Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.469
Filtrar
1.
Med Oncol ; 41(7): 170, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847902

RESUMO

Salvianolic acid B (Sal B) has demonstrated anticancer activity against various types of cancer. However, the underlying mechanism of Sal B-mediated anticancer effects remains incompletely understood. This study aims to investigate the impact of Sal B on the growth and metastasis of human A549 lung cells, as well as elucidate its potential mechanisms. In this study, different concentrations of Sal B were administered to A549 cells. The effects on migration and invasion abilities were assessed using MTT, wound healing, and transwell assays. Flow cytometry analysis was employed to evaluate Sal B-induced apoptosis in A549 cells. Western blotting and immunohistochemistry were conducted to measure the expression levels of cleaved caspase-3, cleaved PARP, and E-cadherin. Commercial kits were utilized for detecting intracellular reactive oxygen species (ROS) and NAD+. Additionally, a xenograft model with transplanted A549 tumors was employed to assess the anti-tumor effect of Sal B in vivo. The expression levels of NDRG2, p-PTEN, and p-AKT were determined through western blotting. Our findings demonstrate that Sal B effectively inhibits proliferation, migration, and invasion in A549 cells while inducing dose-dependent apoptosis. These apoptotic responses and inhibition of tumor cell metastasis are accompanied by alterations in intracellular ROS levels and NAD+/NADH ratio. Furthermore, our in vivo experiment reveals that Sal B significantly suppresses A549 tumor growth compared to an untreated control group while promoting increased cleavage of caspase-3 and PARP. Importantly, we observe that Sal B upregulates NDRG2 expression while downregulating p-PTEN and p-AKT expressions. Collectively, our results provide compelling evidence supporting the ability of Sal B to inhibit both growth and metastasis in A549 lung cancer cells through oxidative stress modulation as well as involvement of the NDRG2/PTEN/AKT pathway.


Assuntos
Benzofuranos , Movimento Celular , Proliferação de Células , Neoplasias Pulmonares , Estresse Oxidativo , PTEN Fosfo-Hidrolase , Transdução de Sinais , Humanos , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células A549 , Animais , Proliferação de Células/efeitos dos fármacos , Benzofuranos/farmacologia , Movimento Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Camundongos , Apoptose/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo , Depsídeos
2.
Cell Biochem Funct ; 42(4): e4073, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38863227

RESUMO

Polycystic ovary syndrome (PCOS) is a multidisciplinary endocrinopathy that affects women of reproductive age. It is characterized by menstrual complications, hyperandrogenism, insulin resistance, and cardiovascular issues. The current research investigated the efficacy of rosmarinic acid in letrozole-induced PCOS in adult female rats as well as the potential underlying molecular mechanisms. Forty female rats were divided into the control group, the rosmarinic acid group (50 mg/kg per orally, po) for 21 days, PCOS group; PCOS was induced by administration of letrozole (1 mg/kg po) for 21 days, and rosmarinic acid-PCOS group, received rosmarinic acid after PCOS induction. PCOS resulted in a marked elevation in both serum luteinizing hormone (LH) and testosterone levels and LH/follicle-stimulating hormone ratio with a marked reduction in serum estradiol and progesterone levels. A marked rise in tumor necrosis factor-α (TNF-α), interleukin-1ß, monocyte chemotactic protein-1, and vascular endothelial growth factor (messenger RNA) in the ovarian tissue was reported. The histological analysis displayed multiple cystic follicles in the ovarian cortex with markedly thin granulosa cell layer, vacuolated granulosa and theca cell layers, and desquamated granulosa cells. Upregulation in the immune expression of TNF-α and caspase-3 was demonstrated in the ovarian cortex. Interestingly, rosmarinic acid ameliorated the biochemical and histopathological changes. In conclusion, rosmarinic acid ameliorates letrozole-induced PCOS through its anti-inflammatory and antiangiogenesis effects.


Assuntos
Quimiocina CCL2 , Cinamatos , Depsídeos , Modelos Animais de Doenças , Letrozol , Síndrome do Ovário Policístico , Ácido Rosmarínico , Fator A de Crescimento do Endotélio Vascular , Animais , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Feminino , Cinamatos/farmacologia , Depsídeos/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ratos , Quimiocina CCL2/metabolismo , Letrozol/farmacologia , Hormônio Luteinizante/sangue , Hormônio Luteinizante/metabolismo , Imuno-Histoquímica , Testosterona/sangue , Ratos Sprague-Dawley
3.
Rapid Commun Mass Spectrom ; 38(13): e9762, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38693787

RESUMO

RATIONALE: Perillae Fructus (PF) is a common traditional Chinese medicine (TCM) for the treatment of asthma. It has not been effectively characterized by rosmarinic acid (RosA), which is currently designed as the sole quality indicator in the Chinese Pharmacopoeia. METHODS: This study introduced a database-aided ultrahigh-performance liquid chromatography equipped with quadrupole-Exactive-Orbitrap mass spectrometry (UHPLC/Q-Exactive-Orbitrap MS/MS) technology to putatively identify the compounds in PF, followed by literature research, quantum chemical calculation, and molecular docking to screen potential quality markers (Q-markers) of PF. RESULTS: A total of 27 compounds were putatively identified, 16 of which had not been previously found from PF. In particular, matrine, scopolamine, and RosA showed relatively high levels of content, stability, and drug-likeness. They exhibited interactions with the asthma-related target and demonstrated the TCM properties of PF. CONCLUSIONS: The database-aided UHPLC/Q-Exactive-Orbitrap MS/MS can identify at least 27 compounds in PF. Of these, 16 compounds are unexpected, and three compounds (matrine, scopolamine, and RosA) should be considered anticounterfeiting pharmacopoeia Q-markers of PF.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Simulação de Acoplamento Molecular , Farmacopeias como Assunto , Frutas/química , Escopolamina/análise , Depsídeos/análise , Depsídeos/química
4.
Appl Microbiol Biotechnol ; 108(1): 337, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767664

