Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Appl Microbiol ; 134(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36990643

RESUMO

AIMS: The yeast Dekkera bruxellensis is a Crabtree-positive yeast that tends towards the oxidative/respiratory metabolism in aerobiosis. However, it is more sensitive to H2O2 than Saccharomyces cerevisiae. In order to investigate this metabolic paradox, the present work aimed to uncover the biological defence mechanism used by this yeast to tolerate the presence of exogenous H2O2. METHODS AND RESULTS: Growth curves and spot tests were performed to establish the values of minimal inhibitory concentration and minimal biocidal concentration of H2O2 for different combinations of carbon and nitrogen sources. Cells in exponential growth phase in different culture conditions were used to measure superoxide and thiols [protein (PT) and non-PT], enzyme activities and gene expression. CONCLUSIONS: The combination of glutathione peroxidase (Gpx) and sulfhydryl-containing PT formed the preferred defence mechanism against H2O2, which was more efficiently active under respiratory metabolism. However, the action of this mechanism was suppressed when the cells were metabolizing nitrate (NO3). SIGNIFICANCE AND IMPACT OF STUDY: These results were relevant to figure out the fitness of D. bruxellensis to metabolize industrial substrates containing oxidant molecules, such as molasses and plant hydrolysates, in the presence of a cheaper nitrogen source such as NO3.


Assuntos
Dekkera , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Peróxido de Hidrogênio/metabolismo , Nitratos/metabolismo , Antioxidantes/metabolismo , Dekkera/genética , Dekkera/metabolismo , Fermentação , Nitrogênio/metabolismo
2.
J Biotechnol ; 355: 42-52, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35760147

RESUMO

The advancement of knowledge about the physiology of Dekkera bruxellensis has shown its potential for the production of fuel ethanol very close to the conventional fermenting yeast S. cerevisiae. However, some aspects of its metabolism remain uncovered. In the present study, the respiro-fermentative parameters of D. bruxellensis GDB 248 were evaluated under different cultivation conditions. The results showed that sucrose was more efficiently converted to ethanol than glucose, regardless the nitrogen source, which points out for the industrial efficiency of this yeast in sucrose-based substrate. The blockage of the cytosolic acetate production incremented the yeast fermentative efficiency by 27% (in glucose) and 14% (in sucrose). On the other hand, the presence of nitrate as inducer of acetate production reducing the production of ethanol. Altogether, these results settled the hypothesis that acetate metabolism is the main constraint for ethanol production. Besides, this acetate-generating pathway seems to exert some regulatory action on the flux and distribution of the carbon flowing through the central metabolism. These physiological aspects were corroborated by the relative expression analysis of key genes in the crossroad to ethanol, acetate and biomass formation. All the results were discussed in the light of the industrial potential of this yeast.


Assuntos
Dekkera , Saccharomyces cerevisiae , Acetatos/metabolismo , Brettanomyces , Dekkera/genética , Dekkera/metabolismo , Etanol/metabolismo , Fermentação , Glucose/metabolismo , Microbiologia Industrial , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sacarose/metabolismo
3.
Int J Food Microbiol ; 314: 108415, 2020 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-31707175

RESUMO

Dekkera bruxellensis, considered the major microbial contaminant in wine production, produces 4-ethylphenol, a cause of unpleasant odors. Thus, identification of this yeast before wine spoilage is crucial. Although challenging, it could be achieved using a simple technique: RNA-FISH. To reach it is necessary to design probes that allow specific detection/identification of D. bruxellensis among the wine microorganisms and in the wine environment and, if possible, using low formamide concentrations. Therefore, this study was focused on: a) designing a DNA-FISH probe to identify D. bruxellensis that matches these requirements and b) determining the applicability of the RNA-FISH procedure after the end of the alcoholic fermentation and in wine. A novel DNA-FISH D. bruxellensis probe with good performance and specificity was designed. The application of this probe using an in-suspension RNA-FISH protocol (applying only 5% of formamide) allowed the early detection/identification of D. bruxellensis at low cell densities (5 × 102 cell/mL). This was possible by flow cytometry independently of the growth stage of the target cells, both at the end of the alcoholic fermentation and in wine even in the presence of high S. cerevisiae cell densities. Thus, this study aims to contribute to facilitate the identification of D. bruxellensis before wine spoilage occurs, preventing economic losses to the wine industry.


