Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Arch Biochem Biophys ; 692: 108537, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32810477

RESUMO

A quarter of prokaryotic Family II inorganic pyrophosphatases (PPases) contain a regulatory insert comprised of two cystathionine ß-synthase (CBS) domains and one DRTGG domain in addition to the two catalytic domains that form canonical Family II PPases. The CBS domain-containing PPases (CBS-PPases) are allosterically activated or inhibited by adenine nucleotides that cooperatively bind to the CBS domains. Here we use chemical cross-linking and analytical ultracentrifugation to show that CBS-PPases from Desulfitobacterium hafniense and four other bacterial species are active as 200-250-kDa homotetramers, which seems unprecedented among the four PPase families. The tetrameric structure is stabilized by Co2+, the essential cofactor, pyrophosphate, the substrate, and adenine nucleotides, including diadenosine tetraphosphate. The deletion variants of dhPPase containing only catalytic or regulatory domains are dimeric. Co2+ depletion by incubation with EDTA converts CBS-PPase into inactive tetrameric and dimeric forms. Dissociation of tetrameric CBS-PPase and its catalytic part by dilution renders them inactive. The structure of CBS-PPase tetramer was modelled from the structures of dimeric catalytic and regulatory parts. These findings signify the role of the unique oligomeric structure of CBS-PPase in its multifaced regulation.


Assuntos
Sequência de Aminoácidos , Proteínas de Bactérias , Desulfitobacterium , Pirofosfatase Inorgânica , Mutagênese , Deleção de Sequência , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Desulfitobacterium/enzimologia , Desulfitobacterium/genética , Pirofosfatase Inorgânica/química , Pirofosfatase Inorgânica/genética , Ligantes
2.
FEBS J ; 287(22): 4971-4981, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32160390

RESUMO

Corrinoid-dependent enzyme systems rely on the super-reduced state of the protein-bound corrinoid cofactor to be functional, for example, in methyl transfer reactions. Due to the low redox potential of the [CoII ]/[CoI ] couple, autoxidation of the corrinoid cofactor occurs and leads to the formation of the inactive [CoII ]-state. For the reactivation, which is an energy-demanding process, electrons have to be transferred from a physiological donor to the corrinoid cofactor by the help of a reductive activator protein. In this study, we identified reduced flavodoxin as electron donor for the ATP-dependent reduction of protein-bound corrinoid cofactors of bacterial O-demethylase enzyme systems. Reduced flavodoxin was generated enzymatically using pyruvate:ferredoxin/flavodoxin oxidoreductase rather than hydrogenase. Two of the four flavodoxins identified in Acetobacterium dehalogenans and Desulfitobacterium hafniense DCB-2 were functional in supplying electrons for corrinoid reduction. They exhibited a midpoint potential of about -400 mV (ESHE , pH 7.5) for the semiquinone/hydroquinone transition. Reduced flavodoxin could be replaced by reduced clostridial ferredoxin. It was shown that the low-potential electrons of reduced flavodoxin are first transferred to the iron-sulfur cluster of the reductive activator and finally to the protein-bound corrinoid cofactor. This study further highlights the importance of reduced flavodoxin, which allows maintaining a variety of enzymatic reaction cycles by delivering low-potential electrons.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Corrinoides/metabolismo , Elétrons , Flavodoxina/metabolismo , Hidroquinonas/metabolismo , Oxirredutases/metabolismo , Acetobacterium/genética , Acetobacterium/metabolismo , Proteínas de Bactérias/genética , Desulfitobacterium/genética , Desulfitobacterium/metabolismo , Flavodoxina/química , Hidroquinonas/química , Oxirredução , Oxirredutases/genética , Espectrofotometria
3.
FEMS Microbiol Ecol ; 95(5)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30980656

RESUMO

A Desulfitobacterium sp. strain AusDCA of the Peptococcaceae family capable of respiring 1,2-dichloroethane (1,2-DCA) to ethene anaerobically with ethanol or hydrogen as electron donor at pH 5.0 with optimal range between pH 6.5-7.5 was isolated from an acidic aquifer near Sydney, Australia. Strain AusDCA is distant (94% nucleotide identity) from its nearest phylogenetic neighbor, D. metallireducens, and could represent a new species. Reference gene-based quantification of growth indicated a doubling time of 2 days in cultures buffered at pH 7.2, and a yield of 7.66 (± 4.0) × 106 cells µmol-1 of 1,2-DCA. A putative 1,2-DCA reductive dehalogenase was translated from a dcaAB locus and had high amino acid identity (97.3% for DcaA and 100% for DcaB) to RdhA1B1 of the 1,2-DCA respiring Dehalobacter strain WL. Proteomic analysis confirmed DcaA expression in the pure culture. Dehalogenation of 1,2-DCA (1.6 mM) was observed in batch cultures established from groundwater at pH 5.5 collected 38 days after in situ bioaugmentation but not in cultures established with groundwater collected at the same time from wells not receiving bioaugmentation. Overall, strain AusDCA can tolerate lower pH than previously characterized organohalide respiring bacteria and remained viable in groundwater at pH 5.5.