RESUMO

Flow cytometry has made a significant contribution to the study of several complex fundamental mechanisms in plant cytogenetics, becoming a useful analytical tool to understand several mechanisms and processes underlying plant growth, development, and function. In this study, the genome size, DNA ploidy level, and A-T/G-C ratio were measured for the first time for two genotypes of chia, Salvia hispanica, an herbaceous plant commonly used in phytotherapy and nutrition. This study also evaluated, for the first time by flow cytometry, the capacity to produce organic acids of tissues stained with LysoTracker Deep Red after elicitation with either yeast extract or cadmium chloride. Rosmarinic acid content differed between the two chia varieties treated with different elicitor concentrations, compared with non-elicited plant material. Elicited tissues of both varieties contained a higher content of rosmarinic acid compared with non-elicited cultures, and cadmium chloride at 500 µM was much better than that at 1000 µM, which led to plant death. For both genotypes, a dose-response was observed with yeast extract, as the higher the concentration of elicitor used, the higher rosmarinic acid content, resulting also in better results and a higher content of rosmarinic acid compared with cadmium chloride. This study demonstrates that flow cytometry may be used as a taxonomy tool, to distinguish among very close genotypses of a given species and, for the first time in plants, that this approach can also be put to profit for a characterization of the cytoplasmic acid phase and the concomitant production of secondary metabolites of interest in vitro, with or without elicitation. KEY POINTS: • Genome size, ploidy level, A-T/G-C ratio, and cytoplasm acid phase of S. hispanica • Cytometry study of cytoplasm acid phase of LysoTracker Deep Red-stained plant cells • Yeast extract or cadmium chloride elicited rosmarinic acid production of chia tissues.


Assuntos
Cinamatos , Depsídeos , Citometria de Fluxo , Ácido Rosmarínico , Salvia , Cinamatos/metabolismo , Depsídeos/metabolismo , Citometria de Fluxo/métodos , Salvia/genética , Salvia/química , Salvia/metabolismo , Ploidias , Genótipo , Cloreto de Cádmio , Genoma de Planta
5.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731431

RESUMO

An excessive inflammatory response of the gastrointestinal tract is recognized as one of the major contributors to ulcerative colitis (UC). Despite this, effective preventive approaches for UC remain limited. Rosmarinic acid (RA), an enriched fraction from Perilla frutescens, has been shown to exert beneficial effects on disease-related inflammatory disorders. However, RA-enriched perilla seed meal (RAPSM) and perilla seed (RAPS) extracts have not been investigated in dextran sulfate sodium (DSS)-induced UC in mice. RAPSM and RAPS were extracted using the solvent-partitioning method and analyzed with high-pressure liquid chromatography (HPLC). Mice with UC induced using 2.5% DSS for 7 days were pretreated with RAPSM and RAPS (50, 250, 500 mg/kg). Then, the clinical manifestation, colonic histopathology, and serum proinflammatory cytokines were determined. Indeed, DSS-induced UC mice exhibited colonic pathological defects including an impaired colon structure, colon length shortening, and increased serum proinflammatory cytokines. However, RAPSM and RAPS had a protective effect at all doses by attenuating colonic pathology in DSS-induced UC mice, potentially through the suppression of proinflammatory cytokines. Concentrations of 50 mg/kg of RAPSM and RAPS were sufficient to achieve a beneficial effect in UC mice. This suggests that RAPSM and RAPS have a preventive effect against DSS-induced UC, potentially through alleviating inflammatory responses and relieving severe inflammation in the colon.


Assuntos
Colite Ulcerativa , Citocinas , Sulfato de Dextrana , Perilla , Extratos Vegetais , Sementes , Animais , Sulfato de Dextrana/efeitos adversos , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colite Ulcerativa/prevenção & controle , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Citocinas/metabolismo , Citocinas/sangue , Sementes/química , Perilla/química , Modelos Animais de Doenças , Masculino , Depsídeos/farmacologia , Depsídeos/química , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Cinamatos/farmacologia , Cinamatos/química , Ácido Rosmarínico , Perilla frutescens/química
6.
Phytomedicine ; 129: 155700, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704914

