 3343-3355, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32016421

RESUMO

NrS-1 is the first known phage that can infect Epsilonproteobacteria, one of the predominant primary producers in the deep-sea hydrothermal vent ecosystems. NrS-1 polymerase is a multidomain enzyme and is one key component of the phage replisome. The N-terminal Prim/Pol and HBD domains are responsible for DNA polymerization and de novo primer synthesis activities of NrS-1 polymerase. However, the structure and function of the C-terminus (CTR) of NrS-1 polymerase are poorly understood. Here, we report two crystal structures, showing that NrS-1 CTR adopts one unique hexameric ring-shaped conformation. Although the central helicase domain of NrS-1 CTR shares structural similarity with the superfamily III helicases, the folds of the Head and Tail domains are completely novel. Via mutagenesis and in vitro biochemical analysis, we identified many residues important for the helicase and polymerization activities of NrS-1 polymerase. In addition to NrS-1 polymerase, our study may also help us identify and understand the functions of multidomain polymerases expressed by many NrS-1 related phages.


Assuntos
Bacteriófagos/enzimologia , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/ultraestrutura , Conformação Proteica , Sequência de Aminoácidos/genética , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Cristalografia por Raios X , DNA Polimerase Dirigida por DNA/química , Ecossistema , Epsilonproteobacteria/genética , Epsilonproteobacteria/virologia , Fontes Hidrotermais/química
5.
Nat Struct Mol Biol ; 26(10): 955-962, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31582849

RESUMO

DNA polymerase δ (Polδ) plays pivotal roles in eukaryotic DNA replication and repair. Polδ is conserved from yeast to humans, and mutations in human Polδ have been implicated in various cancers. Saccharomyces cerevisiae Polδ consists of catalytic Pol3 and the regulatory Pol31 and Pol32 subunits. Here, we present the near atomic resolution (3.2 Å) cryo-EM structure of yeast Polδ holoenzyme in the act of DNA synthesis. The structure reveals an unexpected arrangement in which the regulatory subunits (Pol31 and Pol32) lie next to the exonuclease domain of Pol3 but do not engage the DNA. The Pol3 C-terminal domain contains a 4Fe-4S cluster and emerges as the keystone of Polδ assembly. We also show that the catalytic and regulatory subunits rotate relative to each other and that this is an intrinsic feature of the Polδ architecture. Collectively, the structure provides a framework for understanding DNA transactions at the replication fork.


Assuntos
DNA Polimerase III/química , DNA Polimerase Dirigida por DNA/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Microscopia Crioeletrônica , DNA Polimerase III/metabolismo , DNA Polimerase III/ultraestrutura , DNA Fúngico/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/ultraestrutura , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
6.
Annu Rev Biochem ; 88: 163-190, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31220976

RESUMO

Many DNA-processing enzymes have been shown to contain a [4Fe4S] cluster, a common redox cofactor in biology. Using DNA electrochemistry, we find that binding of the DNA polyanion promotes a negative shift in [4Fe4S] cluster potential, which corresponds thermodynamically to a ∼500-fold increase in DNA-binding affinity for the oxidized [4Fe4S]3+ cluster versus the reduced [4Fe4S]2+ cluster. This redox switch can be activated from a distance using DNA charge transport (DNA CT) chemistry. DNA-processing proteins containing the [4Fe4S] cluster are enumerated, with possible roles for the redox switch highlighted. A model is described where repair proteins may signal one another using DNA-mediated charge transport as a first step in their search for lesions. The redox switch in eukaryotic DNA primases appears to regulate polymerase handoff, and in DNA polymerase δ, the redox switch provides a means to modulate replication in response to oxidative stress. We thus describe redox signaling interactions of DNA-processing [4Fe4S] enzymes, as well as the most interesting potential players to consider in delineating new DNA-mediated redox signaling networks.