Assuntos
Dekkera/isolamento & purificação , Microbiologia de Alimentos/métodos , RNA Fúngico/análise , Vinho/microbiologia , Dekkera/genética , Fermentação , Citometria de Fluxo , Hibridização in Situ Fluorescente , Sondas de Ácido Nucleico/genética , RNA Fúngico/genética , Especificidade da Espécie
4.
World J Microbiol Biotechnol ; 35(7): 103, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31236799

RESUMO

Dekkera bruxellensis is an industrial yeast mainly regarded as a contaminant species in fermentation processes. In winemaking, it is associated with off-flavours that cause wine spoilage, while in bioethanol production this yeast is linked to a reduction of industrial productivity by competing with Saccharomyces cerevisiae for the substrate. In spite of that, this point of view is gradually changing, mostly because D. bruxellensis is also able to produce important metabolites, such as ethanol, acetate, fusel alcohols, esters and others. This dual role is likely due to the fact that this yeast presents a set of metabolic traits that might be either industrially attractive or detrimental, depending on how they are faced and explored. Therefore, a proper industrial application for D. bruxellensis depends on the correct assembly of its central metabolic puzzle. In this sense, researchers have addressed issues regarding the physiological and genetic aspects of D. bruxellensis, which have brought to light much of our current knowledge on this yeast. In this review, we shall outline what is presently understood about the main metabolic features of D. bruxellensis and how they might be managed to improve its current or future industrial applications (except for winemaking, in which it is solely regarded as a contaminant). Moreover, we will discuss the advantages and challenges that must be overcome in order to take advantage of the full biotechnological potential of this yeast.


Assuntos
Dekkera/genética , Dekkera/metabolismo , Microbiologia Industrial , Ácido Acético/metabolismo , Etanol/metabolismo , Fermentação , Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia
5.
Microb Biotechnol ; 12(6): 1237-1248, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31197952

RESUMO

Dekkera bruxellensis is the main reason for spoilage in the wine industry. It renders the products unacceptable leading to large economic losses. Fluorescence In Situ Hybridization (FISH) technique has the potential for allowing its specific detection. Nevertheless, some experimental difficulties can be encountered when FISH technique is applied in the wine environment (e.g. matrix and cells' autofluorescence, fluorophore inadequate selection and probes' low specificity to the target organisms). An easy and fast in-suspension RNA-FISH procedure was applied for the first time for identifying D. bruxellensis in wine. A previously designed RNA-FISH probe to detect D. bruxellensis (26S D. brux.5.1) was used, and the matrix and cells' fluorescence interferences, the influence of three fluorophores in FISH performance and the probe specificity were evaluated. The results revealed that to apply RNA-FISH technique in the wine environment, a red-emitting fluorophore should be used. Good probe performance and specificity were achieved with 25% of formamide. The resulting RNA-FISH protocol was applied in wine samples artificially inoculated with D. bruxellensis. This spoilage microorganism was detected in wine at cell densities lower than those associated with phenolic off-flavours. Thus, the RNA-FISH procedure described in this work represents an advancement to facilitate early detection of the most dangerous wine spoilage yeast and, consequently, to reduce the economic losses caused by this yeast to the wine industry.


Assuntos
Dekkera/isolamento & purificação , Microbiologia de Alimentos/métodos , Hibridização in Situ Fluorescente/métodos , Vinho/microbiologia , Dekkera/classificação , Dekkera/genética , RNA Fúngico/análise , RNA Fúngico/genética , RNA Ribossômico/análise , RNA Ribossômico/genética
6.
FEMS Microbiol Lett ; 365(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29385575

RESUMO

Dekkera bruxellensis is important for lambic beer fermentation but is considered a spoilage yeast in wine fermentation. We compared two D. bruxellensis strains isolated from wine and found that they differ in some basic properties, including osmotolerance. The genomes of both strains contain two highly similar copies of genes encoding putative glycerol-proton symporters from the STL family that are important for yeast osmotolerance. Cloning of the two DbSTL genes and their expression in suitable osmosensitive Saccharomyces cerevisiae mutants revealed that both identified genes encode functional glycerol uptake systems, but only DbStl2 has the capacity to improve the osmotolerance of S. cerevisiae cells.