RESUMO

BACKGROUND: Myoglobin (Mb) induced death of renal tubular epithelial cells (RTECs) is a major pathological factor in crush syndrome-related acute kidney injury (CS-AKI). It is unclear whether ferroptosis is involved and could be a target for treatment. PURPOSE: This study aimed to evaluate the potential therapeutic effects of combining the natural small molecule rosemarinic acid (RA) and the iron chelator deferasirox (Dfe) on CS-AKI through inhibition of ferroptosis. METHODS: Sequencing data were downloaded from the GEO database, and differential expression analysis was performed using the R software limma package. The CS-AKI mouse model was constructed by squeezing the bilateral thighs of mice for 16 h with 1.5 kg weight. TCMK1 and NRK-52E cells were induced with 200 µM Mb and then treated with RA combined with Dfe (Dfe + RA, both were 10 µM). Functional and pathological changes in mouse kidney were evaluated by glomerular filtration rate (GFR) and HE pathology. Immunofluorescence assay was used to detect Mb levels in kidney tissues. The expression levels of ACSL4, GPX4, Keap1, and Nrf2 were analyzed by WB. RESULTS: We found that AKI mice in the GSE44925 cohort highly expressed the ferroptosis markers ACSL4 and PTGS2. CS-AKI mice showed a rapid decrease in GFR, up-regulation of ACSL4 expression in kidney tissue, and down-regulation of GPX4 expression, indicating activation of the ferroptosis pathway. Mb was found to deposit in renal tubules, and it has been proven to cause ferroptosis in TCMK1 and NRK-52E cells in vitro. We found that Dfe had a strong iron ion scavenging effect and inhibited ACSL4 expression. RA could disrupt the interaction between Keap1 andNrf2, stabilize Nrf2, and promote its nuclear translocation, thereby exerting antioxidant effects. The combination of Dfe and RA effectively reversed Mb induced ferroptosis in RTECs. CONCLUSION: In conclusion, we found that RA combined with Dfe attenuated CS-AKI by inhibiting Mb-induced ferroptosis in RTECs via activating the Nrf2/Keap1 pathway.


Assuntos
Injúria Renal Aguda , Cinamatos , Deferasirox , Depsídeos , Ferroptose , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Ácido Rosmarínico , Animais , Ferroptose/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Depsídeos/farmacologia , Camundongos , Deferasirox/farmacologia , Masculino , Cinamatos/farmacologia , Modelos Animais de Doenças , Quelantes de Ferro/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Camundongos Endogâmicos C57BL
7.
Int Immunopharmacol ; 135: 112304, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38776851

RESUMO

Activating angiotensin-converting enzyme 2 (ACE2) is an important player in the pathogenesis of septic-related acute respiratory distress syndrome (ARDS). Rosmarinic acid (RA) as a prominent polyphenolic secondary metabolite derived from Rosmarinus officinalis modulates ACE2 in sepsis remains unclear, although its impact on ACE inhibition and septic-associated lung injury has been explored. The study investigated the ACE2 expression in lipopolysaccharide (LPS)-induced lungs in mice and BEAS2B cells. Additionally, molecular docking, protein-protein interaction (PPI) network analysis, and western blotting were employed to predict and evaluate the molecular mechanism of RA on LPS-induced ferroptosis in vivo and in vitro. LPS-induced glutathione peroxidase 4 (GPX4) downregulation, ACE/ACE2 imbalance, and alteration of frequency of breathing (BPM), minute volume (MV), and the expiratory flow at 50% expired volume (EF50) were reversed by captopril pretreatment in vitro and in vivo. RA notably inhibited the infiltration into the lungs of neutrophils and monocytes with increased amounts of GPX4 and ACE2 proteins, lung function improvement, and decreased inflammatory cytokines levels and ER stress in LPS-induced ARDS in mice. Molecular docking showed RA was able to interact with ACE and ACE2. Moreover, combined with different pharmacological inhibitors to block ACE and ferroptosis, RA still significantly inhibited inflammatory cytokines Interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and C-X-C motif chemokine 2 (CXCL2) levels, as well as improved lung function, and enhanced GPX4 expression. Particularly, the anti-ferroptosis effect of RA in LPS-induced septic ARDS is RAS-dependent.


Assuntos
Enzima de Conversão de Angiotensina 2 , Cinamatos , Depsídeos , Ferroptose , Lipopolissacarídeos , Síndrome do Desconforto Respiratório , Ácido Rosmarínico , Sepse , Animais , Depsídeos/uso terapêutico , Depsídeos/farmacologia , Ferroptose/efeitos dos fármacos , Cinamatos/uso terapêutico , Cinamatos/farmacologia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Humanos , Camundongos , Masculino , Sepse/tratamento farmacológico , Enzima de Conversão de Angiotensina 2/metabolismo , Simulação de Acoplamento Molecular , Peptidil Dipeptidase A/metabolismo , Camundongos Endogâmicos C57BL , Brônquios/efeitos dos fármacos , Brônquios/patologia , Linhagem Celular , Captopril/farmacologia , Captopril/uso terapêutico , Modelos Animais de Doenças , Citocinas/metabolismo
8.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791538

RESUMO

Various studies have shown that Hypogymnia physodes are a source of many biologically active compounds, including lichen acids. These lichen-specific compounds are characterized by antioxidant, antiproliferative, and antimicrobial properties, and they can be used in the cosmetic and pharmaceutical industries. The main aim of this study was to optimize the composition of natural deep eutectic solvents based on proline or betaine and lactic acid for the extraction of metabolites from H. physodes. The design of the experimental method and the response surface approach allowed the optimization of the extraction process of specific lichen metabolites. Based on preliminary research, a multivariate model of the experiment was developed. For optimization, the following parameters were employed in the experiment to confirm the model: a proline/lactic acid/water molar ratio of 1:2:2. Such a mixture allowed the efficient extraction of three depsidones (i.e., physodic acid, physodalic acid, 3-hydroyphysodic acid) and one depside (i.e., atranorin). The developed composition of the solvent mixtures ensured good efficiency when extracting the metabolites from the thallus of H. physodes with high antioxidant properties.