Assuntos
DNA Glicosilases/química , DNA Helicases/química , DNA Polimerase Dirigida por DNA/química , DNA/química , Endonucleases/química , Genoma , Proteínas Ferro-Enxofre/química , Animais , Bactérias/genética , Bactérias/metabolismo , DNA/metabolismo , DNA/ultraestrutura , Dano ao DNA , DNA Glicosilases/metabolismo , DNA Glicosilases/ultraestrutura , DNA Helicases/metabolismo , DNA Helicases/ultraestrutura , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/ultraestrutura , Espectroscopia de Ressonância de Spin Eletrônica , Endonucleases/metabolismo , Endonucleases/ultraestrutura , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/ultraestrutura , Oxirredução , Ligação Proteica , Transdução de Sinais , Termodinâmica
7.
Annu Rev Biochem ; 88: 137-162, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31220977

RESUMO

Genomic DNA is susceptible to endogenous and environmental stresses that modify DNA structure and its coding potential. Correspondingly, cells have evolved intricate DNA repair systems to deter changes to their genetic material. Base excision DNA repair involves a number of enzymes and protein cofactors that hasten repair of damaged DNA bases. Recent advances have identified macromolecular complexes that assemble at the DNA lesion and mediate repair. The repair of base lesions generally requires five enzymatic activities: glycosylase, endonuclease, lyase, polymerase, and ligase. The protein cofactors and mechanisms for coordinating the sequential enzymatic steps of repair are being revealed through a range of experimental approaches. We discuss the enzymes and protein cofactors involved in eukaryotic base excision repair, emphasizing the challenge of integrating findings from multiple methodologies. The results provide an opportunity to assimilate biochemical findings with cell-based assays to uncover new insights into this deceptively complex repair pathway.


Assuntos
DNA Glicosilases/química , DNA Polimerase Dirigida por DNA/química , DNA/química , Endonucleases/química , Genoma , Ligases/química , Liases/química , DNA/metabolismo , DNA/ultraestrutura , Dano ao DNA , DNA Glicosilases/metabolismo , DNA Glicosilases/ultraestrutura , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/ultraestrutura , Endonucleases/metabolismo , Endonucleases/ultraestrutura , Eucariotos/genética , Eucariotos/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/enzimologia , Instabilidade Genômica , Humanos , Ligases/metabolismo , Ligases/ultraestrutura , Liases/metabolismo , Liases/ultraestrutura , Modelos Moleculares , Mutagênese , Conformação de Ácido Nucleico , Conformação Proteica
8.
PLoS Biol ; 17(1): e3000122, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657780

RESUMO

PolD is an archaeal replicative DNA polymerase (DNAP) made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2). Recently, we reported the individual crystal structures of the DP1 and DP2 catalytic cores, thereby revealing that PolD is an atypical DNAP that has all functional properties of a replicative DNAP but with the catalytic core of an RNA polymerase (RNAP). We now report the DNA-bound cryo-electron microscopy (cryo-EM) structure of the heterodimeric DP1-DP2 PolD complex from Pyrococcus abyssi, revealing a unique DNA-binding site. Comparison of PolD and RNAPs extends their structural similarities and brings to light the minimal catalytic core shared by all cellular transcriptases. Finally, elucidating the structure of the PolD DP1-DP2 interface, which is conserved in all eukaryotic replicative DNAPs, clarifies their evolutionary relationships with PolD and sheds light on the domain acquisition and exchange mechanism that occurred during the evolution of the eukaryotic replisome.


Assuntos
Proteínas de Ligação a DNA/ultraestrutura , Fator de Transcrição DP1/ultraestrutura , Fatores de Transcrição/ultraestrutura , Sequência de Aminoácidos/genética , Sítios de Ligação/genética , Domínio Catalítico , Microscopia Crioeletrônica/métodos , DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/ultraestrutura , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/ultraestrutura , Domínios Proteicos/genética , Subunidades Proteicas/metabolismo , Pyrococcus abyssi/metabolismo , Pyrococcus abyssi/ultraestrutura , Fator de Transcrição DP1/metabolismo , Fatores de Transcrição/metabolismo
9.
Nat Commun ; 8(1): 1455, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29129932

RESUMO

Vaccinia virus (VACV), the prototype member of the Poxviridae, replicates in the cytoplasm of an infected cell. The catalytic subunit of the DNA polymerase E9 binds the heterodimeric processivity factor A20/D4 to form the functional polymerase holoenzyme. Here we present the crystal structure of full-length E9 at 2.7 Å resolution that permits identification of important poxvirus-specific structural insertions. One insertion in the palm domain interacts with C-terminal residues of A20 and thus serves as the processivity factor-binding site. This is in strong contrast to all other family B polymerases that bind their co-factors at the C terminus of the thumb domain. The VACV E9 structure also permits rationalization of polymerase inhibitor resistance mutations when compared with the closely related eukaryotic polymerase delta-DNA complex.


