Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4037, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419875

RESUMO

Great effort has been devoted to discovering the basis of A3G-Vif interaction, the key event of HIV's counteraction mechanism to evade antiviral innate immune response. Here we show reconstitution of the A3G-Vif complex and subsequent A3G ubiquitination in vitro and report the cryo-EM structure of the A3G-Vif complex at 2.8 Å resolution using solubility-enhanced variants of A3G and Vif. We present an atomic model of the A3G-Vif interface, which assembles via known amino acid determinants. This assembly is not achieved by protein-protein interaction alone, but also involves RNA. The cryo-EM structure and in vitro ubiquitination assays identify an adenine/guanine base preference for the interaction and a unique Vif-ribose contact. This establishes the biological significance of an RNA ligand. Further assessment of interactions between A3G, Vif, and RNA ligands show that the A3G-Vif assembly and subsequent ubiquitination can be controlled by amino acid mutations at the interface or by polynucleotide modification, suggesting that a specific chemical moiety would be a promising pharmacophore to inhibit the A3G-Vif interaction.


Assuntos
HIV-1 , Produtos do Gene vif do Vírus da Imunodeficiência Humana , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , HIV-1/fisiologia , RNA/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo , Aminoácidos/metabolismo , Desaminase APOBEC-3G/química , Citidina Desaminase/genética
2.
Nature ; 615(7953): 728-733, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36754086

RESUMO

The APOBEC3 (A3) proteins are host antiviral cellular proteins that hypermutate the viral genome of diverse viral families. In retroviruses, this process requires A3 packaging into viral particles1-4. The lentiviruses encode a protein, Vif, that antagonizes A3 family members by targeting them for degradation. Diversification of A3 allows host escape from Vif whereas adaptations in Vif enable cross-species transmission of primate lentiviruses. How this 'molecular arms race' plays out at the structural level is unknown. Here, we report the cryogenic electron microscopy structure of human APOBEC3G (A3G) bound to HIV-1 Vif, and the hijacked cellular proteins that promote ubiquitin-mediated proteolysis. A small surface explains the molecular arms race, including a cross-species transmission event that led to the birth of HIV-1. Unexpectedly, we find that RNA is a molecular glue for the Vif-A3G interaction, enabling Vif to repress A3G by ubiquitin-dependent and -independent mechanisms. Our results suggest a model in which Vif antagonizes A3G by intercepting it in its most dangerous form for the virus-when bound to RNA and on the pathway to packaging-to prevent viral restriction. By engaging essential surfaces required for restriction, Vif exploits a vulnerability in A3G, suggesting a general mechanism by which RNA binding helps to position key residues necessary for viral antagonism of a host antiviral gene.


Assuntos
Desaminase APOBEC-3G , HIV-1 , Proteólise , Produtos do Gene vif do Vírus da Imunodeficiência Humana , Animais , Humanos , Desaminase APOBEC-3G/antagonistas & inibidores , Desaminase APOBEC-3G/química , Desaminase APOBEC-3G/metabolismo , Desaminase APOBEC-3G/ultraestrutura , HIV-1/metabolismo , HIV-1/patogenicidade , RNA/química , RNA/metabolismo , Ubiquitina/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/ultraestrutura , Microscopia Crioeletrônica , Empacotamento do Genoma Viral , Primatas/virologia
3.
Nat Commun ; 13(1): 7117, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402773

RESUMO

APOBEC3 proteins (A3s) are enzymes that catalyze the deamination of cytidine to uridine in single-stranded DNA (ssDNA) substrates, thus playing a key role in innate antiviral immunity. However, the APOBEC3 family has also been linked to many mutational signatures in cancer cells, which has led to an intense interest to develop inhibitors of A3's catalytic activity as therapeutics as well as tools to study A3's biochemistry, structure, and cellular function. Recent studies have shown that ssDNA containing 2'-deoxy-zebularine (dZ-ssDNA) is an inhibitor of A3s such as A3A, A3B, and A3G, although the atomic determinants of this activity have remained unknown. To fill this knowledge gap, we determined a 1.5 Å resolution structure of a dZ-ssDNA inhibitor bound to active A3G. The crystal structure revealed that the activated dZ-H2O mimics the transition state by coordinating the active site Zn2+ and engaging in additional stabilizing interactions, such as the one with the catalytic residue E259. Therefore, this structure allowed us to capture a snapshot of the A3's transition state and suggests that developing transition-state mimicking inhibitors may provide a new opportunity to design more targeted molecules for A3s in the future.