Assuntos
Depsídeos , Lactonas , Depsídeos/química , Depsídeos/isolamento & purificação , Depsídeos/farmacologia , Lactonas/química , Lactonas/isolamento & purificação , Lactonas/farmacologia , Solventes Eutéticos Profundos/química , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Prolina/química , Líquens/química , Ácido Láctico/química , Química Verde/métodos , Betaína/química , Betaína/análogos & derivados , Betaína/farmacologia , Solventes/química , Dibenzoxepinas , Hidroxibenzoatos
9.
Mol Immunol ; 171: 105-114, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820902

RESUMO

Chlamydia trachomatis (CT) is the leading cause of bacterial sexually transmitted diseases worldwide, which can cause diseases such as pelvic inflammatory disease, and cervical and fallopian tube inflammation, and poses a threat to human health. Rosmarinic acid (RosA) is an active ingredient of natural products with anti-inflammatory and immunomodulatory effects. This study aimed to investigate the role of RosA in inhibiting autophagy-regulated immune cells-CD8+ T cells via the Ras/Raf/MEK/ERK signaling pathway in a CT-infected mouse model. Mice were inoculated with CT infection solution vaginally, and the mechanistic basis of RosA treatment was established using H&E staining, flow cytometry, immunofluorescence, transmission electron microscopy, and western blot. The key factors involved in RosA treatment were further validated using the MEK inhibitor cobimetinib. Experimental results showed that both RosA and the reference drug azithromycin could attenuate the pathological damage to the endometrium caused by CT infection; flow cytometry showed that peripheral blood CD8+ T cells increased after CT infection and decreased after treatment with RosA and the positive drug azithromycin (positive control); immunofluorescence showed that endometrial CD8 and LC3 increased after CT infection and decreased after RosA and positive drug treatment; the results of transmission electron microscopy showed that RosA and the positive drug azithromycin inhibited the accumulation of autophagosomes; western bolt experiments confirmed the activation of autophagy proteins LC3Ⅱ/Ⅰ, ATG5, Beclin-1, and p62 after CT infection, as well as the inhibition of Ras/Raf/MEK/ERK signaling. RosA and azithromycin inhibition of autophagy proteins activates Ras/Raf/MEK/ERK signaling. In addition, the MEK inhibitor cobimetinib attenuated RosA's protective effect on endometrium by further activating CD8+ T cells on a CT-induced basis, while transmission electron microscopy, immunofluorescence, and western blots showed that cobimetinib blocked ERK signals activation and further induced phagocytosis on a CT-induced basis. These data indicated that RosA can activate the Ras/Raf/MEK/ERK signaling pathway to inhibit autophagy, and RosA could also regulate the activation of immune cells-CD8+T cells to protect the reproductive tract of CT-infected mice.


Assuntos
Autofagia , Linfócitos T CD8-Positivos , Infecções por Chlamydia , Chlamydia trachomatis , Cinamatos , Depsídeos , Sistema de Sinalização das MAP Quinases , Ácido Rosmarínico , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Feminino , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/tratamento farmacológico , Chlamydia trachomatis/efeitos dos fármacos , Chlamydia trachomatis/imunologia , Camundongos , Depsídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Cinamatos/farmacologia , Proteínas ras/metabolismo , Quinases raf/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
10.
Front Cell Infect Microbiol ; 14: 1396279, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800832

RESUMO

Background: The Chikungunya virus is an Alphavirus that belongs to the Togaviridae family and is primarily transmitted by mosquitoes. It causes acute infection characterized by fever, headache, and arthralgia. Some patients also experience persistent chronic osteoarthritis-like symptoms. Dedicated antiviral treatments are currently unavailable for CHIKV. This study aims to explore the potential anti-CHIKV effect of rosmarinic acid using network pharmacology. Methods: This study employed network pharmacology to predict and verify the molecular targets and pathways associated with ROSA in the context of CHIKV. The analysis outcomes were further validated using molecular docking and in vitro experiments. Results: The analysis of CHIKV targets using the Kyoto Encyclopedia of Genes and Genomes and MCODE identified IL-17 as an important pathogenic pathway in CHIKV infection. Among the 30 targets of ROSA against CHIKV, nearly half were found to be involved in the IL-17 signaling pathway. This suggests that ROSA may help the host in resisting CHIKV invasion by modulating this pathway. Molecular docking validation results showed that ROSA can stably bind to 10 core targets out of the 30 identified targets. In an in vitro CHIKV infection model developed using 293T cells, treatment with 60 µM ROSA significantly improved the survival rate of infected cells, inhibited 50% CHIKV proliferation after CHIKV infection, and reduced the expression of TNF-α in the IL-17 signaling pathway. Conclusion: This study provides the first confirmation of the efficacy of ROSA in suppressing CHIKV infection through the IL-17 signaling pathway. The findings warrant further investigation to facilitate the development of ROSA as a potential treatment for CHIKV infection.


Assuntos
Antivirais , Febre de Chikungunya , Vírus Chikungunya , Cinamatos , Depsídeos , Interleucina-17 , Simulação de Acoplamento Molecular , Ácido Rosmarínico , Transdução de Sinais , Depsídeos/farmacologia , Cinamatos/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Interleucina-17/metabolismo , Humanos , Antivirais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/virologia , Farmacologia em Rede , Células HEK293 , Replicação Viral/efeitos dos fármacos , Animais
11.
Plant Physiol Biochem ; 211: 108671, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703500