Assuntos
Domínio Catalítico/genética , DNA Polimerase Dirigida por DNA/ultraestrutura , Vaccinia virus/enzimologia , Cristalografia por Raios X , DNA Glicosilases/genética , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Nucleosídeo-Trifosfatase/genética
10.
Protein Sci ; 26(1): 40-51, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27589669

RESUMO

DNA replication in Eukaryotes is a highly dynamic process that involves several dozens of proteins. Some of these proteins form stable complexes that are amenable to high-resolution structure determination by cryo-EM, thanks to the recent advent of the direct electron detector and powerful image analysis algorithm. But many of these proteins associate only transiently and flexibly, precluding traditional biochemical purification. We found that direct mixing of the component proteins followed by 2D and 3D image sorting can capture some very weakly interacting complexes. Even at 2D average level and at low resolution, EM images of these flexible complexes can provide important biological insights. It is often necessary to positively identify the feature-of-interest in a low resolution EM structure. We found that systematically fusing or inserting maltose binding protein (MBP) to selected proteins is highly effective in these situations. In this chapter, we describe the EM studies of several protein complexes involved in the eukaryotic DNA replication over the past decade or so. We suggest that some of the approaches used in these studies may be applicable to structural analysis of other biological systems.


Assuntos
Algoritmos , Microscopia Crioeletrônica/métodos , Replicação do DNA , DNA Polimerase Dirigida por DNA/ultraestrutura , Células Eucarióticas/ultraestrutura , Imageamento Tridimensional/métodos , Complexos Multienzimáticos/ultraestrutura , Animais , DNA Polimerase Dirigida por DNA/metabolismo , Células Eucarióticas/fisiologia , Humanos , Complexos Multienzimáticos/metabolismo
11.
Science ; 352(6291): 1334-7, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27284197

RESUMO

It is generally assumed that an enzyme-substrate (ES) complex contains all components necessary for catalysis and that conversion to products occurs by rearrangement of atoms, protons, and electrons. However, we find that DNA synthesis does not occur in a fully assembled DNA polymerase-DNA-deoxynucleoside triphosphate complex with two canonical metal ions bound. Using time-resolved x-ray crystallography, we show that the phosphoryltransfer reaction takes place only after the ES complex captures a third divalent cation that is not coordinated by the enzyme. Binding of the third cation is incompatible with the basal ES complex and requires thermal activation of the ES for entry. It is likely that the third cation provides the ultimate boost over the energy barrier to catalysis of DNA synthesis.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/química , DNA/biossíntese , Magnésio/química , Biocatálise , Cátions Bivalentes/química , Cristalografia por Raios X , DNA Polimerase Dirigida por DNA/ultraestrutura , Manganês/química , Nucleotídeos/química
12.
Nature ; 524(7564): 186-91, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26222030

RESUMO

DNA replication in eukaryotes is strictly regulated by several mechanisms. A central step in this replication is the assembly of the heterohexameric minichromosome maintenance (MCM2-7) helicase complex at replication origins during G1 phase as an inactive double hexamer. Here, using cryo-electron microscopy, we report a near-atomic structure of the MCM2-7 double hexamer purified from yeast G1 chromatin. Our structure shows that two single hexamers, arranged in a tilted and twisted fashion through interdigitated amino-terminal domain interactions, form a kinked central channel. Four constricted rings consisting of conserved interior ß-hairpins from the two single hexamers create a narrow passageway that tightly fits duplex DNA. This narrow passageway, reinforced by the offset of the two single hexamers at the double hexamer interface, is flanked by two pairs of gate-forming subunits, MCM2 and MCM5. These unusual features of the twisted and tilted single hexamers suggest a concerted mechanism for the melting of origin DNA that requires structural deformation of the intervening DNA.


