Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.646
Filtrar
1.
FASEB J ; 38(14): e23808, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38994637

RESUMO

Muscle development is a multistep process regulated by diverse gene networks, and circRNAs are considered novel regulators mediating myogenesis. Here, we systematically analyzed the role and underlying regulatory mechanisms of circRBBP7 in myoblast proliferation and differentiation. Results showed that circRBBP7 has a typical circular structure and encodes a 13 -kDa protein. By performing circRBBP7 overexpression and RNA interference, we found that the function of circRBBP7 was positively correlated with the proliferation and differentiation of myoblasts. Using RNA sequencing, we identified 1633 and 532 differentially expressed genes (DEGs) during myoblast proliferation or differentiation, respectively. The DEGs were found mainly enriched in cell cycle- and skeletal muscle development-related pathways, such as the MDM2/p53 and PI3K-Akt signaling pathways. Further co-IP and IF co-localization analysis revealed that VEGFR-1 is a target of circRBBP7 in myoblasts. qRT-PCR and WB analysis further confirmed the positive correlation between VEGFR-1 and circRBBP7. Moreover, we found that in vivo transfection of circRBBP7 into injured muscle tissues significantly promoted the regeneration and repair of myofibers in mice. Therefore, we speculate that circRBBP7 may affect the activity of MDM2 by targeting VEGFR-1, altering the expression of muscle development-related genes by mediating p53 degradation, and ultimately promoting myoblast development and muscle regeneration. This study provides essential evidence that circRBBP7 can serve as a potential target for myogenesis regulation and a reference for the application of circRBBP7 in cattle genetic breeding and muscle injury treatment.


Assuntos
Diferenciação Celular , Proliferação de Células , Desenvolvimento Muscular , Mioblastos , RNA Circular , Animais , Desenvolvimento Muscular/fisiologia , Camundongos , Mioblastos/metabolismo , Mioblastos/citologia , RNA Circular/genética , RNA Circular/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Transdução de Sinais , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia , Camundongos Endogâmicos C57BL , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Masculino , Linhagem Celular
2.
FASEB J ; 38(13): e23797, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38963344

RESUMO

The role of N-glycosylation in the myogenic process remains poorly understood. Here, we evaluated the impact of N-glycosylation inhibition by Tunicamycin (TUN) or by phosphomannomutase 2 (PMM2) gene knockdown, which encodes an enzyme essential for catalyzing an early step of the N-glycosylation pathway, on C2C12 myoblast differentiation. The effect of chronic treatment with TUN on tibialis anterior (TA) and extensor digitorum longus (EDL) muscles of WT and MLC/mIgf-1 transgenic mice, which overexpress muscle Igf-1Ea mRNA isoform, was also investigated. TUN-treated and PMM2 knockdown C2C12 cells showed reduced ConA, PHA-L, and AAL lectin binding and increased ER-stress-related gene expression (Chop and Hspa5 mRNAs and s/uXbp1 ratio) compared to controls. Myogenic markers (MyoD, myogenin, and Mrf4 mRNAs and MF20 protein) and myotube formation were reduced in both TUN-treated and PMM2 knockdown C2C12 cells. Body and TA weight of WT and MLC/mIgf-1 mice were not modified by TUN treatment, while lectin binding slightly decreased in the TA muscle of WT (ConA and AAL) and MLC/mIgf-1 (ConA) mice. The ER-stress-related gene expression did not change in the TA muscle of WT and MLC/mIgf-1 mice after TUN treatment. TUN treatment decreased myogenin mRNA and increased atrogen-1 mRNA, particularly in the TA muscle of WT mice. Finally, the IGF-1 production and IGF1R signaling pathways activation were reduced due to N-glycosylation inhibition in TA and EDL muscles. Decreased IGF1R expression was found in TUN-treated C2C12 myoblasts which was associated with lower IGF-1-induced IGF1R, AKT, and ERK1/2 phosphorylation compared to CTR cells. Chronic TUN-challenge models can help to elucidate the molecular mechanisms through which diseases associated with aberrant N-glycosylation, such as Congenital Disorders of Glycosylation (CDG), affect muscle and other tissue functions.