RESUMO

Salvia castanea Diels, a close wild relative to the medicinal plant, Salvia miltiorrhiza Bunge, primarily grows in high-altitude regions. While the two species share similar active compounds, their content varies significantly. WRKY transcription factors are key proteins, which regulate plant growth, stress response, and secondary metabolism. We identified 46 ScWRKY genes in S. castanea and found that ScWRKY35 was a highly expressed gene associated with secondary metabolites accumulation. This study aimed to explore the role of ScWRKY35 gene in regulating the accumulation of secondary metabolites and its response to UV and cadmium (Cd) exposure in S. miltiorrhiza. It was found that transgenic S. miltiorrhiza hairy roots overexpressing ScWRKY35 displayed upregulated expression of genes related to phenolic acid synthesis, resulting in increased salvianolic acid B (SAB) and rosmarinic acid (RA) contents. Conversely, tanshinone pathway gene expression decreased, leading to lower tanshinone levels. Further, overexpression of ScWRKY35 upregulated Cd transport protein HMA3 in root tissues inducing Cd sequestration. In contrast, the Cd uptake gene NRAMP1 was downregulated, reducing Cd absorption. In response to UV radiation, ScWRKY35 overexpression led to an increase in the accumulation of phenolic acid and tanshinone contents, including upregulation of genes associated with salicylic acid (SA) and jasmonic acid (JA) synthesis. Altogether, these findings highlight the role of ScWRKY35 in enhancing secondary metabolites accumulation, as well as in Cd and UV stress modulation in S. miltiorrhiza, which offers a novel insight into its phytochemistry and provides a new option for the genetic improvement of the plants.


Assuntos
Cádmio , Depsídeos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cádmio/metabolismo , Depsídeos/metabolismo , Metabolismo Secundário/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Benzofuranos/metabolismo , Ácido Rosmarínico , Cinamatos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/genética , Raios Ultravioleta , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Abietanos/metabolismo , Abietanos/biossíntese , Hidroxibenzoatos/metabolismo
12.
Food Chem ; 452: 139518, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38713983

RESUMO

In this study, the initial focus was on exploring the simultaneous impact of the oil-based food matrix and the polarity of rosmarinic acid derivatives on the antioxidant properties. Rosmarinic acid (RA) showed remarkable DPPH, FRAP, and ABTS radical scavenging activities, followed by methyl rosmarinate (MR) and ethyl rosmarinate (ER). In bulk oil, both conjugated dienes and p-AnV values reached a peak in the following order after 30 days: ER > MR > RA = BHT > control (no antioxidant). In the oil structured using monoacylglycerol, MR was more effective than ER and RA. For ethyl cellulose oleogel, emulsion, and gelled emulsion systems, RA was more effective. Additionally, after confirming the importance of the food matrix on the antioxidant activity of RA derivatives, the lipophilization of RA with ethanol was optimized as a model with Lipozyme 435 in hexane. A conversion yield of as high as 85.59% for ER was achieved, as quantified by HPLC-UV and confirmed by HPLC-DAD-ESI-qTOFMS.


Assuntos
Antioxidantes , Cinamatos , Depsídeos , Ácido Rosmarínico , Depsídeos/química , Depsídeos/farmacologia , Cinamatos/química , Cinamatos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Lipase/química , Lipase/metabolismo
13.
Phytomedicine ; 130: 155676, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38820663

RESUMO

BACKGROUND: Prolonged exposure to sun radiation may result in harmful skin photoaging. Therefore, discovering novel anti-photoaging treatment modalities is critical. An active component isolated from Salvia miltiorrhiza (SM), Salvianolic acid B (Sal-B), is a robust antioxidant and anti-inflammatory agent. This investigation aimed to discover the therapeutic impact and pathways of salvianolic acid B for UVB-induced skin photoaging, an area that remains unexplored. METHODS: We conducted in vitro experiments on human dermal fibroblasts (HDFs) exposed to UVB radiation, assessing cellular senescence, superoxide dismutase (SOD) activity, cell viability, proliferation, migration, levels of reactive oxygen species (ROS), and mitochondrial health. The potential mechanism of Sal-B was analyzed using RNA sequencing, with further validation through Western blotting, PCR, and nuclear factor erythroid 2-related factor 2 (NRF2) silencing methods. In vivo, a model of skin photoaging induced by UVB in nude mice was employed. The collagen fiber levels were assessed utilizing hematoxylin and eosin (H&E), Masson, and Sirus red staining. Additionally, NRF2 and related gene and protein expression levels were identified utilizing PCR and Western blotting. RESULTS: Sal-B was found to significantly counteract photoaging in UVB-exposed skin fibroblasts, reducing aging-related decline in fibroblast proliferation and an increase in apoptosis. It was observed that Sal-B aids in protecting mitochondria from excessive ROS production by promoting NRF2 nuclear translocation. NRF2 knockdown experiments established its necessity for Sal-B's anti-photoaging effects. The in vivo studies also verified Sal-B's anti-photoaging efficacy, surpassing that of tretinoin (Retino-A). These outcomes offer novel insights into the contribution of Sal-B in developing clinical treatment modalities for UVB-induced photodamage in skin fibroblasts. CONCLUSION: In this investigation, we identified the Sal-B protective impact on the senescence of dermal fibroblasts and skin photoaging induced by radiation of UVB. The outcomes suggest Sal-B as a potential modulator of the NRF2 signaling pathway.