Assuntos
Ácidos/metabolismo , Desulfitobacterium/metabolismo , Dicloretos de Etileno/metabolismo , Água Subterrânea/microbiologia , Poluentes Químicos da Água/metabolismo , Austrália , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Desulfitobacterium/classificação , Desulfitobacterium/genética , Desulfitobacterium/isolamento & purificação , Água Subterrânea/química , Halogenação , Concentração de Íons de Hidrogênio , Filogenia , Proteômica
4.
Appl Microbiol Biotechnol ; 103(9): 3761-3771, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30830250

RESUMO

Sulfation is an important way for detoxifying xenobiotics and endobiotics including catechols. Enzymatic sulfation occurs usually with high chemo- and/or regioselectivity under mild reaction conditions. In this study, a two-step p-NPS-4-AAP screening system for laboratory evolution of aryl sulfotransferase B (ASTB) was developed in 96-well microtiter plates to improve the sulfate transfer efficiency toward catechols. Increased transfer efficiency and improved sulfation stoichiometry are achieved through the two-step screening procedure in a one-pot reaction. In the first step, the p-NPS assay is used (detection of the colorimetric by-product, p-nitrophenol) to determine the apparent ASTB activity. The sulfated product, 3-chlorocatechol-1-monosulfate, is quantified by the 4-aminoantipyrine (4-AAP) assay in the second step. Comparison of product formation to p-NPS consumption ensures successful directed evolution campaigns of ASTB. Optimization yielded a coefficient of variation below 15% for the two-step screening system (p-NPS-4-AAP). In total, 1760 clones from an ASTB-SeSaM library were screened toward the improved sulfation activity of 3-chlorocatechol. The turnover number (kcat = 41 ± 2 s-1) and catalytic efficiency (kcat/KM = 0.41 µM-1 s-1) of the final variant ASTB-M5 were improved 2.4- and 2.3-fold compared with ASTB-WT. HPLC analysis confirmed the improved sulfate stoichiometry of ASTB-M5 with a conversion of 58% (ASTB-WT 29%; two-fold improvement). Mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR) confirmed the chemo- and regioselectivity, which yielded exclusively 3-chlorocatechol-1-monosulfate. For all five additionally investigated catechols, the variant ASTB-M5 achieved an improved kcat value of up to 4.5-fold and sulfate transfer efficiency was also increased (up to 2.3-fold).


Assuntos
Arilsulfotransferase/genética , Proteínas de Bactérias/genética , Catecóis/metabolismo , Desulfitobacterium/enzimologia , Sulfatos/metabolismo , Ampirona/química , Ampirona/metabolismo , Arilsulfotransferase/química , Arilsulfotransferase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Catecóis/química , Desulfitobacterium/química , Desulfitobacterium/genética , Evolução Molecular Direcionada , Cinética , Espectroscopia de Ressonância Magnética , Especificidade por Substrato , Sulfatos/química
5.
Biotechnol J ; 14(3): e1800125, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29862654

RESUMO

The site-specific incorporation of non-canonical amino acids (ncAAs) at amber codons requires an aminoacyl-tRNA synthetase and a cognate amber suppressor tRNA (tRNACUA ). The archaeal tyrosyl-tRNA synthetase from Methanocaldococcus jannaschii and the pyrrolysyl-tRNA synthetase (PylRS) from Methanosarcina mazei have been extensively engineered to accept a versatile set of ncAAs. The PylRS/tRNACUA pair from the bacterium Desulfitobacterium hafniense is functional in Escherichia coli, however, variants of this PylRS have not been reported yet. In this study, the authors describe a bacterial PylRS from Desulfitobacterium hafniense, which the authors engineered for the reactive ncAA para-azido-l-phenylalanine (DhAzFRS) using a semi-rational approach. DhAzFRS preferred para-azido-l-phenylalanine to the canonical l-phenylalanine as the substrate. In addition, the authors demonstrate the functionality in E. coli of a hybrid DhAzFRS carrying the first 190 N-terminal amino acids of the Methanosarcina mazei PylRS. These results suggest that bacterial and archaeal PylRSs can be "mixed and matched" to tune their substrate specificity.


