Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(36): 21994-22001, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32839306

RESUMO

Soil erosion is a major global soil degradation threat to land, freshwater, and oceans. Wind and water are the major drivers, with water erosion over land being the focus of this work; excluding gullying and river bank erosion. Improving knowledge of the probable future rates of soil erosion, accelerated by human activity, is important both for policy makers engaged in land use decision-making and for earth-system modelers seeking to reduce uncertainty on global predictions. Here we predict future rates of erosion by modeling change in potential global soil erosion by water using three alternative (2.6, 4.5, and 8.5) Shared Socioeconomic Pathway and Representative Concentration Pathway (SSP-RCP) scenarios. Global predictions rely on a high spatial resolution Revised Universal Soil Loss Equation (RUSLE)-based semiempirical modeling approach (GloSEM). The baseline model (2015) predicts global potential soil erosion rates of [Formula: see text] Pg yr-1, with current conservation agriculture (CA) practices estimated to reduce this by ∼5%. Our future scenarios suggest that socioeconomic developments impacting land use will either decrease (SSP1-RCP2.6-10%) or increase (SSP2-RCP4.5 +2%, SSP5-RCP8.5 +10%) water erosion by 2070. Climate projections, for all global dynamics scenarios, indicate a trend, moving toward a more vigorous hydrological cycle, which could increase global water erosion (+30 to +66%). Accepting some degrees of uncertainty, our findings provide insights into how possible future socioeconomic development will affect soil erosion by water using a globally consistent approach. This preliminary evidence seeks to inform efforts such as those of the United Nations to assess global soil erosion and inform decision makers developing national strategies for soil conservation.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Deslizamentos de Terra/estatística & dados numéricos , Água/química , Mudança Climática/economia , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/tendências , Monitoramento Ambiental , Atividades Humanas , Humanos , Deslizamentos de Terra/economia , Fatores Socioeconômicos , Solo/química
2.
Disasters ; 44(3): 596-618, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31310345

RESUMO

Landslides are a natural hazard that presents a major threat to human life and infrastructure. Although they are a very common phenomenon in Colombia, there is a lack of analysis that entails national and comprehensive spatial, temporal, and socioeconomic evaluations of such events based on historical records. This study provides a detailed assessment of the spatial and temporal patterns and the socioeconomic impacts associated with landslides that occurred in the country between 1900 and 2018. Two national landslide databases were consulted and this information was complemented by local and regional landslide catalogues. A total of 30,730 landslides were recorded in the 118-year period. Rainfall is the most common trigger of landslides, responsible for 92 per cent of those registered, but most fatalities (68 per cent) are due to landslides caused by volcanic activity and earthquakes. An 'fN curve' revealed a very high frequency of small and moderate fatal landslides in the time frame.


Assuntos
Desastres/economia , Desastres/estatística & dados numéricos , Deslizamentos de Terra/economia , Deslizamentos de Terra/estatística & dados numéricos , Colômbia , Bases de Dados Factuais , Humanos , Fatores Socioeconômicos , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...