Assuntos
Benzofuranos , Fibroblastos , Camundongos Nus , Fator 2 Relacionado a NF-E2 , Envelhecimento da Pele , Raios Ultravioleta , Fator 2 Relacionado a NF-E2/metabolismo , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Animais , Raios Ultravioleta/efeitos adversos , Humanos , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Benzofuranos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Salvia miltiorrhiza/química , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Senescência Celular/efeitos da radiação , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Superóxido Dismutase/metabolismo , Depsídeos
14.
Phytomedicine ; 130: 155553, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38820664

RESUMO

INTRODUCTION: Non-healing wounds resulting from trauma, surgery, and chronic diseases annually affect millions of individuals globally, with limited therapeutic strategies available due to the incomplete understanding of the molecular processes governing tissue repair and regeneration. Salvianolic acid B (Sal B) has shown promising bioactivities in promoting angiogenesis and inhibiting inflammation. However, its regulatory mechanisms in tissue regeneration remain unclear. PURPOSE: This study aims to investigate the effects of Sal B on wound healing and regeneration processes, along with its underlying molecular mechanisms, by employing zebrafish as a model organism. METHODS: In this study, we employed a multifaceted approach to evaluate the impact of Sal B on zebrafish tail fin regeneration. We utilized whole-fish immunofluorescence, TUNEL staining, mitochondrial membrane potential (MMP), and Acridine Orange (AO) probes to analyze the tissue repair and regenerative under Sal B treatment. Additionally, we utilized transgenic zebrafish strains to investigate the migration of inflammatory cells during different phases of fin regeneration. To validate the importance of Caveolin-1 (Cav1) in tissue regeneration, we delved into its functional role using molecular docking and Morpholino-based gene knockdown techniques. Additionally, we quantified Cav1 expression levels through the application of in situ hybridization. RESULTS: Our findings demonstrated that Sal B expedites zebrafish tail fin regeneration through a multifaceted mechanism involving the promotion of cell proliferation, suppression of apoptosis, and enhancement of MMP. Furthermore, Sal B was found to exert regulatory control over the dynamic aggregation and subsequent regression of immune cells during tissue regenerative processes. Importantly, we observed that the knockdown of Cav1 significantly compromised tissue regeneration, leading to an excessive infiltration of immune cells and increased levels of apoptosis. Moreover, the knockdown of Cav1 also affects blastema formation, a critical process influenced by Cav1 in tissue regeneration. CONCLUSION: The results of this study showed that Sal B facilitated tissue repair and regeneration through regulating of immune cell migration and Cav1-mediated fibroblast activation, promoting blastema formation and development. This study highlighted the potential pharmacological effects of Sal B in promoting tissue regeneration. These findings contributed to the advancement of regenerative medicine research and the development of novel therapeutic approaches for trauma.


Assuntos
Nadadeiras de Animais , Benzofuranos , Caveolina 1 , Movimento Celular , Regeneração , Cicatrização , Peixe-Zebra , Animais , Benzofuranos/farmacologia , Regeneração/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Caveolina 1/metabolismo , Movimento Celular/efeitos dos fármacos , Nadadeiras de Animais/efeitos dos fármacos , Nadadeiras de Animais/fisiologia , Animais Geneticamente Modificados , Simulação de Acoplamento Molecular , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Peixe-Zebra/metabolismo , Apoptose/efeitos dos fármacos , Depsídeos
15.
Support Care Cancer ; 32(6): 331, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710920

RESUMO

AIM: We evaluated the efficacy and safety of Nuvastatic™ (C5OSEW5050ESA) in improving cancer-related fatigue (CRF) among cancer patients. METHODS: This multicenter randomized double-blind placebo-controlled phase 2 trial included 110 solid malignant tumor patients (stage II-IV) undergoing chemotherapy. They were randomly selected and provided oral Nuvastatic™ 1000 mg (N = 56) or placebo (N = 54) thrice daily for 9 weeks. The primary outcomes were fatigue (Brief Fatigue Inventory (BFI)) and Visual Analog Scale for Fatigue (VAS-F)) scores measured before and after intervention at baseline and weeks 3, 6, and 9. The secondary outcomes were mean group difference in the vitality subscale of the Medical Outcome Scale Short Form-36 (SF-36) and urinary F2-isoprostane concentration (an oxidative stress biomarker), Eastern Cooperative Oncology Group scores, adverse events, and biochemical and hematologic parameters. Analysis was performed by intention-to-treat (ITT). Primary and secondary outcomes were assessed by two-way repeated-measures analysis of variance (mixed ANOVA). RESULTS: The Nuvastatic™ group exhibited an overall decreased fatigue score compared with the placebo group. Compared with the placebo group, the Nuvastatic™ group significantly reduced BFI-fatigue (BFI fatigue score, F (1.4, 147) = 16.554, p < 0.001, partial η2 = 0.333). The Nuvastatic™ group significantly reduced VAS-F fatigue (F (2, 210) = 9.534, p < 0.001, partial η2 = 0.083), improved quality of life (QoL) (F (1.2, 127.48) = 34.07, p < 0.001, partial η2 = 0.243), and lowered urinary F2-IsoP concentrations (mean difference (95% CI) = 55.57 (24.84, 86.30)), t (55) = 3.624, p < 0.001, Cohen's d (95% CI) = 0.48 (0.20, 0.75)). Reported adverse events were vomiting (0.9%), fever (5.4%), and headache (2.7%). CONCLUSION: Nuvastatic™ is potentially an effective adjuvant for CRF management in solid tumor patients and worthy of further investigation in larger trials. TRIAL REGISTRATION: ClinicalTrial.gov ID: NCT04546607. Study registration date (first submitted): 11-05-2020.