Assuntos
Citidina Desaminase , Oligonucleotídeos , Desaminase APOBEC-3G/química , Citidina Desaminase/genética , DNA de Cadeia Simples , Domínio Catalítico
4.
Mol Cell Proteomics ; 20: 100132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34389466

RESUMO

Structural analysis of host-pathogen protein complexes remains challenging, largely due to their structural heterogeneity. Here, we describe a pipeline for the structural characterization of these complexes using integrative structure modeling based on chemical cross-links and residue-protein contacts inferred from mutagenesis studies. We used this approach on the HIV-1 Vif protein bound to restriction factor APOBEC3G (A3G), the Cullin-5 E3 ring ligase (CRL5), and the cellular transcription factor Core Binding Factor Beta (CBFß) to determine the structure of the (A3G-Vif-CRL5-CBFß) complex. Using the MS-cleavable DSSO cross-linker to obtain a set of 132 cross-links within this reconstituted complex along with the atomic structures of the subunits and mutagenesis data, we computed an integrative structure model of the heptameric A3G-Vif-CRL5-CBFß complex. The structure, which was validated using a series of tests, reveals that A3G is bound to Vif mostly through its N-terminal domain. Moreover, the model ensemble quantifies the dynamic heterogeneity of the A3G C-terminal domain and Cul5 positions. Finally, the model was used to rationalize previous structural, mutagenesis and functional data not used for modeling, including information related to the A3G-bound and unbound structures as well as mapping functional mutations to the A3G-Vif interface. The experimental and computational approach described here is generally applicable to other challenging host-pathogen protein complexes.


Assuntos
Desaminase APOBEC-3G/química , Subunidade beta de Fator de Ligação ao Core/química , Proteínas Culina/química , Ubiquitina-Proteína Ligases/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Espectrometria de Massas , Modelos Moleculares
5.
J Mol Biol ; 432(23): 6042-6060, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33098858

RESUMO

APOBEC3G (A3G) is a single-stranded DNA (ssDNA) cytosine deaminase that can restrict HIV-1 infection by mutating the viral genome. A3G consists of a non-catalytic N-terminal domain (NTD) and a catalytic C-terminal domain (CTD) connected by a short linker. While the CTD catalyzes cytosine deamination, the NTD is believed to provide additional affinity for ssDNA. Structures of both A3G domains have been solved individually; however, a full-length A3G structure has been challenging. Recently, crystal structures of full-length rhesus macaque A3G variants were solved which suggested dimerization mechanisms and RNA binding surfaces, whereas the dimerization appeared to compromise catalytic activity. We determined the crystal structure of a soluble variant of human A3G (sA3G) at 2.5 Å and from these data generated a model structure of wild-type A3G. This model demonstrated that the NTD was rotated 90° relative to the CTD along the major axis of the molecule, an orientation that forms a positively charged channel connected to the CTD catalytic site, consisting of NTD loop-1 and CTD loop-3. Structure-based mutations, in vitro deamination and DNA binding assays, and HIV-1 restriction assays identify R24, located in the NTD loop-1, as essential to a critical interaction with ssDNA. Furthermore, sA3G was shown to bind a deoxy-cytidine dinucleotide near the catalytic Zn2+, yet not in the catalytic position, where the interactions between deoxy-cytidines and CTD loop-1 and loop-7 residues were different from those formed with substrate. These new interactions suggest a mechanism explaining why A3G exhibits a 3' to 5' directional preference in processive deamination.