Assuntos
Diferenciação Celular , Chaperona BiP do Retículo Endoplasmático , Músculo Esquelético , Mioblastos , Receptor IGF Tipo 1 , Transdução de Sinais , Tunicamicina , Animais , Camundongos , Glicosilação , Mioblastos/metabolismo , Chaperona BiP do Retículo Endoplasmático/metabolismo , Tunicamicina/farmacologia , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/genética , Músculo Esquelético/metabolismo , Desenvolvimento Muscular/fisiologia , Linhagem Celular , Camundongos Transgênicos , Estresse do Retículo Endoplasmático , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/genética
3.
Int J Biol Sci ; 20(8): 3219-3235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904020

RESUMO

The sirtuins constitute a group of histone deacetylases reliant on NAD+ for their activity that have gained recognition for their critical roles as regulators of numerous biological processes. These enzymes have various functions in skeletal muscle biology, including development, metabolism, and the body's response to disease. This comprehensive review seeks to clarify sirtuins' complex role in skeletal muscle metabolism, including glucose uptake, fatty acid oxidation, mitochondrial dynamics, autophagy regulation, and exercise adaptations. It also examines their critical roles in developing skeletal muscle, including myogenesis, the determination of muscle fiber type, regeneration, and hypertrophic responses. Moreover, it sheds light on the therapeutic potential of sirtuins by examining their impact on a range of skeletal muscle disorders. By integrating findings from various studies, this review outlines the context of sirtuin-mediated regulation in skeletal muscle, highlighting their importance and possible consequences for health and disease.


Assuntos
Músculo Esquelético , Sirtuínas , Músculo Esquelético/metabolismo , Humanos , Sirtuínas/metabolismo , Animais , Desenvolvimento Muscular/fisiologia , Doenças Musculares/metabolismo
4.
Physiol Rep ; 12(11): e16002, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831632

RESUMO

During skeletal muscle development, the intricate mitochondrial network formation relies on continuous fission and fusion. This process in larger mammals differs from rodents, the most used animal models. However, the expression pattern of proteins regulating mitochondrial dynamics in developing skeletal muscle remains unexplored in larger mammals. Therefore, we characterized the cellular expression and tissue-level distribution of these proteins during development taking goat as a model. We have performed histological and immunohistochemical analyses to study metabolic features in various muscles. Neonatal muscles display uniform distribution of mitochondrial activity. In contrast, adult muscles exhibit clear distinctions based on their function, whether dedicated for posture maintenance or facilitating locomotion. Mitochondrial fission proteins like DRP-1, MFF, and fusion proteins like MFN-1 and 2 are abundantly expressed in neonatal muscles. Fission proteins exhibit drastic downregulation with limited peripheral expression, whereas fusion proteins continue to express in a fiber-specific manner during adulthood. Locomotory muscles exhibit different fibers based on mitochondrial activity and peripheralization with high SDH activity. The proximity ligation assay between MFN1 and MFN2 demonstrates that their interaction is restricted to subsarcolemmal mitochondria in adult fibers while distributed evenly in neonatal fibers. These differences between postural and locomotory muscles suggest their physiological and metabolic properties are different.