Assuntos
Dekkera/fisiologia , Proteínas Fúngicas/metabolismo , Glicerol/metabolismo , Osmorregulação/genética , Simportadores/metabolismo , Dekkera/genética , Dekkera/isolamento & purificação , Dekkera/metabolismo , Proteínas Fúngicas/genética , Teste de Complementação Genética , Genoma Bacteriano/genética , Prótons , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Especificidade da Espécie , Simportadores/genética , Vinho/microbiologia
7.
G3 (Bethesda) ; 7(10): 3243-3250, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28983066

RESUMO

Genetic variation in natural populations represents the raw material for phenotypic diversity. Species-wide characterization of genetic variants is crucial to have a deeper insight into the genotype-phenotype relationship. With the advent of new sequencing strategies and more recently the release of long-read sequencing platforms, it is now possible to explore the genetic diversity of any nonmodel organisms, representing a fundamental resource for biological research. In the frame of population genomic surveys, a first step is to obtain the complete sequence and high-quality assembly of a reference genome. Here, we sequenced and assembled a reference genome of the nonconventional Dekkera bruxellensis yeast. While this species is a major cause of wine spoilage, it paradoxically contributes to the specific flavor profile of some Belgium beers. In addition, an extreme karyotype variability is observed across natural isolates, highlighting that D. bruxellensis genome is very dynamic. The whole genome of the D. bruxellensis UMY321 isolate was sequenced using a combination of Nanopore long-read and Illumina short-read sequencing data. We generated the most complete and contiguous de novo assembly of D. bruxellensis to date and obtained a first glimpse into the genomic variability within this species by comparing the sequences of several isolates. This genome sequence is therefore of high value for population genomic surveys and represents a reference to study genome dynamic in this yeast species.


Assuntos
Dekkera/genética , Genoma Fúngico , Análise de Sequência de DNA/métodos
8.
Mol Biol Evol ; 34(11): 2870-2878, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961859

RESUMO

Parallel evolution occurs when a similar trait emerges in independent evolutionary lineages. Although changes in protein coding and gene transcription have been investigated as underlying mechanisms for parallel evolution, parallel changes in chromatin structure have never been reported. Here, Saccharomyces cerevisiae and a distantly related yeast species, Dekkera bruxellensis, are investigated because both species have independently evolved the capacity of aerobic fermentation. By profiling and comparing genome sequences, transcriptomic landscapes, and chromatin structures, we revealed that parallel changes in nucleosome occupancy in the promoter regions of mitochondria-localized genes led to concerted suppression of mitochondrial functions by glucose, which can explain the metabolic convergence in these two independent yeast species. Further investigation indicated that similar mutational processes in the promoter regions of these genes in the two independent evolutionary lineages underlay the parallel changes in chromatin structure. Our results indicate that, despite several hundred million years of separation, parallel changes in chromatin structure, can be an important adaptation mechanism for different organisms. Due to the important role of chromatin structure changes in regulating gene expression and organism phenotypes, the novel mechanism revealed in this study could be a general phenomenon contributing to parallel adaptation in nature.


Assuntos
Aerobiose/genética , Cromatina/genética , Aerobiose/fisiologia , Anaerobiose/genética , Evolução Biológica , Cromatina/fisiologia , Dekkera/genética , Dekkera/metabolismo , Evolução Molecular , Fermentação/genética , Expressão Gênica/genética , Glucose/metabolismo , Filogenia , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Antonie Van Leeuwenhoek ; 110(9): 1157-1168, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28631172