Assuntos
Desaminase APOBEC-3G/ultraestrutura , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/ultraestrutura , Conformação Proteica , Desaminase APOBEC-3G/química , Desaminase APOBEC-3G/genética , Animais , Domínio Catalítico/genética , Cristalografia por Raios X , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Humanos , Macaca mulatta/genética , Mutação/genética , Ligação Proteica/genética , Domínios Proteicos/genética , Zinco/química
6.
PLoS Pathog ; 16(9): e1008812, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32913367

RESUMO

The APOBEC3 deaminases are potent inhibitors of virus replication and barriers to cross-species transmission. For simian immunodeficiency virus (SIV) to transmit to a new primate host, as happened multiple times to seed the ongoing HIV-1 epidemic, the viral infectivity factor (Vif) must be capable of neutralizing the APOBEC3 enzymes of the new host. Although much is known about current interactions of HIV-1 Vif and human APOBEC3s, the evolutionary changes in SIV Vif required for transmission from chimpanzees to gorillas and ultimately to humans are poorly understood. Here, we demonstrate that gorilla APOBEC3G is a factor with the potential to hamper SIV transmission from chimpanzees to gorillas. Gain-of-function experiments using SIVcpzPtt Vif revealed that this barrier could be overcome by a single Vif acidic amino acid substitution (M16E). Moreover, degradation of gorilla APOBEC3F is induced by Vif through a mechanism that is distinct from that of human APOBEC3F. Thus, our findings identify virus adaptations in gorillas that preceded and may have facilitated transmission to humans.


Assuntos
Desaminase APOBEC-3G/metabolismo , Evolução Molecular , Produtos do Gene vif/metabolismo , Interações Hospedeiro-Patógeno , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Vírus da Imunodeficiência Símia/isolamento & purificação , Replicação Viral , Desaminase APOBEC-3G/química , Desaminase APOBEC-3G/genética , Sequência de Aminoácidos , Animais , Produtos do Gene vif/química , Produtos do Gene vif/genética , Gorilla gorilla , Humanos , Pan troglodytes , Filogenia , Conformação Proteica , Homologia de Sequência , Síndrome de Imunodeficiência Adquirida dos Símios/virologia
7.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32847850

RESUMO

Human immunodeficiency virus type 1 (HIV-1) Vif recruits a cellular ubiquitin ligase complex to degrade antiviral APOBEC3 enzymes (APOBEC3C-H) and PP2A phosphatase regulators (PPP2R5A to PPP2R5E). While APOBEC3 antagonism is the canonical function of HIV-1 Vif, this viral accessory protein is also known to trigger G2/M cell cycle arrest. Vif initiates G2/M arrest by degrading multiple PPP2R5 family members, an activity prevalent among diverse HIV-1 and simian immunodeficiency virus (SIV) isolates. Here, computational protein-protein docking was used to delineate a Vif/CBF-ß/PPP2R5 complex in which Vif is predicted to bind the same PPP2R5 surface as physiologic phosphatase targets. This model was tested using targeted mutagenesis of amino acid residues within or adjacent to the putative interface to show loss or retention, respectively, of Vif-induced PPP2R5 degradation activity. Additionally, expression of a peptide that mimics cellular targets of PPP2R5s robustly inhibited Vif-mediated degradation of PPP2R5A but not APOBEC3G. Moreover, live-cell imaging studies examining Vif-mediated degradation of PPP2R5A and APOBEC3G within the same cell revealed that PPP2R5A degradation kinetics are comparable to those of APOBEC3G with a half-life of roughly 6 h postinfection, demonstrating that Vif can concurrently mediate the degradation of distinct cellular substrates. Finally, experiments with a panel of patient-derived Vif isolates indicated that PPP2R5A degradation activity is common in patient-derived isolates. Taken together, these results support a model in which PPP2R5 degradation and global changes in the cellular phosphoproteome are likely to be advantageous for viral pathogenesis.IMPORTANCE A critical function of HIV-1 Vif is to counteract the family of APOBEC3 innate immune proteins. It is also widely accepted that Vif induces G2/M cell cycle arrest in several different cell types. Recently, it has been shown that Vif degrades multiple PPP2R5 phosphoregulators to induce the G2/M arrest phenotype. Here, computational approaches are used to test a structural model of the Vif/PPP2R5 complex. In addition, imaging studies are used to show that Vif degrades these PPP2R5 substrates in roughly the same time frame as APOBEC3 degradation and that this activity is prevalent in patient-derived Vif isolates. These studies are important by further defining PPP2R5 proteins as a bona fide substrate of HIV-1 Vif.