Assuntos
Cabras , Dinâmica Mitocondrial , Proteínas Mitocondriais , Músculo Esquelético , Animais , Cabras/metabolismo , Dinâmica Mitocondrial/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/fisiologia , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mitocôndrias Musculares/metabolismo , Desenvolvimento Muscular/fisiologia
5.
Proc Natl Acad Sci U S A ; 121(23): e2217971121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805272

RESUMO

Myogenesis is a multistep process that requires a spatiotemporal regulation of cell events resulting finally in myoblast fusion into multinucleated myotubes. Most major insights into the mechanisms underlying fusion seem to be conserved from insects to mammals and include the formation of podosome-like protrusions (PLPs) that exert a driving force toward the founder cell. However, the machinery that governs this process remains poorly understood. In this study, we demonstrate that MTM1 is the main enzyme responsible for the production of phosphatidylinositol 5-phosphate, which in turn fuels PI5P 4-kinase α to produce a minor and functional pool of phosphatidylinositol 4,5-bisphosphate that concentrates in PLPs containing the scaffolding protein Tks5, Dynamin-2, and the fusogenic protein Myomaker. Collectively, our data reveal a functional crosstalk between a PI-phosphatase and a PI-kinase in the regulation of PLP formation.


Assuntos
Fusão Celular , Mioblastos , Fosfatos de Fosfatidilinositol , Podossomos , Animais , Fosfatos de Fosfatidilinositol/metabolismo , Camundongos , Mioblastos/metabolismo , Mioblastos/citologia , Podossomos/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Desenvolvimento Muscular/fisiologia
6.
Adv Sci (Weinh) ; 11(26): e2308306, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38685581

RESUMO

Human-induced pluripotent stem cells (hiPSCs) have great therapeutic potential. The cell source differentiated from hiPSCs requires xeno-free and robust methods for lineage-specific differentiation. Here, a system is described for differentiating hiPSCs on new generation laminin fragments (NGLFs), a recombinant form of a laminin E8 fragment conjugated to the heparan sulfate chains (HS) attachment domain of perlecan. Using NGLFs, hiPSCs are highly promoted to direct differentiation into a paraxial mesoderm state with high-efficiency muscle lineage generation. HS conjugation to the C-terminus of Laminin E8 fragments brings fibroblast growth factors (FGFs) bound to the HS close to the cell surface of hiPSCs, thereby facilitating stronger FGF signaling pathways stimulation and initiating HOX gene expression, which triggers the paraxial mesoderm differentiation of hiPSCs. This highly efficient differentiation system can provide a roadmap for paraxial mesoderm development and an infinite source of myocytes and muscle stem cells for disease modeling and regenerative medicine.


Assuntos
Diferenciação Celular , Heparitina Sulfato , Células-Tronco Pluripotentes Induzidas , Laminina , Mesoderma , Diferenciação Celular/fisiologia , Mesoderma/citologia , Mesoderma/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Laminina/metabolismo , Heparitina Sulfato/metabolismo , Desenvolvimento Muscular/fisiologia , Desenvolvimento Muscular/genética , Células Cultivadas
7.
Biomed Pharmacother ; 174: 116563, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583341

RESUMO

Mammalian skeletal myogenesis is a complex process that allows precise control of myogenic cells' proliferation, differentiation, and fusion to form multinucleated, contractile, and functional muscle fibers. Typically, myogenic progenitors continue growth and division until acquiring a differentiated state, which then permanently leaves the cell cycle and enters terminal differentiation. These processes have been intensively studied using the skeletal muscle developing models in vitro and in vivo, uncovering a complex cellular intrinsic network during mammalian skeletal myogenesis containing transcription factors, translation factors, extracellular matrix, metabolites, and mechano-sensors. Examining the events and how they are knitted together will better understand skeletal myogenesis's molecular basis. This review describes various regulatory mechanisms and recent advances in myogenic cell proliferation and differentiation during mammalian skeletal myogenesis. We focus on significant cell cycle regulators, myogenic factors, and chromatin regulators impacting the coordination of the cell proliferation versus differentiation decision, which will better clarify the complex signaling underlying skeletal myogenesis.