Assuntos
Aminoácidos/genética , Aminoacil-tRNA Sintetases/genética , Azidas/química , Azidas/metabolismo , Desulfitobacterium/genética , Escherichia coli/genética , Methanosarcina/genética , Especificidade por Substrato/genética
6.
Microb Biotechnol ; 11(6): 1137-1156, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30117290

RESUMO

The herbicide 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) was a major component of Agent Orange, which was used as a defoliant in the Vietnam War. Little is known about its degradation under anoxic conditions. Established enrichment cultures using soil from an Agent Orange bioremediation plant in southern Vietnam with pyruvate as potential electron donor and carbon source were shown to degrade 2,4,5-T via ether cleavage to 2,4,5-trichlorophenol (2,4,5-TCP), which was further dechlorinated to 3,4-dichlorophenol. Pyruvate was initially fermented to hydrogen, acetate and propionate. Hydrogen was then used as the direct electron donor for ether cleavage of 2,4,5-T and subsequent dechlorination of 2,4,5-TCP. 16S rRNA gene amplicon sequencing indicated the presence of bacteria and archaea mainly belonging to the Firmicutes, Bacteroidetes, Spirochaetes, Chloroflexi and Euryarchaeota. Desulfitobacterium hafniense was identified as the dechlorinating bacterium. Metaproteomics of the enrichment culture indicated higher protein abundances of 60 protein groups in the presence of 2,4,5-T. A reductive dehalogenase related to RdhA3 of D. hafniense showed the highest fold change, supporting its function in reductive dehalogenation of 2,4,5-TCP. Despite an ether-cleaving enzyme not being detected, the inhibition of ether cleavage but not of dechlorination, by 2-bromoethane sulphonate, suggested that the two reactions are catalysed by different organisms.


Assuntos
Ácido 2,4,5-Triclorofenoxiacético/metabolismo , Desulfitobacterium/metabolismo , Herbicidas/metabolismo , Metano/metabolismo , Ácido 2,4,5-Triclorofenoxiacético/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Meios de Cultura/metabolismo , Desulfitobacterium/classificação , Desulfitobacterium/genética , Desulfitobacterium/isolamento & purificação , Halogenação , Herbicidas/química , Microbiologia do Solo , Vietnã
7.
Environ Microbiol ; 20(7): 2652-2669, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29921035

RESUMO

Desulfitobacterium hafniense Y51 has been widely used in investigations of perchloroethylene (PCE) biodegradation, but limited information exists on its other physiological capabilities. We investigated how D. hafniense Y51 confronts the debilitating limitations of not having enough electron donor (lactate), or electron acceptor (fumarate) during cultivation in chemostats. The residual concentrations of the substrates supplied in excess were much lower than expected. Transcriptomics, proteomics and fluxomics were integrated to investigate how this phenomenon was regulated. Through diverse regulation at both transcriptional and translational levels, strain Y51 turned to fermenting the excess lactate and disproportionating the excess fumarate under fumarate- and lactate-limiting conditions respectively. Genes and proteins related to the utilization of a variety of alternative electron donors and acceptors absent from the medium were induced, apparently involving the Wood-Ljungdahl pathway. Through this metabolic flexibility, D. hafniense Y51 may be able to switch between different metabolic capabilities under limiting conditions.


Assuntos
Biodegradação Ambiental , Desulfitobacterium/metabolismo , Desulfitobacterium/genética , Fumaratos/metabolismo , Lactatos/metabolismo , Tetracloroetileno/metabolismo
8.
Biochem J ; 475(6): 1141-1158, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29519958

RESUMO

Membrane-bound pyrophosphatases (mPPases), which couple pyrophosphate hydrolysis to transmembrane transport of H+ and/or Na+ ions, are divided into K+,Na+-independent, Na+-regulated, and K+-dependent families. The first two families include H+-transporting mPPases (H+-PPases), whereas the last family comprises one Na+-transporting, two Na+- and H+-transporting subfamilies (Na+-PPases and Na+,H+-PPases, respectively), and three H+-transporting subfamilies. Earlier studies of the few available model mPPases suggested that K+ binds to a site located adjacent to the pyrophosphate-binding site, but is substituted by the ε-amino group of an evolutionarily acquired lysine residue in the K+-independent mPPases. Here, we performed a systematic analysis of the K+/Lys cationic center across all mPPase subfamilies. An Ala → Lys replacement in K+-dependent mPPases abolished the K+ dependence of hydrolysis and transport activities and decreased these activities close to the level (4-7%) observed for wild-type enzymes in the absence of monovalent cations. In contrast, a Lys → Ala replacement in K+,Na+-independent mPPases conferred partial K+ dependence on the enzyme by unmasking an otherwise conserved K+-binding site. Na+ could partially replace K+ as an activator of K+-dependent mPPases and the Lys → Ala variants of K+,Na+-independent mPPases. Finally, we found that all mPPases were inhibited by excess substrate, suggesting strong negative co-operativity of active site functioning in these homodimeric enzymes; moreover, the K+/Lys center was identified as part of the mechanism underlying this effect. These findings suggest that the mPPase homodimer possesses an asymmetry of active site performance that may be an ancient prototype of the rotational binding-change mechanism of F-type ATPases.