Assuntos
Desaminase APOBEC-3G/química , HIV-1/genética , Proteína Fosfatase 2/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Desaminase APOBEC-3G/genética , Desaminase APOBEC-3G/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Expressão Gênica , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Infecções por HIV/virologia , HIV-1/isolamento & purificação , HIV-1/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno/genética , Humanos , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Estrutura Secundária de Proteína , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Especificidade por Substrato , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo
8.
Nat Commun ; 11(1): 632, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005813

RESUMO

APOBEC3G, a member of the double-domain cytidine deaminase (CD) APOBEC, binds RNA to package into virions and restrict HIV-1 through deamination-dependent or deamination-independent inhibition. Mainly due to lack of a full-length double-domain APOBEC structure, it is unknown how CD1/CD2 domains connect and how dimerization/multimerization is linked to RNA binding and virion packaging for HIV-1 restriction. We report rhesus macaque A3G structures that show different inter-domain packing through a short linker and refolding of CD2. The A3G dimer structure has a hydrophobic dimer-interface matching with that of the previously reported CD1 structure. A3G dimerization generates a surface with intensified positive electrostatic potentials (PEP) for RNA binding and dimer stabilization. Unexpectedly, mutating the PEP surface and the hydrophobic interface of A3G does not abolish virion packaging and HIV-1 restriction. The data support a model in which only one RNA-binding mode is critical for virion packaging and restriction of HIV-1 by A3G.


Assuntos
Desaminase APOBEC-3G/química , Infecções por HIV/enzimologia , HIV-1/fisiologia , Desaminase APOBEC-3G/genética , Desaminase APOBEC-3G/metabolismo , Animais , Dimerização , Infecções por HIV/virologia , HIV-1/genética , Interações Hospedeiro-Patógeno , Humanos , Macaca mulatta , Domínios Proteicos , RNA Viral/genética , RNA Viral/metabolismo , Montagem de Vírus , Replicação Viral
9.
J Phys Chem B ; 124(2): 366-372, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31867969

RESUMO

The importance of cell surfaces in the self-assembly of proteins is widely accepted. One biologically significant event is the assembly of amyloidogenic proteins into aggregates, which leads to neurodegenerative disorders like Alzheimer's and Parkinson's diseases. The interaction of amyloidogenic proteins with cellular membranes appears to dramatically facilitate the aggregation process. Recent findings indicate that, in the presence of surfaces, aggregation occurs at physiologically low concentrations, suggesting that interaction with surfaces plays a critical role in the disease-prone aggregation process. However, the molecular mechanisms behind the on-surface aggregation process remain unclear. Here, we provide a theoretical model that offers a molecular explanation. According to this model, monomers transiently immobilized to surfaces increase the local monomer protein concentration and thus work as nuclei to dramatically accelerate the entire aggregation process. This physical-chemical theory was verified by experimental studies, using mica surfaces, to examine the aggregation kinetics of amyloidogenic α-synuclein protein and non-amyloidogenic cytosine deaminase APOBEC3G.


Assuntos
Desaminase APOBEC-3G/metabolismo , Proteínas Amiloidogênicas/metabolismo , Multimerização Proteica , alfa-Sinucleína/metabolismo , Desaminase APOBEC-3G/química , Silicatos de Alumínio/química , Proteínas Amiloidogênicas/química , Membrana Celular/metabolismo , Cinética , Microscopia de Força Atômica , alfa-Sinucleína/química
10.
Elife ; 82019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31850845

RESUMO

APOBEC3G (A3G), an enzyme expressed in primates with the potential to inhibit human immunodeficiency virus type 1 (HIV-1) infectivity, is a single-stranded DNA (ssDNA) deoxycytidine deaminase with two domains, a catalytically active, weakly ssDNA binding C-terminal domain (CTD) and a catalytically inactive, strongly ssDNA binding N-terminal domain (NTD). Using optical tweezers, we measure A3G binding a single, long ssDNA substrate under various applied forces to characterize the binding interaction. A3G binds ssDNA in multiple steps and in two distinct conformations, distinguished by degree of ssDNA contraction. A3G stabilizes formation of ssDNA loops, an ability inhibited by A3G oligomerization. Our data suggests A3G securely binds ssDNA through the NTD, while the CTD samples and potentially deaminates the substrate. Oligomerization of A3G stabilizes ssDNA binding but inhibits the CTD's search function. These processes explain A3G's ability to efficiently deaminate numerous sites across a 10,000 base viral genome during the reverse transcription process.