Assuntos
Diferenciação Celular , Proliferação de Células , Desenvolvimento Muscular , Músculo Esquelético , Desenvolvimento Muscular/fisiologia , Diferenciação Celular/fisiologia , Animais , Proliferação de Células/fisiologia , Humanos , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Mamíferos , Transdução de Sinais , Fatores de Regulação Miogênica/metabolismo , Fatores de Regulação Miogênica/genética
8.
J Strength Cond Res ; 38(7): 1330-1340, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38595233

RESUMO

ABSTRACT: Ramos-Campo, DJ, Benito-Peinado, PJ, Caravaca, LA, Rojo-Tirado, MA, and Rubio-Arias, JÁ. Efficacy of split versus full-body resistance training on strength and muscle growth: a systematic review with meta-analysis. J Strength Cond Res 38(7): 1330-1340, 2024-No previous study has systematically compared the effect of 2 resistance training routines commonly used to increase muscle mass and strength (i.e., split [Sp] and full-body [FB] routines). Our objective was to conduct a systematic review and meta-analysis following PRISMA guidelines to compare the effects on strength gains and muscle growth in healthy adults. 14 studies (392 subjects) that compared Sp and FB routines in terms of strength adaptations and muscle growth were included. Regarding the effects of the Sp or FB routine on both bench press and lower limbs strength, the magnitude of the change produced by both routines was similar (bench press: mean difference [MD] = 1.19; [-1.28, 3.65]; p = 0.34; k = 14; lower limb: MD = 2.47; [-2.11, 7.05]; p = 0.29; k = 14). Concerning the effect of the Sp vs. FB routine on muscle growth, similar effects were observed after both routines in the cross-sectional area of the elbow extensors (MD = 0.30; [-2.65, 3.24]; p = 0.84; k = 4), elbow flexors (MD = 0.17; [-2.54, 2.88]; p = 0.91; k = 5), vastus lateralis (MD = -0.08; [-1.82, 1.66]; p = 0.93; k = 5), or lean body mass (MD = -0.07; [-1.59, 1.44]; p = 0.92; k = 6). In conclusion, the present systematic review and meta-analysis provides solid evidence that the use of Sp or FB routines within a resistance training program does not significantly impact either strength gains or muscle hypertrophy when volume is equated. Consequently, individuals are free to confidently select a resistance training routine based on their personal preferences.


Assuntos
Força Muscular , Músculo Esquelético , Treinamento Resistido , Humanos , Treinamento Resistido/métodos , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Extremidade Inferior/fisiologia , Desenvolvimento Muscular/fisiologia
9.
Dev Cell ; 59(11): 1457-1474.e5, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569550

RESUMO

The function of many organs, including skeletal muscle, depends on their three-dimensional structure. Muscle regeneration therefore requires not only reestablishment of myofibers but also restoration of tissue architecture. Resident muscle stem cells (SCs) are essential for regeneration, but how SCs regenerate muscle architecture is largely unknown. We address this problem using genetic labeling of mouse SCs and whole-mount imaging to reconstruct, in three dimensions, muscle regeneration. Unexpectedly, we found that myofibers form via two distinct phases of fusion and the residual basement membrane of necrotic myofibers is critical for promoting fusion and orienting regenerated myofibers. Furthermore, the centralized myonuclei characteristic of regenerated myofibers are associated with myofibrillogenesis and endure months post injury. Finally, we elucidate two cellular mechanisms for the formation of branched myofibers, a pathology characteristic of diseased muscle. We provide a synthesis of the cellular events of regeneration and show that these differ from those used during development.


Assuntos
Imageamento Tridimensional , Músculo Esquelético , Regeneração , Animais , Regeneração/fisiologia , Camundongos , Músculo Esquelético/fisiologia , Imageamento Tridimensional/métodos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citologia , Desenvolvimento Muscular/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Membrana Basal/metabolismo
11.
Arch Biochem Biophys ; 752: 109886, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38215960