RESUMO

In the present work we studied the expression of genes from nitrogen central metabolism in the yeast Dekkera bruxellensis and under regulation by the Nitrogen Catabolite Repression mechanism (NCR). These analyses could shed some light on the biological mechanisms involved in the adaptation and survival of this yeast in the sugarcane fermentation process for ethanol production. Nitrogen sources (N-sources) in the form of ammonium, nitrate, glutamate or glutamine were investigated with or without the addition of methionine sulfoximine, which inhibits the activity of the enzyme glutamine synthetase and releases cells from NCR. The results showed that glutamine might act as an intracellular sensor for nitrogen availability in D. bruxellensis, by activating NCR. Gene expression analyses indicated the existence of two different GATA-dependent NCR pathways, identified as glutamine-dependent and glutamine-independent mechanisms. Moreover, nitrate is sensed as a non-preferential N-source and releases NCR to its higher level. After grouping genes according to their regulation pattern, we showed that genes for ammonium assimilation represent a regulon with almost constitutive expression, while permease encoding genes are mostly affected by the nitrogen sensor mechanism. On the other hand, nitrate assimilation genes constitute a regulon that is primarily subjected to induction by nitrate and, to a lesser extent, to a repressive mechanism by preferential N-sources. This observation explains our previous reports showing that nitrate is co-consumed with ammonium, a trait that enables D. bruxellensis cells to scavenge limiting N-sources in the industrial substrate and, therefore, to compete with Saccharomyces cerevisiae in this environment.


Assuntos
Repressão Catabólica/fisiologia , Dekkera/metabolismo , Regulação Fúngica da Expressão Gênica , Glutamina/metabolismo , Nitrogênio/metabolismo , Compostos de Amônio/metabolismo , Repressão Catabólica/genética , Dekkera/genética , Dekkera/crescimento & desenvolvimento , Glutamato-Amônia Ligase/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/biossíntese , Microbiologia Industrial , Metionina Sulfoximina/metabolismo , Metionina Sulfoximina/toxicidade , Nitratos/metabolismo , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real , Regulon
10.
FEMS Microbiol Ecol ; 93(5)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28430940

RESUMO

Kombucha, historically an Asian tea-based fermented drink, has recently become trendy in Western countries. Producers claim it bears health-enhancing properties that may come from the tea or metabolites produced by its microbiome. Despite its long history of production, microbial richness and dynamics have not been fully unraveled, especially at an industrial scale. Moreover, the impact of tea type (green or black) on microbial ecology was not studied. Here, we compared microbial communities from industrial-scale black and green tea fermentations, still traditionally carried out by a microbial biofilm, using culture-dependent and metabarcoding approaches. Dominant bacterial species belonged to Acetobacteraceae and to a lesser extent Lactobacteriaceae, while the main identified yeasts corresponded to Dekkera, Hanseniaspora and Zygosaccharomyces during all fermentations. Species richness decreased over the 8-day fermentation. Among acetic acid bacteria, Gluconacetobacter europaeus, Gluconobacter oxydans, G. saccharivorans and Acetobacter peroxydans emerged as dominant species. The main lactic acid bacteria, Oenococcus oeni, was strongly associated with green tea fermentations. Tea type did not influence yeast community, with Dekkera bruxellensis, D. anomala, Zygosaccharomyces bailii and Hanseniaspora valbyensis as most dominant. This study unraveled a distinctive core microbial community which is essential for fermentation control and could lead to Kombucha quality standardization.


Assuntos
Fermentação/fisiologia , Chá de Kombucha/microbiologia , Microbiota/genética , Ácido Acético/metabolismo , Acetobacter/classificação , Acetobacter/genética , Acetobacter/isolamento & purificação , Técnicas de Tipagem Bacteriana , Biofilmes/crescimento & desenvolvimento , Dekkera/classificação , Dekkera/genética , Dekkera/isolamento & purificação , Hanseniaspora/classificação , Hanseniaspora/genética , Hanseniaspora/isolamento & purificação , Ácido Láctico/metabolismo , Técnicas de Tipagem Micológica , Oenococcus/classificação , Oenococcus/genética , Oenococcus/isolamento & purificação , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/isolamento & purificação , Zygosaccharomyces/classificação , Zygosaccharomyces/genética , Zygosaccharomyces/isolamento & purificação
11.
J Agric Food Chem ; 65(16): 3341-3350, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28260371