Assuntos
Membrana Celular/metabolismo , Lisina/metabolismo , Potássio/metabolismo , Multimerização Proteica , Pirofosfatases/química , Pirofosfatases/metabolismo , Catálise , Cátions , Desulfitobacterium/enzimologia , Desulfitobacterium/genética , Escherichia coli , Geobacter/enzimologia , Geobacter/genética , Transporte de Íons/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Filogenia , Estrutura Quaternária de Proteína , Pirofosfatases/genética
9.
Environ Pollut ; 232: 200-211, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28943350

RESUMO

It is acknowledged that organohalide-respiring bacteria (OHRB) can degrade polybrominated diphenyl ethers (PBDEs); however, very little is known about the distribution of OHRB or their response to PBDE contamination in natural sediments. We collected sediments from 28 sampling sites in Taihu Lake, China, and investigated the spatial distribution and diversity of OHRB, and the relationships between the PBDE contamination levels and the PBDE removal potential. The abundances of five typical OHRB genera, namely Dehalobacter, Dehalococcoides, Dehalogenimonas, Desulfitobacterium, and Geobacter, ranged from 0.34 × 104 to 19.4 × 107 gene copies g-1 dry sediment, and varied significantly among different areas of Taihu Lake. OHRB were more abundant in sediments from Meiliang and Zhushan Bay, where the PBDE concentrations were higher, and the phylotype diversity of the OHRB belonging to the family Dehalococcoidaceae was lower, than reported for other areas. While the sulfate concentrations explained much of the spatial distribution of OHRB, PBDE concentrations were also a strong influence on the abundance and diversity of OHRB in the sediments. For Dehalococcoides, Dehalogenimonas and Geobacter, the abundance of each genus was positively related to its own potential to remove PBDEs. The dominant OHRB genus, Dehalogenimonas, may contribute most to in situ bioremediation of PBDEs in Taihu Lake.


Assuntos
Biodegradação Ambiental , Monitoramento Ambiental , Éteres Difenil Halogenados/análise , Lagos/microbiologia , Poluentes Químicos da Água/análise , Bactérias , Respiração Celular , China , Chloroflexi/genética , Desulfitobacterium/genética , Sedimentos Geológicos , Éteres Difenil Halogenados/metabolismo , Lagos/química , Poluentes Químicos da Água/metabolismo
10.
FEMS Microbiol Ecol ; 93(12)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040502

RESUMO

The Desulfitobacterium genus comprises anaerobic Gram-positive bacteria, of which the majority are facultative organohalide respirers. We here present the genomes of eight strains of Desulfitobacterium spp., including five strains of Desulfitobacterium hafniense, one strain each from D. dichloroeliminans and D. metallireducens, and one strain that had not been assigned to any species prior to this study. The newly sequenced genomes were compared with four previously published desulfitobacterial genomes. The average genome sizes are 5.5, 4.3 and 3.4 Mbp for D. hafniense, D. dehalogenans and D. dichloroeliminans/metallireducens, respectively. The genomes encode up to seven reductive dehalogenases, the genomes of both D. hafniense DP7 and D. metallireducens 853-15AT did not encode any reductive dehalogenase. The latter result was a surprise as D. metallireducens 853-15AT has been reported to carry out organohalide respiration. Unlike reported for the pceABCT gene cluster, the other reductive dehalogenase gene clusters do not show any signs of being genetically mobile. All analyzed desulfitobacterial genomes encode a complete cobalamin synthesis pathway. A menaquinone synthesis pathway was found in all strains except D. dichloroeliminans DCA1T. The detailed analysis of the genome sequence of 12 desulfitobacteria from four different species confirmed that this genus has an extremely large metabolic repertoire.


Assuntos
Desulfitobacterium/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Desulfitobacterium/química , Desulfitobacterium/classificação , Tamanho do Genoma , Genoma Bacteriano , Genômica
11.
Appl Microbiol Biotechnol ; 101(6): 2589-2601, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27909745

RESUMO

Dechlorination patterns of three tetrachlorobenzene isomers, 1,2,3,4-, 1,2,3,5-, and 1,2,4,5-TeCB, were studied in anoxic microcosms derived from contaminated harbor sludge. The removal of doubly, singly, and un-flanked chlorine atoms was noted in 1,2,3,4- and 1,2,3,5-TeCB fed microcosms, whereas only singly flanked chlorine was removed in 1,2,4,5-TeCB microcosms. The thermodynamically more favorable reactions were selectively followed by the enriched cultures with di- and/or mono-chlorobenzene as the main end products of the reductive dechlorination of all three isomers. Based on quantitative PCR analysis targeting 16S rRNA genes of known organohalide-respiring bacteria, the growth of Dehalococcoides was found to be associated with the reductive dechlorination of all three isomers, while growth of Dehalobacter, another known TeCB dechlorinator, was only observed in one 1,2,3,5-TeCB enriched microcosm among biological triplicates. Numbers of Desulfitobacterium and Geobacter as facultative dechlorinators were rather stable suggesting that they were not (directly) involved in the observed TeCB dechlorination. Bacterial community profiling suggested bacteria belonging to the phylum Bacteroidetes and the order Clostridiales as well as sulfate-reducing members of the class Deltaproteobacteria as putative stimulating guilds that provide electron donor and/or organic cofactors to fastidious dechlorinators. Our results provide a better understanding of thermodynamically preferred TeCB dechlorinating pathways in harbor environments and microbial guilds enriched and active in anoxic TeCB dechlorinating microcosms.