RESUMO

Recent studies have shown that some natural compounds from plants prevent obesity and related disorders, including the loss of skeletal muscle mass and strength. In this study, we investigated the effect of echinacoside (ECH), a caffeic acid glycoside from the phenylpropanoid class, on myogenesis and ATP-dependent thermogenesis in the skeletal muscle and its interaction with the dopaminergic receptors 1 and 5 (DRD1 and DRD5). We applied RT-PCR, immunoblot analysis, a staining method, and an assay kit to determine the effects of ECH on diverse target genes and proteins involved in skeletal muscle myogenesis and ATP-consuming futile processes. Our study demonstrated that ECH enhanced myogenic differentiation, glucose, and fatty acid uptake, as well as lipid catabolism, and induced ATP-dependent thermogenesis in vitro and in vivo. Moreover, ECH upregulated mitochondrial biogenesis proteins, mitochondrial oxidative phosphorylation (OXPHOS) complexes, and intracellular Ca2+ signaling as well as thermogenic proteins. These findings were further elucidated by mechanistic studies which showed that ECH mediates myogenesis via the DRD1/5 in C2C12 muscle cells. In addition, ECH stimulates α1-AR-mediated ATP-dependent thermogenesis via the DRD1/5/cAMP/SLN/SERCA1a pathway in C2C12 muscle cells. To the best of our knowledge, this is the first report that demonstrates the myogenic and thermogenic potential of ECH activity through the dopaminergic receptors. Understanding the novel functions of ECH in terms of its ability to prevent skeletal muscle loss and energy expenditure via ATP-consuming futile processes could help to develop potential alternative strategies to address muscle-related diseases, including combating obesity.


Assuntos
Músculo Esquelético , Obesidade , Humanos , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Glicosídeos/farmacologia , Trifosfato de Adenosina/metabolismo , Desenvolvimento Muscular/fisiologia , Termogênese/fisiologia
12.
Sportis (A Coruña) ; 10(1): 158-187, 2024. tab, ilus
Artigo em Espanhol | IBECS | ID: ibc-229140

RESUMO

Con el pasar del tiempo y especialmente en los últimos años el entrenamiento de la fuerza en niños y adolescentes ha venido tomando fuerza, convirtiéndose en uno de los componentes más importantes en el desarrollo de las capacidades físicas y motrices. El objetivo es Identificar las tendencias más recientes en lo referente a la prescripción del entrenamiento de la fuerza en niños y adolescentes la metodología: se desarrollo una revisión sistemática en la que fueron analizados 648 artículos de los cuales sólo 10 fueron seleccionados dada su relevancia y relación con el tema, además dichos artículos fueron extraídos de las bases de datos: Google Académico, Redalyc, Dialnet, y Scielo. En los resultados se pudo identificar en la revisión, (N=11) investigaciones experimentales cuantitativas y (N=15) estudios de revisión (cualitativas), así como un total de (n=234) participantes de ambos sexos en las intervenciones experimentales y un total de (n=139) estudios consultados en los artículos de revisión sistemática. En las conclusiones se logró identificar que el entrenamiento con pesos libres, y peso corporal son la tendencia más usada a la hora de prescribir entrenamiento de la fuerza. Consigo, se destaca que son los métodos de entrenamiento con pesas y bandas elásticas los implementos más utilizados para llevar a cabo su realización. La frecuencia recomendada es de 2 a 3 días por semana. El volumen que se destaca es de 2 a 3 series y 6 a 15 repeticiones por ejercicio donde la intensidad que prevalece son los porcentajes del 60% al 85% por ciento de 1RM o una intensidad moderada en la escala del esfuerzo percibido (AU)


With the passing of time and especially in recent years, strength training in children and adolescents has been gaining strength, becoming one of the most important components in physical and motor development. The objective is to identify the most recent trends regarding the prescription of strength training in children and adolescents. The methodology: a systematic review was developed in which 648 articles were analyzed, of which only 10 were selected given their relevance and relationship. with the subject, in addition said articles were extracted from the databases: Google Scholar, Redalyc, Dialnet, and Scielo. In the results it was possible to identify in the review, (N=11) quantitative experimental investigations and (N=15) review studies (qualitative), as well as a total of (n=234) participants of both sexes in the experimental interruptions and a total of (n=139) studies consulted in the systematic review articles. In the conclusions it will be identified that training with free weights and body weight are the most used trend when prescribing strength training. With it, it stands out that the methods of training with weights and elastic bands are the most used implements to carry out their realization. The recommended frequency is 2 to 3 days per week weeks. The volume that stands out is 2 to 3 sets and 6 to 15 repetitions per exercise where the prevailing intensity is 60% to 85% percent of 1RM or moderate intensity on the perceived exertion scale (AU)