RESUMO

Three bottles of different beers were found in 2015 during a reconstruction of the brewery of the Raven Trading s.r.o. company in Záhlinice, Czech Republic. Thanks to good storage conditions, it was possible to analyze their original characteristics. All three bottles contained most probably lager type beer. One beer had sulfuric and fecal off-flavors; it was bright with the original extract of 10.3° Plato. The second beer, with an original extract of 7.6° Plato, was dark and very acidic, resembling Lambic. DNA analysis proved the presence of Dekkera bruxellensis, which corresponded to its chemical profile (total acidity, FAN, ethyl acetate, total esters). The third beer contained traces of carbon dioxide bubbles, was light brown and slightly bitter, with an original extract 10.4° Plato. Because it obviously underwent a natural aging process, sweetness, honey, and fruity off-flavors were detected and transformation products of iso-α-acids were found.


Assuntos
Cerveja/análise , Ácidos/análise , Cerveja/microbiologia , República Tcheca , Dekkera/genética , Dekkera/isolamento & purificação , Dekkera/metabolismo , Ácidos Graxos/análise , Fermentação , Aromatizantes/análise , Manipulação de Alimentos , Humanos , Fatores de Tempo
12.
World J Microbiol Biotechnol ; 33(4): 77, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28341906

RESUMO

A comprehensive understanding of the presence and role of yeasts in bottled wines helps to know and control the organoleptic quality of the final product. The South Region of Brazil is an important wine producer, and the state of "Rio Grande do Sul" (RS) accounts for 90% of Brazilian wines. The state of "Santa Catarina" (SC) started the production in 1975, and is currently the fifth Brazilian producer. As there is little information about yeasts present in Brazilian wines, our main objective was to assess the composition of culturable yeasts associated to bottled wines produced in RS and SC, South of Brazil. We sampled 20 RS and 29 SC bottled wines produced between 2003 and 2011, and we isolated culturable yeasts in non-selective agar plates. We identified all isolates by sequencing of the D1/D2 domain of LSU rDNA or ITS1-5.8 S-ITS2 region, and comparison with type strain sequences deposited in GenBank database. Six yeast species were shared in the final product in both regions. We obtained two spoilage yeast profiles: RS with Zygosaccharomyces bailii and Pichia membranifaciens (Dekkera bruxellensis was found only in specific table wines); and SC with Dekkera bruxellensis and Pichia manshurica. Knowledge concerning the different spoilage profiles is important for winemaking practices in both regions.


Assuntos
Análise de Sequência de DNA/métodos , Vinho/microbiologia , Leveduras/classificação , Leveduras/isolamento & purificação , Brasil , DNA Fúngico/análise , Dekkera/classificação , Dekkera/genética , Dekkera/isolamento & purificação , Microbiologia de Alimentos , Pichia/classificação , Pichia/genética , Pichia/isolamento & purificação , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/isolamento & purificação , Leveduras/genética , Zygosaccharomyces/classificação , Zygosaccharomyces/genética , Zygosaccharomyces/isolamento & purificação
13.
Food Microbiol ; 63: 92-100, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28040186

RESUMO

Vinylphenol reductase of Dekkera bruxellensis, the characteristic enzyme liable for "Brett" sensory modification of wine, has been recently recognized to belong to the short chain dehydrogenases/reductases family. Indeed, a preliminary biochemical characterisation has conferred to the purified protein a dual significance acting as superoxide dismutase and as a NADH-dependent reductase. The present study aimed for providing a certain identification of the enzyme by cloning the VPR gene in S. cerevisiae, a species not producing ethyl phenols. Transformed clones of S. cerevisiae resulted capable of expressing a biologically active form of the heterologous protein, proving its role in the conversion of 4-vinyl guaiacol to 4-ethyl guaiacol. A VPR specific protein activity of 9 ± 0.6 mU/mg was found in crude extracts of S. cerevisiae recombinant strain. This result was confirmed in activity trials carried out with the protein purified from transformant cells of S. cerevisiae by a his-tag purification approach; in particular, VPR-enriched fractions showed a specific activity of 1.83 ± 0.03 U/mg at pH 6.0. Furthermore, in agreement with literature, the purified protein behaves like a SOD, with a calculated specific activity of approximatively 3.41 U/mg. The comparative genetic analysis of the partial VPR gene sequences from 17 different D. bruxellesis strains suggested that the observed polymorphism (2.3%) and the allelic heterozygosity state of the gene do not justify the well described strain-dependent character in producing volatile phenols of this species. Actually, no correlation exists between genotype membership of the analysed strains and their capability to release off-flavours. This work adds valuable knowledge to the study of D. bruxellensis wine spoilage and prepare the ground for interesting future industrial applications.