Assuntos
Desaminase APOBEC-3G/metabolismo , DNA de Cadeia Simples/metabolismo , Fatores Imunológicos/metabolismo , Desaminase APOBEC-3G/química , Fatores Imunológicos/química , Ligação Proteica , Conformação Proteica , Domínios Proteicos
11.
Nucleic Acids Res ; 47(14): 7676-7689, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31424549

RESUMO

The potent antiretroviral protein APOBEC3G (A3G) specifically targets and deaminates deoxycytidine nucleotides, generating deoxyuridine, in single stranded DNA (ssDNA) intermediates produced during HIV replication. A non-catalytic domain in A3G binds strongly to RNA, an interaction crucial for recruitment of A3G to the virion; yet, A3G displays no deamination activity for cytidines in viral RNA. Here, we report NMR and molecular dynamics (MD) simulation analysis for interactions between A3Gctd and multiple substrate or non-substrate DNA and RNA, in combination with deamination assays. NMR ssDNA-binding experiments revealed that the interaction with residues in helix1 and loop1 (T201-L220) distinguishes the binding mode of substrate ssDNA from non-substrate. Using 2'-deoxy-2'-fluorine substituted cytidines, we show that a 2'-endo sugar conformation of the target deoxycytidine is favored for substrate binding and deamination. Trajectories of the MD simulation indicate that a ribose 2'-hydroxyl group destabilizes the π-π stacking of the target cytosine and H257, resulting in dislocation of the target cytosine base from the catalytic position. Interestingly, APOBEC3A, which can deaminate ribocytidines, retains the ribocytidine in the catalytic position throughout the MD simulation. Our results indicate that A3Gctd catalytic selectivity against RNA is dictated by both the sugar conformation and 2'-hydroxyl group.


Assuntos
Desaminase APOBEC-3G/metabolismo , DNA de Cadeia Simples/metabolismo , DNA/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , RNA/metabolismo , Desaminase APOBEC-3G/química , Desaminase APOBEC-3G/genética , Biocatálise , Citidina/química , Citidina/metabolismo , DNA/química , DNA/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Desaminação , HIV-1/genética , HIV-1/metabolismo , Humanos , Ligação Proteica , RNA/química , RNA/genética , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Especificidade por Substrato , Vírion/genética , Vírion/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-31165049

RESUMO

APOBEC3G (A3G) is a cellular protein that inhibits HIV-1 infection through virion incorporation. The interaction of the A3G N-terminal domain (NTD) with RNA is essential for A3G incorporation in the HIV-1 virion. The interaction between A3G-NTD and RNA is not completely understood. The A3G-NTD is also recognized by HIV-1 Viral infectivity factor (Vif) and A3G-Vif binding leads to A3G degradation. Therefore, the A3G-Vif interaction is a target for the development of antiviral therapies that block HIV-1 replication. However, targeting the A3G-Vif interactions could disrupt the A3G-RNA interactions that are required for A3G's antiviral activity. To better understand A3G-RNA binding, we generated in silico docking models to simulate the RNA-binding propensity of A3G-NTD. We simulated the A3G-NTD residues with high RNA-binding propensity, experimentally validated our prediction by testing A3G-NTD mutations, and identified structural determinants of A3G-RNA binding. In addition, we found a novel amino acid residue, I26 responsible for RNA interaction. The new structural insights provided here will facilitate the design of pharmaceuticals that inhibit A3G-Vif interactions without negatively impacting A3G-RNA interactions.