Assuntos
Cinamatos , Depsídeos , Fadiga , Neoplasias , Ácido Rosmarínico , Humanos , Método Duplo-Cego , Fadiga/etiologia , Fadiga/tratamento farmacológico , Feminino , Pessoa de Meia-Idade , Masculino , Neoplasias/complicações , Idoso , Depsídeos/farmacologia , Depsídeos/administração & dosagem , Depsídeos/uso terapêutico , Adulto , Cinamatos/administração & dosagem , Cinamatos/uso terapêutico , Cinamatos/farmacologia , Extratos Vegetais/administração & dosagem
16.
Exp Eye Res ; 244: 109944, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797260

RESUMO

Fungal keratitis (FK) is an infectious keratopathy can cause serious damage to vision. Its severity is related to the virulence of fungus and response of inflammatory. Rosmarinic acid (RA) extracted from Rosmarinus officinalis exhibits antioxidant, anti-inflammatory and anti-viral properties. The aim of this study was to investigate the effect of RA on macrophage autophagy and its therapeutic effect on FK. In this study, we demonstrated that RA reduced expression of proinflammatory cytokine, lessened the recruitment of inflammatory cells in FK. The relative contents of autophagy markers, such as LC3 and Beclin-1, were significantly up-regulated in RAW 264.7 cells and FK. In addition, RA restored mitochondrial membrane potential (MMP) of macrophage to normal level. RA not only reduced the production of intracellular reactive oxygen species (ROS) but also mitochondria ROS (mtROS) in macrophage. At the same time, RA induced macrophage to M2 phenotype and down-regulated the mRNA expression of IL-6, IL-1ß, TNF-α. All the above effects could be offset by the autophagy inhibitor 3-Methyladenine (3-MA). Besides, RA promote phagocytosis of RAW 264.7 cells and inhibits spore germination, biofilm formation and conidial adherence, suggesting a potential therapeutic role for RA in FK.


Assuntos
Aspergilose , Aspergillus fumigatus , Autofagia , Cinamatos , Depsídeos , Infecções Oculares Fúngicas , Macrófagos , Espécies Reativas de Oxigênio , Ácido Rosmarínico , Depsídeos/farmacologia , Animais , Autofagia/efeitos dos fármacos , Camundongos , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Aspergilose/metabolismo , Infecções Oculares Fúngicas/microbiologia , Infecções Oculares Fúngicas/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Cinamatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ceratite/microbiologia , Ceratite/tratamento farmacológico , Ceratite/metabolismo , Modelos Animais de Doenças , Células RAW 264.7 , Citocinas/metabolismo , Fagocitose/efeitos dos fármacos
17.
Int Immunopharmacol ; 135: 112314, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788450

RESUMO

We previously reported that rosmarinic acid (RA) ameliorated renal fibrosis in a unilateral ureteral obstruction (UUO) murine model of chronic kidney disease. This study aimed to determine whether RA attenuates indoxyl sulfate (IS)-induced renal fibrosis by regulating the activation of the NLRP3 inflammasome/IL-1ß/Smad circuit. We discovered the NLRP3 inflammasome was activated in the IS treatment group and downregulated in the RA-treated group in a dose-dependent manner. Additionally, the downstream effectors of the NLRP3 inflammasome, cleaved-caspase-1 and cleaved-IL-1ß showed similar trends in different groups. Moreover, RA administration significantly decreased the ROS levels of reactive oxygen species in IS-treated cells. Our data showed that RA treatment significantly inhibited Smad-2/3 phosphorylation. Notably, the effects of RA on NLRP3 inflammasome/IL-1ß/Smad and fibrosis signaling were reversed by the siRNA-mediated knockdown of NLRP3 or caspase-1 in NRK-52E cells. In vivo, we demonstrated that expression levels of NLRP3, c-caspase-1, c-IL-1ß, collagen I, fibronectin and α-SMA, and TGF- ß 1 were downregulated after treatment of UUO mice with RA or RA + MCC950. Our findings suggested RA and MCC950 synergistically inhibited UUO-induced NLRP3 signaling activation, revealing their renoprotective properties and the potential for combinatory treatment of renal fibrosis and chronic kidney inflammation.


Assuntos
Cinamatos , Depsídeos , Fibrose , Indicã , Inflamassomos , Rim , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ácido Rosmarínico , Transdução de Sinais , Animais , Depsídeos/farmacologia , Depsídeos/uso terapêutico , Cinamatos/farmacologia , Cinamatos/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Linhagem Celular , Camundongos , Interleucina-1beta/metabolismo , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/patologia , Espécies Reativas de Oxigênio/metabolismo , Modelos Animais de Doenças , Proteína Smad2/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Proteína Smad3/metabolismo , Caspase 1/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/induzido quimicamente , Nefropatias/patologia
18.
Fish Shellfish Immunol ; 150: 109655, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796044

RESUMO

High proportions of soybean meal in aquafeed have been confirmed to induce various intestinal pathologies. This study aims to investigate the regulatory effects of rosmarinic acid (RA), an antioxidant with anti-inflammatory and antimicrobial properties, when added to high soybean meal feeds in different doses, (0, 0.5, 1, and 4 g/kg). During the 56-day feeding trial, results indicated that, compared to the control group without RA (0 g/kg), the 1 g/kg and 4 g/kg RA groups increased bullfrog survival rates and total weight gain while reducing feed coefficient. Additionally, these doses markedly suppressed the expression of key intestinal inflammatory markers (tlr5, myd88, tnfα, il1ß, cxcl8, cxcl12) and the activity and content of intestinal antioxidants (CAT, MDA, GSH, GPX). Concurrently, RA significantly downregulated the transcription levels of antioxidant-related genes (cat, gpx5, cyba, cybb, mgst, gclc, gsta, gstp), suggesting RA's potential to alleviate intestinal inflammation and oxidative stress induced by high soybean meal and to help downregulate and restore normal expression of antioxidant enzyme genes. However, the 0.5 g/kg RA group did not show a significant improvement in survival rates; instead, it upregulated the transcription of some antioxidant genes (cat, gpx5, cyba, cybb), revealing the complexity and dose-dependency of RA's antioxidant action. Furthermore, RA supplementation significantly reshaped the intestinal microbial community structure and relative abundance in bullfrogs, particularly affecting the genera Hafnia, Phascolarctobacterium, and Lactococcus. Notably, high doses of RA (1 g/kg, 4 g/kg) were able to downregulate pathways associated with the enrichment of gut microbiota in diseases such as Parkinson's, Staphylococcus aureus infection, and Systemic lupus erythematosus, suggesting its potential in anti-inflammatory action and health maintenance to prevent potential diseases.