Assuntos
Cloro/metabolismo , Clorobenzenos/metabolismo , DNA Bacteriano/genética , Consórcios Microbianos/genética , Esgotos/microbiologia , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Cloro/isolamento & purificação , Clorobenzenos/isolamento & purificação , Chloroflexi/genética , Chloroflexi/metabolismo , Desulfitobacterium/genética , Desulfitobacterium/metabolismo , Geobacter/genética , Geobacter/metabolismo , Humanos , Peptococcaceae/genética , Peptococcaceae/metabolismo , Esgotos/química , Estereoisomerismo , Termodinâmica , Poluentes Químicos da Água/isolamento & purificação
12.
Sci Rep ; 6: 19015, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26750760

RESUMO

Functional interplays of microbial activity, genetic diversity and contaminant transformation are poorly understood in reactors for mineralizing halogenated aromatics anaerobically. Here, we investigated abundance and distribution of potential microbes and functional genes associated with pentachlorophenol (PCP) anaerobic mineralization in a continuous-flow cylindrical reactor (15 cm in length). PCP dechlorination and the metabolite (phenol) were observed at segments 0-8 cm from inlet, where key microbes, including potential reductive dechlorinators (Dehalobacter, Sulfurospirillum, Desulfitobacterium and Desulfovibrio spp.) and phenol degraders (Cryptanaerobacter and Syntrophus spp.), as well as putative functional genes, including putative chlorophenol reductive dehalogenase (cprA) and benzoyl-CoA reductase (bamB), were highly enriched simultaneously. Five types of putative cprAs, three types of putative bamBs and seven types of putative nitrogenase reductase (nifHs) were determined, with their copy numbers decreased gradually from inlet to outlet. Distribution of chemicals, bacteria and putative genes confirmed PCP dechlorination and phenol degradation accomplished in segments 0-5 cm and 0-8 cm, respectively, contributing to a high PCP mineralization rate of 3.86 µM d(-1). Through long-term incubation, dechlorination, phenol degradation and nitrogen fixation bacteria coexisted and functioned simultaneously near inlet (0-8 cm), verified the feasibility of anaerobic mineralization of halogenated aromatics in the compact reactor containing multiple functional microbes.


Assuntos
Bactérias Anaeróbias/genética , Proteínas de Bactérias/metabolismo , Reatores Biológicos , Clorofenóis/metabolismo , Oxirredutases/metabolismo , Pentaclorofenol/metabolismo , Anaerobiose , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/enzimologia , Proteínas de Bactérias/genética , Biodegradação Ambiental , Desulfitobacterium/enzimologia , Desulfitobacterium/genética , Desulfovibrio/enzimologia , Desulfovibrio/genética , Firmicutes/enzimologia , Firmicutes/genética , Dosagem de Genes , Expressão Gênica , Fixação de Nitrogênio/genética , Oxirredução , Oxirredutases/classificação , Oxirredutases/genética , Fenol/metabolismo , Filogenia , Proteobactérias/enzimologia , Proteobactérias/genética
13.
Microbiology (Reading) ; 162(2): 224-235, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26625856

RESUMO

The O-demethylation of phenyl methyl ethers under anaerobic conditions is a metabolic feature of acetogens and Desulfitobacterium spp. Desulfitobacteria as well as most acetogens are Gram-positive bacteria with a low GC content and belong to the phylum Firmicutes. The consumption of the phenyl methyl ether syringate was studied in enrichment cultures originating from five different topsoils. Desulfitobacterium spp. were detected in all topsoils via quantitative PCR. Desulfitobacteria could be enriched using the O-demethylation of syringate as a growth-selective process. The enrichment was significantly favoured by an external electron acceptor such as 3-chloro-4-hydroxyphenylacetate or thiosulfate. Upon cultivation in the presence of syringate and thiosulfate, which naturally occur in soil, a maximum number of 16S rRNA gene copies of Desulfitobacterium spp. was reached within the first three subcultivation steps and accounted for 3-10% of the total microbial community depending on the soil type. Afterwards, a loss of Desulfitobacterium gene copies was observed. Community analyses revealed that Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the main phyla in the initial soil samples. Upon addition of syringate and thiosulfate as growth substrates, these phyla were rapidly outcompeted by Firmicutes, which were under-represented in soil. The main Firmicutes genera identified were Alkalibaculum, Clostridium, Sporobacterium, Sporomusa and Tissierella, which might be responsible for outcompeting the desulfitobacteria. Most of these organisms belong to the acetogens, which have previously been described to demethylate phenyl methyl ethers. The shift of the native community structure to almost exclusively Firmicutes supports the participation of members of this phylum in environmental demethylation processes.