Assuntos
Humanos , Treinamento Resistido/métodos , Desenvolvimento Infantil/fisiologia , Desenvolvimento Muscular/fisiologia
13.
Nat Commun ; 14(1): 8131, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065962

RESUMO

The cellular prion protein (PrPC) is required for skeletal muscle function. Here, we report that a higher level of PrPC accumulates in the cytoplasm of the skeletal muscle of six myopathy patients compared to controls. PrPC inhibits skeletal muscle cell autophagy, and blocks myoblast differentiation. PrPC selectively binds to a subset of miRNAs during myoblast differentiation, and the colocalization of PrPC and miR-214-3p was observed in the skeletal muscle of six myopathy patients with excessive PrPC. We demonstrate that PrPC is overexpressed in skeletal muscle cells under pathological conditions, inhibits muscle cell differentiation by physically interacting with a subset of miRNAs, and selectively recruits these miRNAs into its phase-separated condensate in living myoblasts, which in turn enhances liquid-liquid phase separation of PrPC, promotes pathological aggregation of PrP, and results in the inhibition of autophagy-related protein 5-dependent autophagy and muscle bundle formation in myopathy patients characterized by incomplete muscle regeneration.


Assuntos
MicroRNAs , Doenças Musculares , Proteínas PrPC , Humanos , Diferenciação Celular/genética , Proliferação de Células , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Proteínas PrPC/metabolismo
14.
Elife ; 122023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963071

RESUMO

In vitro culture systems that structurally model human myogenesis and promote PAX7+ myogenic progenitor maturation have not been established. Here we report that human skeletal muscle organoids can be differentiated from induced pluripotent stem cell lines to contain paraxial mesoderm and neuromesodermal progenitors and develop into organized structures reassembling neural plate border and dermomyotome. Culture conditions instigate neural lineage arrest and promote fetal hypaxial myogenesis toward limb axial anatomical identity, with generation of sustainable uncommitted PAX7 myogenic progenitors and fibroadipogenic (PDGFRa+) progenitor populations equivalent to those from the second trimester of human gestation. Single-cell comparison to human fetal and adult myogenic progenitor /satellite cells reveals distinct molecular signatures for non-dividing myogenic progenitors in activated (CD44High/CD98+/MYOD1+) and dormant (PAX7High/FBN1High/SPRY1High) states. Our approach provides a robust 3D in vitro developmental system for investigating muscle tissue morphogenesis and homeostasis.


Humans contains around 650 skeletal muscles which allow the body to move around and maintain its posture. Skeletal muscles are made up of individual cells that bundle together into highly organized structures. If this group of muscles fail to develop correctly in the embryo and/or fetus, this can lead to muscular disorders that can make it painful and difficult to move. One way to better understand how skeletal muscles are formed, and how this process can go wrong, is to grow them in the laboratory. This can be achieved using induced pluripotent stem cells (iPSCs), human adult cells that have been 'reprogrammed' to behave like cells in the embryo that can develop in to almost any cell in the body. The iPSCs can then be converted into specific cell types in the laboratory, including the cells that make up skeletal muscle. Here, Mavrommatis et al. created a protocol for developing iPSCs into three-dimensional organoids which resemble how cells of the skeletal muscle look and arrange themselves in the fetus. To form the skeletal muscle organoid, Mavrommatis et al. treated iPSCs that were growing in a three-dimensional environment with various factors that are found early on in development. This caused the iPSCs to organize themselves in to embryonic and fetal structures that will eventually give rise to the parts of the body that contain skeletal muscle, such as the limbs. Within the organoid were cells that produced Pax7, a protein commonly found in myogenic progenitors that specifically mature into skeletal muscle cells in the fetus. Pax 7 is also present in 'satellite cells' that help to regrow damaged skeletal muscle in adults. Indeed, Mavrommatis et al. found that the myogenic progenitors produced by the organoid were able to regenerate muscle when transplanted in to adult mice. These findings suggest that this organoid protocol can generate cells that will give rise to skeletal muscle. In the future, these lab-grown progenitors could potentially be created from cells isolated from patients and used to repair muscle injuries. The organoid model could also provide new insights in to how skeletal muscles develop in the fetus, and how genetic mutations linked with muscular disorders disrupt this process.