Assuntos
Microscopia Crioeletrônica , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/ultraestrutura , Subunidades Proteicas/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestrutura , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestrutura , Cromatina/química , Sequência Conservada , DNA/química , DNA/metabolismo , DNA/ultraestrutura , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/ultraestrutura , Fase G1 , Proteínas de Manutenção de Minicromossomo/metabolismo , Modelos Biológicos , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/ultraestrutura , Desnaturação de Ácido Nucleico , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
13.
J Am Chem Soc ; 136(39): 13754-60, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25203438

RESUMO

The importance of DNA sequencing in the life sciences and personalized medicine is continually increasing. Single-molecule sequencing methods have been developed to analyze DNA directly without the need for amplification. Here, we present a new approach to sequencing single DNA molecules using atomic force microscopy (AFM). In our approach, four surface-conjugated nucleotides were examined sequentially with a DNA polymerase-immobilized AFM tip. By observing the specific rupture events upon examination of a matching nucleotide, we could determine the template base bound in the polymerase's active site. The subsequent incorporation of the complementary base in solution enabled the next base to be read. Additionally, we observed that the DNA polymerase could incorporate the surface-conjugated dGTP when the applied force was controlled by employing the force-clamp mode.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/ultraestrutura , DNA/metabolismo , DNA/ultraestrutura , Microscopia de Força Atômica , Sequência de Bases , DNA/química
14.
PLoS Pathog ; 10(3): e1003978, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24603707

RESUMO

Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase E9, the uracil-DNA glycosylase D4 and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase co-factor whose function is essential for processive DNA synthesis. Genetic and biochemical data have established that residues located in the N-terminus of A20 are critical for binding to D4. However, no information regarding the residues of D4 involved in A20 binding is yet available. We expressed and purified the complex formed by D4 and the first 50 amino acids of A20 (D4/A201₋50). We showed that whereas D4 forms homodimers in solution when expressed alone, D4/A201₋50 clearly behaves as a heterodimer. The crystal structure of D4/A201₋50 solved at 1.85 Å resolution reveals that the D4/A20 interface (including residues 167 to 180 and 191 to 206 of D4) partially overlaps the previously described D4/D4 dimer interface. A201₋50 binding to D4 is mediated by an α-helical domain with important leucine residues located at the very N-terminal end of A20 and a second stretch of residues containing Trp43 involved in stacking interactions with Arg167 and Pro173 of D4. Point mutations of the latter residues disturb D4/A201₋50 formation and reduce significantly thermal stability of the complex. Interestingly, small molecule docking with anti-poxvirus inhibitors selected to interfere with D4/A20 binding could reproduce several key features of the D4/A201₋50 interaction. Finally, we propose a model of D4/A201₋50 in complex with DNA and discuss a number of mutants described in the literature, which affect DNA synthesis. Overall, our data give new insights into the assembly of the poxvirus DNA polymerase cofactor and may be useful for the design and rational improvement of antivirals targeting the D4/A20 interface.


Assuntos
DNA Polimerase Dirigida por DNA/química , Vaccinia virus/química , Vaccinia virus/enzimologia , Animais , Cromatografia em Gel , Cristalografia , DNA Polimerase Dirigida por DNA/ultraestrutura , Escherichia coli , Holoenzimas/química , Holoenzimas/ultraestrutura , Simulação de Acoplamento Molecular , Subunidades Proteicas/química , Vaccinia virus/ultraestrutura
15.
Proc Natl Acad Sci U S A ; 106(49): 20693-8, 2009 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-19934045