Assuntos
Anisóis/química , Desulfitobacterium/crescimento & desenvolvimento , Desulfitobacterium/metabolismo , Hidroxibenzoatos/metabolismo , Tiossulfatos/metabolismo , Acidobacteria/crescimento & desenvolvimento , Actinobacteria/crescimento & desenvolvimento , Bacteroidetes/crescimento & desenvolvimento , Desulfitobacterium/genética , Florestas , Pradaria , Hidroxibenzoatos/química , Metilação , Proteobactérias/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Microbiologia do Solo
14.
Trends Biotechnol ; 33(10): 595-610, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26409778

RESUMO

Halogenated organic compounds (organohalides) are globally prevalent, recalcitrant toxic, and carcinogenic environmental pollutants. Select microorganisms encode enzymes known as reductive dehalogenases (EC 1.97.1.8) that catalyze reductive dehalogenation reactions resulting in the generation of lesser-halogenated compounds that may be less toxic and more biodegradable. Recent breakthroughs in enzyme structure determination, elucidation of the mechanisms of reductive dehalogenation, and in heterologous expression of functional reductive dehalogenase enzymes have substantially increased our understanding of this fascinating class of enzymes. This knowledge has created opportunities for more versatile (in situ and ex situ) biologically-mediated organohalide destruction strategies.


Assuntos
Proteínas de Bactérias/química , Poluentes Ambientais/metabolismo , Regulação Bacteriana da Expressão Gênica , Hidrocarbonetos Halogenados/metabolismo , Hidrolases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Biodegradação Ambiental , Domínio Catalítico , Chloroflexi/enzimologia , Chloroflexi/genética , Clostridiales/enzimologia , Clostridiales/genética , Desulfitobacterium/enzimologia , Desulfitobacterium/genética , Poluentes Ambientais/química , Hidrocarbonetos Halogenados/química , Hidrolases/genética , Hidrolases/metabolismo , Hidrólise , Modelos Moleculares , Oxirredução , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
FEMS Microbiol Ecol ; 91(8): fiv089, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26207046

RESUMO

Aquaculture is an extremely valuable and rapidly expanding sector of the seafood industry. The sediment below active aquaculture farms receives inputs of organic matter from uneaten food and faecal material and this has led to concerns related to environmental sustainability. The impacts of organic enrichment on macrobenthic infauna are well characterized; however, much less is known about effect on bacterial communities. In this study, sediment, macrobenthic infauna samples and environmental data were collected along an enrichment gradient radiating out from a Chinook salmon (Oncorhynchus tshawytscha) farm (Marlborough Sounds; New Zealand). DNA and RNA were extracted and 16S rRNA metabarcodes from bacterial communities characterized using high-throughput sequencing. Desulfobacterales dominated at the cage (DNA and RNA), and at sites 50 m (DNA and RNA) and 150 m (RNA) from the farm. In contrast, unclassified bacteria from the class Gammaproteobacteria were the most abundant taxa at control sites (625 and 4000 m). Pronounced differences among DNA and RNA samples occurred at the cage site where Desulfobacterales abundance was markedly higher in RNA samples. There were strong correlations between shifts in bacterial communities and total organic matter and redox. This suggests that bacterial composition is strongly influenced by organic enrichment, a trait that may make them useful for assessing impacts associated with aquaculture farms.


Assuntos
Bactérias/classificação , Sedimentos Geológicos/microbiologia , Consórcios Microbianos , Salmão/microbiologia , Animais , Aquicultura/métodos , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , DNA Bacteriano/genética , Desulfitobacterium/genética , Desulfitobacterium/isolamento & purificação , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Nova Zelândia , RNA Ribossômico 16S/genética , Alimentos Marinhos/microbiologia
16.
Astrobiology ; 15(5): 331-40, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25915449