Assuntos
Músculo Esquelético , Células Satélites de Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Diferenciação Celular , Feto/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Desenvolvimento Muscular/fisiologia , Fator de Transcrição PAX7/metabolismo
15.
Biochem Biophys Res Commun ; 682: 223-243, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37826946

RESUMO

Skeletal muscle myogenesis represents one of the most intensively and extensively examined systems of cell differentiation, tissue formation, and regeneration. Muscle regeneration provides an in vivo model system of postnatal myogenesis. It comprises multiple steps including muscle stem cell (or satellite cell) quiescence, activation, migration, myogenic determination, myoblast proliferation, myocyte differentiation, myofiber maturation, and hypertrophy. A variety of extracellular signaling and subsequent intracellular signal transduction pathways or networks govern the individual steps of postnatal myogenesis. Among them, MAPK pathways (the ERK, JNK, p38 MAPK, and ERK5 pathways) and PI3K-Akt signaling regulate multiple steps of myogenesis. Ca2+, cytokine, and Wnt signaling also participate in several myogenesis steps. These signaling pathways often control cell cycle regulatory proteins or the muscle-specific MyoD family and the MEF2 family of transcription factors. This article comprehensively reviews molecular mechanisms of the individual steps of postnatal skeletal muscle myogenesis by focusing on signal transduction pathways or networks. Nevertheless, no or only a partial signaling molecules or pathways have been identified in some responses during myogenesis. The elucidation of these unidentified signaling molecules and pathways leads to an extensive understanding of the molecular mechanisms of myogenesis.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Diferenciação Celular/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia
16.
Biomed Res ; 44(5): 199-207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779032

RESUMO

Myogenesis is required to generate skeletal muscle tissue and to maintain skeletal muscle mass. Decreased myogenesis under various pathogenic conditions results in muscular atrophy. Through a small screening of Japanese traditional (Kampo) medicines, hachimijiogan (HJG) was shown to promote the myogenic differentiation of C2C12 myoblasts through the upregulation of myogenin. In tumor-bearing cancer-cachectic mice, HJG was also found to have a protective effect against cancer-cachectic muscle wasting. This effect was significant when HJG was administered in combination with aerobic exercise by treadmill running. Moreover, HJG ameliorated the cellular atrophy of C2C12 myotubes induced by treatment with conditioned medium derived from a colon-26 cancer cell culture. In addition, HJG suppressed H2O2-dependent myotube atrophy, suggesting that HJG could reverse the atrophic phenotypes by eliminating reactive oxygen species.


Assuntos
Caquexia , Medicina Kampo , Neoplasias , Síndrome de Emaciação , Animais , Camundongos , Neoplasias do Colo/tratamento farmacológico , Peróxido de Hidrogênio/efeitos adversos , Peróxido de Hidrogênio/farmacologia , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Caquexia/etiologia , Síndrome de Emaciação/etiologia , Neoplasias/complicações , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia
18.
Nat Struct Mol Biol ; 30(11): 1746-1754, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770716