Assuntos
Desaminase APOBEC-3G/química , Desaminase APOBEC-3G/metabolismo , HIV-1/imunologia , RNA Viral/metabolismo , Desaminase APOBEC-3G/genética , Análise Mutacional de DNA , Infecções por HIV/imunologia , Infecções por HIV/virologia , Simulação de Acoplamento Molecular , Ligação Proteica
13.
Chem Asian J ; 14(13): 2235-2241, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31116511

RESUMO

Human APOBEC3G (A3G) inhibits the replication of human immunodeficiency virus-1 by deaminating cytidine at the 3'-end in the target motif 5'-CCC-3' in viral cDNA during reverse transcription. It in vitro deaminates two consecutive cytidines in a 3'->5' order. Although a crystal structure of the A3G catalytic domain (A3G-CD2) with DNA was reported, it is unknown why residues involved in enzymatic reaction are distributed widely. Here, we introduced an iodine atom into the C-5 position of cytidine (dC6 I ) in DNA 5'-ATTC4 C5 C6 I A7 ATT-3' (TCCC6 I ). It switches the deamination sequence preference from CCC to TCC, although small dC6 I deamination was observed. Solution structures of A3G-CD2 in complexes with products DNA TCUC6 I and TCUU6 I indicate that the substrate DNA binds A3G-CD2 in TCC and CCC modes. The dC6 deamination correlates with the 4th base type. The CCC mode favours dC6 deamination, while the TCC mode results in dC5 deamination. These studies present an extensive basis to design inhibitors to impede viral evolvability.


Assuntos
Desaminase APOBEC-3G/metabolismo , Citidina/metabolismo , DNA/metabolismo , Desaminase APOBEC-3G/química , Sequência de Bases , Domínio Catalítico , Citidina/química , DNA/química , Desaminação , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Espectroscopia de Prótons por Ressonância Magnética
14.
Virology ; 527: 21-31, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30448640

RESUMO

The APOBEC3 enzyme family are host restriction factors that induce mutagenesis of HIV-1 proviral genomes through the deamination of cytosine to form uracil in nascent single-stranded (-)DNA. HIV-1 suppresses APOBEC3 activity through the HIV-1 protein Vif that induces APOBEC3 degradation. Here we compared two common polymorphisms of APOBEC3F. We found that although both polymorphisms have HIV-1 restriction activity, APOBEC3F 108 A/231V can restrict HIV-1 ΔVif up to 4-fold more than APOBEC3F 108 S/231I and is partially protected from Vif-mediated degradation. This resulted from higher levels of steady state expression of APOBEC3F 108 A/231 V. Individuals are commonly heterozygous for the APOBEC3F polymorphisms and these polymorphisms formed in cells, independent of RNA, hetero-oligomers between each other and with APOBEC3G. Hetero-oligomerization with APOBEC3F 108 A/231V resulted in partial stabilization of APOBEC3F 108 S/231I and APOBEC3G in the presence of Vif. These data demonstrate functional outcomes of APOBEC3 polymorphisms and hetero-oligomerization that affect HIV-1 restriction.


Assuntos
Citosina Desaminase/genética , Infecções por HIV/genética , HIV-1/genética , Polimorfismo Genético , Replicação Viral , Desaminase APOBEC-3G/química , Desaminase APOBEC-3G/genética , Citosina Desaminase/química , DNA Viral/genética , Células HEK293 , HIV-1/fisiologia , Heterozigoto , Humanos , Mutação , Multimerização Proteica , Estabilidade Proteica , Vírion/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo
15.
Sci Rep ; 8(1): 17953, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30560880

RESUMO

APOBEC3G (A3G) belongs to the family of cytosine deaminases that play an important role in the innate immune response. Similar to other, two-domain members of the APOBEC family, A3G is prone to concentration-dependent oligomerization, which is an integral for its function in the cell. It is shown that oligomerization of A3G is related to the packing mechanism into virus particle and, is critical for the so-called roadblock model during reverse transcription of proviral ssDNA. The role of oligomerization for deaminase activity of A3G is widely discussed in the literature; however, its relevance to deaminase activity for different oligomeric forms of A3G remains unclear. Here, using Atomic Force Microscopy, we directly visualized A3G-ssDNA complexes, determined their yield and stoichiometry and in parallel, using PCR assay, measured the deaminase activity of these complexes. Our data demonstrate a direct correlation between the total yield of A3G-ssDNA complexes and their total deaminase activity. Using these data, we calculated the relative deaminase activity for each individual oligomeric state of A3G in the complex. Our results show not only similar deaminase activity for monomer, dimer and tetramer of A3G in the complex, but indicate that larger oligomers of A3G retain their deaminase activity.