RESUMO

Basaltic glass (BG) is an amorphous ferrous iron [Fe(II)]-containing material present in basaltic rocks, which are abundant on rocky planets such as Earth and Mars. Previous research has suggested that Fe(II) in BG can serve as an energy source for chemolithotrophic microbial metabolism, which has important ramifications for potential past and present microbial life on Mars. However, to date there has been no direct demonstration of microbially catalyzed oxidation of Fe(II) in BG. In this study, three different culture systems were used to investigate the potential for microbial oxidation of Fe(II) in BG, including (1) the chemolithoautotrophic Fe(II)-oxidizing, nitrate-reducing "Straub culture"; (2) the mixotrophic Fe(II)-oxidizing, nitrate-reducing organism Desulfitobacterium frappieri strain G2; and (3) indigenous microorganisms from a streambed Fe seep in Wisconsin. The BG employed consisted of clay and silt-sized particles of freshly quenched lava from the TEB flow in Kilauea, Hawaii. Soluble Fe(II) or chemically reduced NAu-2 smectite (RS) were employed as positive controls to verify Fe(II) oxidation activity in the culture systems. All three systems demonstrated oxidation of soluble Fe(II) and/or structural Fe(II) in RS, whereas no oxidation of Fe(II) in BG material was observed. The inability of the Straub culture to oxidize Fe(II) in BG was particularly surprising, as this culture can oxidize other insoluble Fe(II)-bearing minerals such as biotite, magnetite, and siderite. Although the reason for the resistance of the BG toward enzymatic oxidation remains unknown, it seems possible that the absence of distinct crystal faces or edge sites in the amorphous glass renders the material resistant to such attack. These findings have implications with regard to the idea that Fe(II)-Si-rich phases in basalt rocks could provide a basis for chemolithotrophic microbial life on Mars, specifically in neutral-pH environments where acid-promoted mineral dissolution and utilization of dissolved Fe(II) as an energy source is not likely to take place.


Assuntos
Desulfitobacterium/metabolismo , Vidro/química , Ferro/metabolismo , Silicatos/química , Desulfitobacterium/genética , Havaí , Nitratos/metabolismo , Nitritos/metabolismo , Oxirredução , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solubilidade
17.
Environ Pollut ; 203: 97-106, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25863886

RESUMO

In this study, the effectiveness of bioremediating 1,2-dichloroethane (DCA)-contaminated groundwater under different oxidation-reduction processes was evaluated. Microcosms were constructed using indigenous bacteria and activated sludge as the inocula and cane molasses and a slow polycolloid-releasing substrate (SPRS) as the primary substrates. Complete DCA removal was obtained within 30 days under aerobic and reductive dechlorinating conditions. In anaerobic microcosms with sludge and substrate addition, chloroethane, vinyl chloride, and ethene were produced. The microbial communities and DCA-degrading bacteria in microcosms were characterized by 16S rRNA-based denatured-gradient-gel electrophoresis profiling and nucleotide sequence analyses. Real-time polymerase chain reaction was applied to evaluate the variations in Dehalococcoides spp. and Desulfitobacterium spp. Increase in Desulfitobacterium spp. indicates that the growth of Desulfitobacterium might be induced by DCA. Results indicate that DCA could be used as the primary substrate under aerobic conditions. The increased ethene concentrations imply that dihaloelimination was the dominate mechanism for DCA biodegradation.


Assuntos
Chloroflexi/metabolismo , Desulfitobacterium/metabolismo , Dicloretos de Etileno/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Desulfitobacterium/genética , Desulfitobacterium/crescimento & desenvolvimento , Cloreto de Etil/metabolismo , Etilenos/metabolismo , Água Subterrânea , Oxirredução , RNA Ribossômico 16S , Esgotos/microbiologia , Cloreto de Vinil/metabolismo
18.
PLoS One ; 10(3): e0119507, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25835017

RESUMO

1,1,2-trichloroethane (1,1,2-TCA) has become a common groundwater pollutant due to historically extensive utilization, improper disposal, as well as from incomplete dechlorination of 1,1,2,2-tetrachloroethane. Currently, limited information is available on microbial detoxification of 1,1,2-TCA. Desulfitobacterium sp. strain PR, which was isolated from an anaerobic bioreactor maintained to dechlorinate chloroethenes/ethanes, exhibited the capacity to dechlorinate 1,1,1-trichloroethane and chloroform. In this study, the dechlorinating ability of strain PR was further explored. Strain PR showed the capability to dechlorinate 1,1,2-TCA (~1.12 mM) predominantly to 1,2-dichloroethane (1,2-DCA) and chloroethane, and to trace amounts of vinyl chloride and ethene within 20 days. Strain PR coupled growth with dechlorination of 1,1,2-TCA to 1,2-DCA, while no cell growth was observed with dechlorination of 1,2-DCA to chloroethane. Later, through transcriptomic and enzymatic analysis, the reductive dehalogenase CtrA, which was previously reported to be responsible for 1,1,1-trichloroethane and chloroform dechlorination, was identified as the 1,1,2-TCA reductive dehalogenase. Since trichloroethene (TCE) is usually co-contaminated with 1,1,2-TCA, a co-culture containing Dehalococcoides mccartyi strain 11a capable of detoxifying TCE and 1,2-DCA and strain PR was established. Interestingly, this co-culture dechlorinated 1,1,2-TCA and TCE to the non-toxic end-product ethene within 48 days without chloroethane production. This novel pathway avoids production of the carcinogenic intermediate dechlorination product vinyl chloride, providing a more environmentally friendly strategy to treat 1,1,2-TCA.