Assuntos
Ração Animal , Cinamatos , Depsídeos , Dieta , Suplementos Nutricionais , Glycine max , Estresse Oxidativo , Rana catesbeiana , Ácido Rosmarínico , Animais , Depsídeos/farmacologia , Depsídeos/administração & dosagem , Glycine max/química , Cinamatos/farmacologia , Cinamatos/administração & dosagem , Ração Animal/análise , Dieta/veterinária , Estresse Oxidativo/efeitos dos fármacos , Rana catesbeiana/imunologia , Suplementos Nutricionais/análise , Inflamação/veterinária , Relação Dose-Resposta a Droga , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Distribuição Aleatória , Doenças dos Peixes/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem
19.
Iran J Med Sci ; 49(4): 237-246, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38680223

RESUMO

Background: Cell phone and Ultra-High Frequency (UHF) waves produce oxidative stress and cause testicular toxicity. This investigation was directed to evaluate the effectiveness of Rosmarinic Acid (RA) against oxidative stress caused by UHF radiation in rats. Methods: Forty-two male Wistar rats were divided into six groups. The control received 5 mL normal saline (0.9% NaCl) by gavage, the cell phone group received 915 MHz, the UHF waves group just received 2450 MHz, the RA/cell phone group received RA plus 915 MHz, RA/UHF waves group received RA plus 2450 MHz, and RA just received RA (20 mg/kg). After 30 days of consecutive radiation, the biochemical and histopathological parameters of their testes were measured. Statistical comparison was made using one-way ANOVA followed by Tukey's post hoc test. Results: Cell phone and UHF wave radiation significantly diminished the activity of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase, and glutathione content (P<0.001). On the opposite, UHF significantly increased oxidative stress indices including malondialdehyde level, nitric oxide level, and protein carbonyl content (P<0.001). UHF also significantly reduced the number of Sertoli cells, spermatogonia, primary spermatocyte, epithelial height, and seminiferous tubular and luminal diameters (P<0.001). RA, as an effective antioxidant, reverses the above-mentioned harms and moderates the adverse effects of UHF on the testes of rats by significantly diminishing the oxidative stress indices and antioxidant enzyme rise and improving the histological parameters (P<0.001). Conclusion: RA can protect the testes of rats from UHF-induced toxicity by reducing oxidative stress. RA as a food supplement might be useful for protecting humans exposed to UHF environmental contamination.


Assuntos
Telefone Celular , Cinamatos , Depsídeos , Estresse Oxidativo , Ratos Wistar , Ácido Rosmarínico , Testículo , Animais , Masculino , Depsídeos/farmacologia , Cinamatos/farmacologia , Testículo/efeitos dos fármacos , Testículo/efeitos da radiação , Ratos , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124273, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38615417

RESUMO

Rosmarinic acid (RA), Tanshinone IIA (Tan IIA), and Salvianolic acid B (Sal B) are crucial compounds found in Salvia miltiorrhiza. Quickly predicting these components can aid in ensuring the quality of S. miltiorrhiza. Spectral preprocessing and variable selection are essential processes in quantitative analysis using near infrared spectroscopy (NIR). A novel hybrid variable selection approach utilizing iVISSA was employed in this study to enhance the quantitative measurement of RA, Tan IIA, and Sal B contents in S. miltiorrhiza. The spectra underwent 108 preprocessing approaches, with the optimal method being determined as orthogonal signal correction (OSC). iVISSA was utilized to identify the intervals (feature bands) that were most pertinent to the target chemical. Various methods such as bootstrapping soft shrinkage (BOSS), competitive adaptive reweighted sampling (CARS), genetic algorithm (GA), variable combination population analysis (VCPA), successive projections algorithm (SPA), iteratively variable subset optimization (IVSO), and iteratively retained informative variables (IRIV) were used to identify significant feature variables. PLSR models were created for comparison using the given variables. The results fully demonstrated that iVISSA-SPA calibration model had the best comprehensive performance for Tan IIA, and iVISSA-BOSS had the best comprehensive performance for RA and Sal B, and correlation coefficients of cross-validation (R2cv), root mean square errors of cross-validation (RMSECV), correlation coefficients of prediction (R2p), and root mean square errors of prediction (RMSEP) were 0.9970, 0.0054, 0.9990 and 0.0033, 0.9992, 0.0016, 0.9961 and 0.0034, 0.9998, 0.0138, 0.9875 and 0.1090, respectively. The results suggest that NIR spectroscopy, along with PLSR and a hybrid variable selection method using iVISSA, can be a valuable tool for quickly quantifying RA, Sal B, and Tan IIA in S. miltiorrhiza.


Assuntos
Abietanos , Algoritmos , Benzofuranos , Cinamatos , Depsídeos , Ácido Rosmarínico , Salvia miltiorrhiza , Espectroscopia de Luz Próxima ao Infravermelho , Salvia miltiorrhiza/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Depsídeos/análise , Abietanos/análise , Benzofuranos/análise , Cinamatos/análise , Análise dos Mínimos Quadrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...