Assuntos
Dekkera/genética , Oxirredutases/genética , Saccharomyces cerevisiae/genética , Clonagem Molecular , Dekkera/enzimologia , Fermentação , Microbiologia de Alimentos , Genótipo , Oxirredutases/química , Oxirredutases/metabolismo , Fenóis/metabolismo , Polimorfismo Genético , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Vinho/análise
14.
PLoS One ; 11(8): e0161741, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27560164

RESUMO

The wine and beer yeast Dekkera bruxellensis thrives in environments that are harsh and limiting, especially in concentrations with low oxygen and high ethanol. Its different strains' chromosomes greatly vary in number (karyotype). This study isolates two novel centromeric loci (CEN1 and CEN2), which support both the yeast's autonomous replication and the stable maintenance of plasmids. In the sequenced genome of the D. bruxellensis strain CBS 2499, CEN1 and CEN2 are each present in one copy. They differ from the known "point" CEN elements, and their biological activity is retained within ~900-1300 bp DNA segments. CEN1 and CEN2 have features of both "point" and "regional" centromeres: They contain conserved DNA elements, ARSs, short repeats, one tRNA gene, and transposon-like elements within less than 1 kb. Our discovery of a miniature inverted-repeat transposable element (MITE) next to CEN2 is the first report of such transposons in yeast. The transformants carrying circular plasmids with cloned CEN1 and CEN2 undergo a phenotypic switch: They form fluffy colonies and produce three times more biofilm. The introduction of extra copies of CEN1 and CEN2 promotes both genome rearrangements and ploidy shifts, with these effects mediated by homologous recombination (between circular plasmid and genome centromere copy) or by chromosome breakage when integrated. Also, the proximity of the MITE-like transposon to CEN2 could translocate CEN2 within the genome or cause chromosomal breaks, so promoting genome dynamics. With extra copies of CEN1 and CEN2, the yeast's enhanced capacities to rearrange its genome and to change its gene expression could increase its abilities for exploiting new and demanding niches.


Assuntos
Centrômero/genética , Dekkera/genética , Genes Fúngicos , Loci Gênicos , Instabilidade Genômica , Cerveja/microbiologia , Biofilmes , Sequência Conservada , Dekkera/fisiologia , Recombinação Homóloga , Ploidias , Vinho/microbiologia
15.
Lett Appl Microbiol ; 63(3): 210-4, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27341694

RESUMO

UNLABELLED: Dekkera bruxellensis hit the spotlight in the past decade mostly due to its rather high ability to adapt to several different fermentation processes. This yeast relies on different genetic and physiological aspects to achieve and preserve its high industrial fitness and some of these traits are shared with Saccharomyces cerevisiae. We have previously described that D. bruxellensis is unable to make use of accumulating trehalose as a strategy for cell adaptation and survival in the industrial scenario, as opposed to S. cerevisiae. Since trehalose is often involved in mechanisms related to cell protection, we aimed to investigate both cause and effect of the absence of this metabolite in the cell adaptive capacity in the industrial environment. Our results indicate that the major cause for the nonaccumulation of trehalose is the high constitutive activity of neutral trehalase. Therefore, the rate of trehalose degradation could be higher than its rate of synthesis, preventing accumulation. Altogether, our data elucidate the mechanisms involved in the lack of trehalose accumulation in D. bruxellensis as well as evaluates the implications of this feature. SIGNIFICANCE AND IMPACT OF THE STUDY: Dekkera bruxellensis can successfully take advantage of its peculiar physiological and genetic traits in order to adapt and survive in fermentation processes. So far, tolerance to stress has been credited to trehalose synthesis. The data presented in this work provided information on the underlying mechanism that prevents trehalose accumulation and corroborated the recent information that trehalose itself is not implicated in yeast stress tolerance. Second, it showed that D. bruxellensis responds differently to Saccharomyces cerevisiae to excess of sugar, which may explain its preference for respiration (oxidative metabolism) over fermentation (reductive metabolism) even at limited oxygen supply. These findings help to understand the drop on ethanol production in processes overtaken by this yeast.