Assuntos
Biotransformação , Desulfitobacterium/genética , Desulfitobacterium/metabolismo , Etilenos/metabolismo , Tricloroetanos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental
19.
J Bacteriol ; 197(5): 893-904, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25512312

RESUMO

Desulfitobacterium dehalogenans is able to grow by organohalide respiration using 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) as an electron acceptor. We used a combination of genome sequencing, biochemical analysis of redox active components, and shotgun proteomics to study elements of the organohalide respiratory electron transport chain. The genome of Desulfitobacterium dehalogenans JW/IU-DC1(T) consists of a single circular chromosome of 4,321,753 bp with a GC content of 44.97%. The genome contains 4,252 genes, including six rRNA operons and six predicted reductive dehalogenases. One of the reductive dehalogenases, CprA, is encoded by a well-characterized cprTKZEBACD gene cluster. Redox active components were identified in concentrated suspensions of cells grown on formate and Cl-OHPA or formate and fumarate, using electron paramagnetic resonance (EPR), visible spectroscopy, and high-performance liquid chromatography (HPLC) analysis of membrane extracts. In cell suspensions, these components were reduced upon addition of formate and oxidized after addition of Cl-OHPA, indicating involvement in organohalide respiration. Genome analysis revealed genes that likely encode the identified components of the electron transport chain from formate to fumarate or Cl-OHPA. Data presented here suggest that the first part of the electron transport chain from formate to fumarate or Cl-OHPA is shared. Electrons are channeled from an outward-facing formate dehydrogenase via menaquinones to a fumarate reductase located at the cytoplasmic face of the membrane. When Cl-OHPA is the terminal electron acceptor, electrons are transferred from menaquinones to outward-facing CprA, via an as-yet-unidentified membrane complex, and potentially an extracellular flavoprotein acting as an electron shuttle between the quinol dehydrogenase membrane complex and CprA.


Assuntos
Desulfitobacterium/genética , Desulfitobacterium/metabolismo , Genômica , Halogênios/metabolismo , Proteômica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desulfitobacterium/química , Desulfitobacterium/enzimologia , Transporte de Elétrons , Formiatos/metabolismo , Fumaratos/metabolismo , Genoma Bacteriano , Dados de Sequência Molecular , Óperon
20.
Ground Water ; 53(2): 261-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24898385

RESUMO

In situ chemical oxidation (ISCO) followed by a bioremediation step is increasingly being considered as an effective biphasic technology. Information on the impact of chemical oxidants on organohalide respiring bacteria (OHRB), however, is largely lacking. Therefore, we used quantitative PCR (qPCR) to monitor the abundance of OHRB (Dehalococcoides mccartyi, Dehalobacter, Geobacter, and Desulfitobacterium) and reductive dehalogenase genes (rdh; tceA, vcrA, and bvcA) at a field location contaminated with chlorinated solvents prior to and following treatment with sodium persulfate. Natural attenuation of the contaminants tetrachloroethene (PCE) and trichloroethene (TCE) observed prior to ISCO was confirmed by the distribution of OHRB and rdh genes. In wells impacted by persulfate treatment, a 1 to 3 order of magnitude reduction in the abundances of OHRB and complete absence of rdh genes was observed 21 days after ISCO. Groundwater acidification (pH<3) and increase in the oxidation reduction potential (>500 mV) due to persulfate treatment were significant and contributed to disruption of the microbial community. In wells only mildly impacted by persulfate, a slight stimulation of the microbial community was observed, with more than 1 order of magnitude increase in the abundance of Geobacter and Desulfitobacterium 36 days after ISCO. After six months, regeneration of the OHRB community occurred, however, neither D. mccartyi nor any rdh genes were observed, indicating extended disruption of biological natural attenuation (NA) capacity following persulfate treatment. For full restoration of biological NA activity, additional time may prove sufficient; otherwise addition electron donor amendment or bioaugmentation may be required.


Assuntos
Chloroflexi/metabolismo , Geobacter/metabolismo , Água Subterrânea , Oxirredutases/metabolismo , Peptococcaceae/metabolismo , Tetracloroetileno/química , Tricloroetileno/química , Biodegradação Ambiental , Chloroflexi/genética , Desulfitobacterium/genética , Desulfitobacterium/metabolismo , Genes Bacterianos , Geobacter/genética , Concentração de Íons de Hidrogênio , Oxirredutases/genética , Peptococcaceae/genética , Reação em Cadeia da Polimerase , Compostos de Sódio/química , Solventes , Sulfatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...