RESUMO

Proliferating cell nuclear antigen (PCNA) is responsible for the processivity of DNA polymerase. We determined the crystal structure of Pyrococcus furiosus DNA polymerase (PfuPol) complexed with the cognate monomeric PCNA, which allowed us to construct a convincing model of the polymerase-PCNA ring interaction, with unprecedented configurations of the two molecules. Electron microscopic analyses indicated that this complex structure exists in solution. Our structural study revealed that an interaction occurs between a stretched loop of PCNA and the PfuPol Thumb domain, in addition to the authentic PCNA-polymerase recognition site (PIP box). Comparisons of the present structure with the previously reported structures of polymerases complexed with DNA, suggested that the second interaction plays a crucial role in switching between the polymerase and exonuclease modes, by inducing a PCNA-polymerase complex configuration that favors synthesis over editing. This putative mechanism for fidelity control of replicative DNA polymerases is supported by experiments, in which mutations at the second interaction site caused enhancements in the exonuclease activity in the presence of PCNA.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/química , Exonucleases/química , Antígeno Nuclear de Célula em Proliferação/química , Pyrococcus furiosus/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , DNA/ultraestrutura , Primers do DNA/metabolismo , DNA Polimerase Dirigida por DNA/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Antígeno Nuclear de Célula em Proliferação/ultraestrutura , Estrutura Secundária de Proteína , Ressonância de Plasmônio de Superfície
16.
Small ; 5(22): 2597-600, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19722185

RESUMO

A new gold-nanoparticle (AuNP)-based strategy to dynamically modulate the activity of DNA polymerases and realize a hot-start (HS)-like effect in the polymerase chain reaction (PCR) is reported, which effectively prevents unwanted nonspecific amplification and improves the performance of PCRs. A high-fidelity Pfu DNA polymerase is employed as the model system. Interestingly, AuNPs inactivate the polymerase activity of Pfu at low temperature, thus resembling an antibody-based HS PCR. This inhibition effect of AuNPs is demonstrated for the preamplification polymerization activity of the PCR, which largely suppresses nonspecific amplification at temperatures between 30 and 60 degrees C and leads to highly specific and sensitive PCR amplification with Pfu. Significantly, the fidelity of Pfu is not sacrificed in the presence of AuNPs. Therefore, this AuNP-based HS strategy provides a straightforward and potentially versatile approach to realize high-performance PCR amplification.


Assuntos
DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/ultraestrutura , Ouro/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Reação em Cadeia da Polimerase/métodos , Teste de Materiais
17.
EMBO J ; 26(19): 4283-91, 2007 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-17762861

RESUMO

We used electron microscopy to examine the structure of human DNA pol gamma, the heterotrimeric mtDNA replicase implicated in certain mitochondrial diseases and aging models. Separate analysis of negatively stained preparations of the catalytic subunit, pol gammaA, and of the holoenzyme including a dimeric accessory factor, pol gammaB(2), permitted unambiguous identification of the position of the accessory factor within the holoenzyme. The model explains protection of a partial chymotryptic cleavage site after residue L(549) of pol gammaA upon binding of the accessory subunit. This interaction region is near residue 467 of pol gammaA, where a disease-related mutation has been reported to impair binding of the B subunit. One pol gammaB subunit dominates contacts with the catalytic subunit, while the second B subunit is largely exposed to solvent. A model for pol gamma is discussed that considers the effects of known mutations in the accessory subunit and the interaction of the enzyme with DNA.


Assuntos
DNA Polimerase Dirigida por DNA/química , Modelos Moleculares , Envelhecimento/genética , Envelhecimento/metabolismo , Domínio Catalítico , Quimotripsina/química , DNA Polimerase gama , DNA Polimerase Dirigida por DNA/ultraestrutura , Humanos , Microscopia Eletrônica de Transmissão , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Modelos Biológicos , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
18.
J Biol Chem ; 282(2): 1098-108, 2007 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-17105722

RESUMO

Our previous electron microscopy of DNA replicated by the bacteriophage T4 proteins showed a single complex at the fork, thought to contain the leading and lagging strand proteins, as well as the protein-covered single-stranded DNA on the lagging strand folded into a compact structure. "Trombone" loops formed from nascent lagging strand fragments were present on a majority of the replicating molecules (Chastain, P., Makhov, A. M., Nossal, N. G., and Griffith, J. D. (2003) J. Biol. Chem. 278, 21276-21285). Here we probe the composition of this replication complex using nanoscale DNA biopointers to show the location of biotin-tagged replication proteins. We find that a large fraction of the molecules with a trombone loop had two pointers to polymerase, providing strong evidence that the leading and lagging strand polymerases are together in the replication complex. 6% of the molecules had two loops, and 31% of these had three pointers to biotin-tagged polymerase, suggesting that the two loops result from two fragments that are being extended simultaneously. Under fixation conditions that extend the lagging strand, occasional molecules show two nascent lagging strand fragments, each being elongated by a biotin-tagged polymerase. T4 41 helicase is present in the complex on a large fraction of actively replicating molecules but on a smaller fraction of molecules with a stalled polymerase. Unexpectedly, we found that 59 helicase-loading protein remains on the fork after loading the helicase and is present on molecules with extensive replication.