Assuntos
Desaminase APOBEC-3G/química , Desaminase APOBEC-3G/metabolismo , Multimerização Proteica , Desaminase APOBEC-3G/genética , Ativação Enzimática , Humanos , Microscopia de Força Atômica/métodos , Ligação Proteica
16.
J Mol Biol ; 430(24): 4891-4907, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30414963

RESUMO

Human APOBEC3H is a single-stranded (ss)DNA deoxycytidine deaminase that inhibits replication of retroelements and HIV-1 in CD4+ T cells. When aberrantly expressed in lung or breast tissue, APOBEC3H can contribute to cancer mutagenesis. These different activities are carried out by different haplotypes of APOBEC3H. Here we studied APOBEC3H haplotype II, which is able to restrict HIV-1 replication and retroelements. We determined how the dimerization mechanism, which is mediated by a double-stranded RNA molecule, influenced interactions with and activity on ssDNA. The data demonstrate that the cellular RNA bound by APOBEC3H does not completely inhibit enzyme activity, in contrast to other APOBEC family members. Despite degradation of the cellular RNA, an approximately 12-nt RNA remains bound to the enzyme, even in the presence of ssDNA. The RNA-mediated dimer is disrupted by mutating W115 on loop 7 or R175 and R176 on helix 6, but this also disrupts protein stability. In contrast, mutation of Y112 and Y113 on loop 7 also destabilizes RNA-mediated dimerization but results in a stable enzyme. Mutants unable to bind cellular RNA are unable to bind RNA oligonucleotides, oligomerize, and deaminate ssDNA in vitro, but ssDNA binding is retained. Comparison of A3H wild type and Y112A/Y113A by fluorescence polarization, single-molecule optical tweezer, and atomic force microscopy experiments demonstrates that RNA-mediated dimerization alters the interactions of A3H with ssDNA and other RNA molecules. Altogether, the biochemical analysis demonstrates that RNA binding is integral to APOBEC3H function.


Assuntos
Desaminase APOBEC-3G/química , Desaminase APOBEC-3G/metabolismo , HIV-1/fisiologia , Mutação , RNA/metabolismo , Desaminase APOBEC-3G/genética , DNA de Cadeia Simples/metabolismo , Estabilidade Enzimática , Polarização de Fluorescência , HIV-1/genética , Humanos , Microscopia de Força Atômica , Modelos Moleculares , Multimerização Proteica , Estrutura Secundária de Proteína , RNA Viral/metabolismo , Replicação Viral
17.
Methods Mol Biol ; 1814: 579-592, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29956256

RESUMO

The present article describes techniques for classical simulations of proteins and protein-nucleic acid complexes, revealing their dynamics and protein-substrate binding energies. The approach is based on classical atomistic molecular dynamics (MD) simulations of the experimentally determined structures of the complexes. MD simulations can provide dynamics of complexes in realistic solvents on microsecond timescales, and the free energy methods are able to provide Gibbs free energies of binding of substrates, such as nucleic acids, to proteins. The chapter describes methodologies for the preparation of computer models of biomolecular complexes and free energy perturbation methodology for evaluating Gibbs free energies of binding. The applications are illustrated with examples of snapshots of proteins and their complexes with nucleic acids, as well as the precise Gibbs free energies of binding.