RESUMO

The fusion of mononucleated myoblasts produces multinucleated muscle fibers leading to the formation of skeletal muscle. Myomaker, a skeletal muscle-specific membrane protein, is essential for myoblast fusion. Here we report the cryo-EM structures of mouse Myomaker (mMymk) and Ciona robusta Myomaker (cMymk). Myomaker contains seven transmembrane helices (TMs) that adopt a G-protein-coupled receptor-like fold. TMs 2-4 form a dimeric interface, while TMs 3 and 5-7 create a lipid-binding site that holds the polar head of a phospholipid and allows the alkyl tails to insert into Myomaker. The similarity of cMymk and mMymk suggests a conserved Myomaker-mediated cell fusion mechanism across evolutionarily distant species. Functional analyses demonstrate the essentiality of the dimeric interface and the lipid-binding site for fusogenic activity, and heterologous cell-cell fusion assays show the importance of transcellular interactions of Myomaker protomers for myoblast fusion. Together, our findings provide structural and functional insights into the process of myoblast fusion.


Assuntos
Músculo Esquelético , Mioblastos , Animais , Camundongos , Microscopia Crioeletrônica , Diferenciação Celular , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Lipídeos , Desenvolvimento Muscular/fisiologia
19.
Cells ; 12(14)2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37508490

RESUMO

Septin7 as a unique member of the GTP binding protein family, is widely expressed in the eukaryotic cells and considered to be essential in the formation of hetero-oligomeric septin complexes. As a cytoskeletal component, Septin7 is involved in many important cellular processes. However, its contribution in striated muscle physiology is poorly described. In skeletal muscle, a highly orchestrated process of migration is crucial in the development of functional fibers and in regeneration. Here, we describe the pronounced appearance of Septin7 filaments and a continuous change of Septin7 protein architecture during the migration of myogenic cells. In Septin7 knockdown C2C12 cultures, the basic parameters of migration are significantly different, and the intracellular calcium concentration change in migrating cells are lower compared to that of scrambled cultures. Using a plant cytokinin, forchlorfenuron, to dampen septin dynamics, the altered behavior of the migrating cells is described, where Septin7-depleted cells are more resistant to the treatment. These results indicate the functional relevance of Septin7 in the migration of myoblasts, implying its contribution to muscle myogenesis and regeneration.


Assuntos
Músculo Esquelético , Septinas , Linhagem Celular , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Septinas/metabolismo , Animais , Camundongos
20.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37445602

RESUMO

As an organ system, skeletal muscle is essential for the generation of energy that underpins muscle contraction, plays a critical role in controlling energy balance and insulin-dependent glucose homeostasis, as well as vascular well-being, and regenerates following injury. To achieve homeostasis, there is requirement for "cross-talk" between the myogenic and vascular components and their regulatory factors that comprise skeletal muscle. Accordingly, this review will describe the following: [a] the embryonic cell-signaling events important in establishing vascular and myogenic cell-lineage, the cross-talk between endothelial cells (EC) and myogenic precursors underpinning the development of muscle, its vasculature and the satellite-stem-cell (SC) pool, and the EC-SC cross-talk that maintains SC quiescence and localizes ECs to SCs and angio-myogenesis postnatally; [b] the vascular-myocyte cross-talk and the actions of insulin on vasodilation and capillary surface area important for the uptake of glucose/insulin by myofibers and vascular homeostasis, the microvascular-myocyte dysfunction that characterizes the development of insulin resistance, diabetes and hypertension, and the actions of estrogen on muscle vasodilation and growth in adults; [c] the role of estrogen in utero on the development of fetal skeletal-muscle microvascularization and myofiber hypertrophy required for metabolic/vascular homeostasis after birth; [d] the EC-SC interactions that underpin myofiber vascular regeneration post-injury; and [e] the role of the skeletal-muscle vasculature in Duchenne muscular dystrophy.


Assuntos
Células Endoteliais , Músculo Esquelético , Músculo Esquelético/fisiologia , Contração Muscular , Insulina , Glucose , Desenvolvimento Muscular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...