Assuntos
Dekkera/enzimologia , Dekkera/metabolismo , Saccharomyces cerevisiae/metabolismo , Trealase/metabolismo , Trealose/metabolismo , Metabolismo dos Carboidratos , Carboidratos , Dekkera/genética , Etanol/metabolismo , Fermentação/genética , Microbiologia Industrial/métodos , Fosforilação Oxidativa , Oxigênio/metabolismo
16.
Lett Appl Microbiol ; 62(4): 354-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26928357

RESUMO

UNLABELLED: We investigated the presence of the yeast Dekkera bruxellensis in samples collected at three points surrounding the industrial alcoholic fermentation plants of two distilleries where there are often cases of contamination caused by this yeast: this involved sugar cane wash water, feeding sugar cane juice and vinasse from the treatment pond. Total yeast was isolated in WLN medium with bromocresol green and cycloheximide and further selected on the basis of its ability to grow in synthetic medium containing nitrate. Following this, colonies were selected from the distribution on nitrate plates and identified by amplification with species-specific primers and DNA sequencing of the 26S-D1/D2 locus. The results showed that D. bruxellensis is introduced through the feeding substrate, which suggests that its cells originated with the harvested cane. Subsequently, its population circulates as a result of the reuse of water for washing the cane, in a continuous re-inoculation of the plant with yeasts. Furthermore, the yeast population is formed in the vinasse by the addition of wash water into the treatment ponds and then reintroduced to the culture fields by fertigation, so that the process can be renewed in the following season. It is now possible to adopt sanitation procedures that can prevent the entry of the contamination to the fermentation process. SIGNIFICANCE AND IMPACT OF THE STUDY: The presence of the yeast Dekkera bruxellensis is sometimes attributed to a decline in the industrial productivity of ethanol since it has a more limited fermentation capacity than Saccharomyces cerevisiae. Although its adaptability to the industrial environment has been noted, so far, there has been no evidence to determine the source of this contamination. In this study, we provide evidence to show that D. bruxellensis comes from the fields together with the harvested cane and is then accumulated and recirculated. It might be possible to prevent the accumulation of this yeast by carrying out sanitation controls during the harvesting season.


Assuntos
Reatores Biológicos/microbiologia , Dekkera/crescimento & desenvolvimento , Dekkera/metabolismo , Etanol/metabolismo , Saccharum/microbiologia , Dekkera/genética , Fermentação/fisiologia , Microbiologia Industrial/métodos , Nitratos , Saccharomyces cerevisiae/metabolismo , Microbiologia da Água
17.
Appl Microbiol Biotechnol ; 100(7): 3219-31, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26743658

RESUMO

Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the "Custer effect". Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering.


Assuntos
Álcool Desidrogenase/metabolismo , Dekkera/genética , Etanol/metabolismo , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Aerobiose , Álcool Desidrogenase/genética , Anaerobiose , Biocombustíveis , Clonagem Molecular , Dekkera/enzimologia , Fermentação , Proteínas Fúngicas/genética , Expressão Gênica , Engenharia Genética , Plasmídeos/química , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Gigascience ; 4: 56, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26617983