Assuntos
Simulação de Dinâmica Molecular , Nanotecnologia/métodos , Ácidos Nucleicos/química , Proteínas/química , Desaminase APOBEC-3G/química , Domínio Catalítico , RNA/química , Termodinâmica
18.
Nat Commun ; 9(1): 2460, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941968

RESUMO

The human APOBEC3G protein is a cytidine deaminase that generates cytidine to deoxy-uridine mutations in single-stranded DNA (ssDNA), and capable of restricting replication of HIV-1 by generating mutations in viral genome. The mechanism by which APOBEC3G specifically deaminates 5'-CC motifs has remained elusive since structural studies have been hampered due to apparently weak ssDNA binding of the catalytic domain of APOBEC3G. We overcame the problem by generating a highly active variant with higher ssDNA affinity. Here, we present the crystal structure of this variant complexed with a ssDNA substrate at 1.86 Å resolution. This structure reveals atomic-level interactions by which APOBEC3G recognizes a functionally-relevant 5'-TCCCA sequence. This complex also reveals a key role of W211 in substrate recognition, implicating a similar recognition in activation-induced cytidine deaminase (AID) with a conserved tryptophan.


Assuntos
Desaminase APOBEC-3G/química , Domínio Catalítico/fisiologia , DNA de Cadeia Simples/química , Linhagem Celular , Cristalografia por Raios X , Citidina/química , Células HEK293 , HIV-1/genética , Humanos , Modelos Moleculares , Estrutura Secundária de Proteína , Replicação Viral/genética
19.
Sci Rep ; 8(1): 8067, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29795228

RESUMO

Human APOBEC3G (hA3G) is a restriction factor that inhibits human immunodeficiency 1 virus (HIV-1) replication. The virally encoded protein Vif binds to hA3G and induces its degradation, thereby counteracting the antiviral activity of hA3G. Vif-mediated hA3G degradation clearly represents a potential target for anti-HIV drug development. Herein, we have performed virtual screening to discover small molecule inhibitors that target the binding interface of the Vif/hA3G complex. Subsequent biochemical studies have led to the identification of a small molecule inhibitor, IMB-301 that binds to hA3G, interrupts the hA3G-Vif interaction and inhibits Vif-mediated degradation of hA3G. As a result, IMB-301 strongly inhibits HIV-1 replication in a hA3G-dependent manner. Our study further demonstrates the feasibility of inhibiting HIV replication by abrogating the Vif-hA3G interaction with small molecules.


Assuntos
Desaminase APOBEC-3G/metabolismo , Fármacos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Desaminase APOBEC-3G/química , Desaminase APOBEC-3G/genética , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Ensaios de Triagem em Larga Escala , Humanos , Conformação Proteica , Replicação Viral/efeitos dos fármacos , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética
20.
PLoS One ; 13(3): e0195048, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29596531

RESUMO

Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3 (A3) proteins are a family of cytidine deaminases that catalyze the conversion of deoxycytidine (dC) to deoxyuridine (dU) in single-stranded DNA (ssDNA). A3 proteins act in the innate immune response to viral infection by mutating the viral ssDNA. One of the most well-studied human A3 family members is A3G, which is a potent inhibitor of HIV-1. Each A3 protein prefers a specific substrate sequence for catalysis-for example, A3G deaminates the third dC in the CCCA sequence motif. However, the interaction between A3G and ssDNA is difficult to characterize due to poor solution behavior of the full-length protein and loss of DNA affinity of the truncated protein. Here, we present a novel DNA-anchoring fusion strategy using the protection of telomeres protein 1 (Pot1) which has nanomolar affinity for ssDNA, with which we captured an A3G-ssDNA interaction. We crystallized a non-preferred adenine in the -1 nucleotide-binding pocket of A3G. The structure reveals a unique conformation of the catalytic site loops that sheds light onto how the enzyme scans substrate in the -1 pocket. Furthermore, our biochemistry and virology studies provide evidence that the nucleotide-binding pockets on A3G influence each other in selecting the preferred DNA substrate. Together, the results provide insights into the mechanism by which A3G selects and deaminates its preferred substrates and help define how A3 proteins are tailored to recognize specific DNA sequences. This knowledge contributes to a better understanding of the mechanism of DNA substrate selection by A3G, as well as A3G antiviral activity against HIV-1.


Assuntos
Desaminase APOBEC-3G/química , Desaminase APOBEC-3G/metabolismo , DNA de Cadeia Simples/metabolismo , Desaminase APOBEC-3G/genética , Sítios de Ligação , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...