Assuntos
Bacteriófago T4/crescimento & desenvolvimento , Bacteriófago T4/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Replicação Viral , Bacteriófago T4/genética , Biotina , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/ultraestrutura , DNA de Cadeia Simples/química , DNA de Cadeia Simples/ultraestrutura , DNA Viral/química , DNA Viral/ultraestrutura , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/ultraestrutura , Estrutura Quaternária de Proteína , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/ultraestrutura
19.
Proc Natl Acad Sci U S A ; 102(39): 13795-800, 2005 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-16169902

RESUMO

Ring-shaped sliding clamps and clamp loader ATPases are essential factors for rapid and accurate DNA replication. The clamp ring is opened and resealed at the primer-template junctions by the ATP-fueled clamp loader function. The processivity of the DNA polymerase is conferred by its attachment to the clamp loaded onto the DNA. In eukarya and archaea, the replication factor C (RFC) and the proliferating cell nuclear antigen (PCNA) play crucial roles as the clamp loader and the clamp, respectively. Here, we report the electron microscopic structure of an archaeal RFC-PCNA-DNA complex at 12-A resolution. This complex exhibits excellent fitting of each atomic structure of RFC, PCNA, and the primed DNA. The PCNA ring retains an open conformation by extensive interactions with RFC, with a distorted spring washer-like conformation. The complex appears to represent the intermediate, where the PCNA ring is kept open before ATP hydrolysis by RFC.


Assuntos
Replicação do DNA , DNA Arqueal/ultraestrutura , DNA Polimerase Dirigida por DNA/ultraestrutura , Antígeno Nuclear de Célula em Proliferação/ultraestrutura , Pyrococcus furiosus/genética , DNA Arqueal/química , DNA Polimerase Dirigida por DNA/química , Microscopia Eletrônica , Conformação de Ácido Nucleico , Antígeno Nuclear de Célula em Proliferação/química , Conformação Proteica , Pyrococcus furiosus/metabolismo
20.
Neuromuscul Disord ; 13(2): 133-42, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12565911

RESUMO

Autosomal recessive progressive external ophthalmoplegia is a mitochondrial disease characterized by accumulation of multiple large-scale deletions of mitochondrial DNA. We previously reported missense mutations in POLG, the gene encoding the mitochondrial DNA polymerase gamma in two nuclear families compatible with autosomal recessive progressive external ophthalmoplegia. Here, we report a novel POLG missense mutation (R627W) in a sporadic patient and we provide genetic support that all these POLG mutations are actually causal and recessive. The novel patient presented with sensory ataxic neuropathy and has the clinical triad of sensory ataxic neuropathy, dysarthria and ophthalmoparesis (SANDO). This is the first finding of a genetic cause of Sensory Ataxic Neuropathy, Dysarthria and Ophthalmoparesis and it implies that this disorder may actually be a variant of autosomal recessive progressive external ophthalmoplegia. Sensory neuropathy is the initial feature in Belgian compound heterozygote autosomal recessive progressive external ophthalmoplegia patients, all carrying the POLG A467T mutation, which occurs at a frequency of 0.6% in the Belgian population.


Assuntos
Ataxia/genética , DNA Polimerase Dirigida por DNA/genética , Mutação de Sentido Incorreto , Oftalmoplegia Externa Progressiva Crônica/genética , Adolescente , Adulto , Idoso , Arginina/genética , Ataxia/etiologia , DNA Polimerase gama , DNA Polimerase Dirigida por DNA/ultraestrutura , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Genes Recessivos , Heterozigoto , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Microscopia Eletrônica , Pessoa de Meia-Idade , Dados de Sequência Molecular , Músculo Esquelético/química , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Oftalmoplegia Externa Progressiva Crônica/complicações , Linhagem , Succinato Desidrogenase/metabolismo , Triptofano/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...