RESUMO

BACKGROUND: It remains a challenge to perform de novo assembly using next-generation sequencing (NGS). Despite the availability of multiple sequencing technologies and tools (e.g., assemblers) it is still difficult to assemble new genomes at chromosome resolution (i.e., one sequence per chromosome). Obtaining high quality draft assemblies is extremely important in the case of yeast genomes to better characterise major events in their evolutionary history. The aim of this work is two-fold: on the one hand we want to show how combining different and somewhat complementary technologies is key to improving assembly quality and correctness, and on the other hand we present a de novo assembly pipeline we believe to be beneficial to core facility bioinformaticians. To demonstrate both the effectiveness of combining technologies and the simplicity of the pipeline, here we present the results obtained using the Dekkera bruxellensis genome. METHODS: In this work we used short-read Illumina data and long-read PacBio data combined with the extreme long-range information from OpGen optical maps in the task of de novo genome assembly and finishing. Moreover, we developed NouGAT, a semi-automated pipeline for read-preprocessing, de novo assembly and assembly evaluation, which was instrumental for this work. RESULTS: We obtained a high quality draft assembly of a yeast genome, resolved on a chromosomal level. Furthermore, this assembly was corrected for mis-assembly errors as demonstrated by resolving a large collapsed repeat and by receiving higher scores by assembly evaluation tools. With the inclusion of PacBio data we were able to fill about 5 % of the optical mapped genome not covered by the Illumina data.


Assuntos
Biologia Computacional/métodos , Dekkera/genética , Genoma Fúngico , Mapeamento Cromossômico/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Software
19.
FEMS Yeast Res ; 15(4): fov021, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25956542

RESUMO

Dekkera bruxellensis is a non-conventional yeast normally considered a spoilage organism in wine (off-flavours) and in the bioethanol industry. But it also has potential as production yeast. The species diverged from Saccharomyces cerevisiae 200 mya, before the whole genome duplication. However, it displays similar characteristics such as being Crabtree- and petite positive, and the ability to grow anaerobically. Partial increases in ploidy and promoter rewiring may have enabled evolution of the fermentative lifestyle in D. bruxellensis. On the other hand, it has genes typical for respiratory yeasts, such as for complex I or the alternative oxidase AOX1. Dekkera bruxellensis grows more slowly than S. cerevisiae, but produces similar or greater amounts of ethanol, and very low amounts of glycerol. Glycerol production represents a loss of energy but also functions as a redox sink for NADH formed during synthesis of amino acids and other compounds. Accordingly, anaerobic growth required addition of certain amino acids. In spite of its slow growth, D. bruxellensis outcompeted S. cerevisiae in glucose-limited cultures, indicating a more efficient energy metabolism and/or higher affinity for glucose. This review tries to summarize the latest discoveries about evolution, physiology and metabolism, and biotechnological potential of D. bruxellensis.


Assuntos
Biotecnologia/métodos , Dekkera/fisiologia , Evolução Molecular , Aerobiose , Anaerobiose , Dekkera/genética , Dekkera/crescimento & desenvolvimento , Dekkera/metabolismo , Etanol/metabolismo , Fermentação , Glicerol/metabolismo , Modelos Biológicos , Vinho/microbiologia
20.
Antonie Van Leeuwenhoek ; 107(5): 1145-53, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25697274

RESUMO

Dekkera bruxellensis is a yeast known to affect the quality of wine and beer. This species, due to its high ethanol and acid tolerance, has been reported also to compete with Saccharomyces cerevisiae in distilleries producing fuel ethanol. In order to understand how this species responds when exposed to low temperatures, some mechanisms like synthesis and accumulation of intracellular metabolites, changes in lipid composition and activation of the HOG-MAPK pathway were investigated in the genome sequenced strain CBS 2499. We show that cold stress caused intracellular accumulation of glycogen, but did not induce accumulation of trehalose and glycerol. The cellular fatty acid composition changed after the temperature downshift, and a significant increase of palmitoleic acid was observed. RT-PCR analysis revealed that OLE1 encoding for Δ9-fatty acid desaturase was up-regulated, whereas TPS1 and INO1 didn't show changes in their expression. In D. bruxellensis Hog1p was activated by phosphorylation, as described in S. cerevisiae, highlighting a conserved role of the HOG-MAP kinase signaling pathway in cold stress response.


Assuntos
Metabolismo dos Carboidratos , Dekkera/metabolismo , Proteínas Fúngicas/metabolismo , Metabolismo dos Lipídeos , Temperatura Baixa , Dekkera/genética , Dekkera/crescimento & desenvolvimento , Etanol/metabolismo , Fermentação , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...