Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
FEBS Lett ; 589(6): 773-8, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25687632

RESUMO

Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the final step in the acyl-CoA-dependent triacylglycerol biosynthesis. Although the first DGAT1 gene was identified many years ago and the encoded enzyme catalyzes a key step in lipid biosynthesis, no detailed structure-function information is available on the enzyme due to difficulties associated with its purification. This study describes the purification of recombinant Brassica napus DGAT1 (BnaC.DGAT1.a) in active form through solubilization in n-dodecyl-ß-D-maltopyranoside, cobalt affinity chromatography, and size-exclusion chromatography. Different BnaC.DGAT1.a oligomers in detergent micelles were resolved during the size-exclusion process. BnaC.DGAT1.a was purified 126-fold over the solubilized fraction and exhibited a specific activity of 26 nmol TAG/min/mg protein. The purified enzyme exhibited substrate preference for α-linolenoyl-CoA>oleoyl-CoA=palmitoyl-CoA>linoleoyl-CoA>stearoyl-CoA.


Assuntos
Brassica napus/enzimologia , Diacilglicerol O-Aciltransferase/química , Proteínas de Plantas/química , Acil Coenzima A/química , Sequência de Aminoácidos , Diacilglicerol O-Aciltransferase/isolamento & purificação , Dados de Sequência Molecular , Peso Molecular , Proteínas de Plantas/isolamento & purificação , Saccharomyces cerevisiae , Especificidade por Substrato
2.
Appl Microbiol Biotechnol ; 96(3): 711-27, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22270236

RESUMO

Diacylglycerol acyltransferases (DGATs) esterify sn-1,2-diacylglycerol with a long-chain fatty acyl-CoA, the last and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. At least 74 DGAT2 sequences from 61 organisms have been identified, but the expression of any DGAT2 as a partial or full-length protein in Escherichia coli had not been reported. The main objective of this study was to express and purify recombinant DGAT2 (rDGAT2) from E. coli for antigen production with a minor objective to compare rDGAT2 expression in yeast. A plasmid was engineered to express tung tree DGAT2 fused to maltose binding protein and poly-histidine (His) affinity tags. Immunoblotting showed that rDGAT2 was detected in the soluble, insoluble, and membrane fractions. The rDGAT2 in the soluble fraction was partially purified by amylose resin, nickel-nitrilotriacetic agarose (Ni-NTA) beads, and tandem affinity chromatography. Multiple proteins co-purified with rDGAT2. Size exclusion chromatography estimated the size of the rDGAT2-enriched fraction to be approximately eight times the monomer size. Affinity-purified rDGAT2 fractions had a yellow tint and contained fatty acids. The rDGAT2 in the insoluble fraction was partially solubilized by seven detergents with SDS being the most effective. Recombinant DGAT2 was purified to near homogeneity by SDS solubilization and Ni-NTA affinity chromatography. Mass spectrometry identified rDGAT2 as a component in the bands corresponding to the monomer and dimer forms as observed by SDS-PAGE. Protein bands with monomer and dimer sizes were also observed in the microsomal membranes of Saccharomyces cerevisiae expressing hemagglutinin-tagged DGAT2. Nonradioactive assay showed TAG synthesis activity of DGAT2 from yeast but not E. coli. The results suggest that rDGAT2 is present as monomer and dimer forms on SDS-PAGE, associated with other proteins, lipids, and membranes, and that post-translational modification of rDGAT2 may be required for its enzymatic activity and/or the E. coli protein is misfolded.


Assuntos
Aleurites/enzimologia , Diacilglicerol O-Aciltransferase/metabolismo , Aleurites/genética , Cromatografia de Afinidade/métodos , Clonagem Molecular , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Filogenia , Multimerização Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência
3.
BMC Biotechnol ; 11: 73, 2011 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-21745386

RESUMO

BACKGROUND: Diacylglycerol acyltransferases (DGATs) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Database search has identified at least 59 DGAT1 sequences from 48 organisms, but the expression of any DGAT1 as a full-length protein in E. coli had not been reported because DGAT1s are integral membrane proteins and difficult to express and purify. The objective of this study was to establish a procedure for expressing full-length DGAT1 in E. coli. RESULTS: An expression plasmid containing the open reading frame for tung tree (Vernicia fordii) DGAT1 fused to maltose binding protein and poly-histidine affinity tags was constructed and expressed in E. coli BL21(DE3). Immunoblotting showed that the recombinant DGAT1 (rDGAT1) was expressed, but mostly targeted to the membranes and insoluble fractions. Extensive degradation also occurred. Nonetheless, the fusion protein was partially purified from the soluble fraction by Ni-NTA and amylose resin affinity chromatography. Multiple proteins co-purified with DGAT1 fusion protein. These fractions appeared yellow in color and contained fatty acids. The rDGAT1 was solubilized from the insoluble fraction by seven detergents and urea, with SDS and Triton X-100 being the most effective detergents. The solubilized rDGAT1 was partially purified by Ni-NTA affinity chromatography. PreScission protease digestion confirmed the identity of rDGAT1 and showed extensive precipitation following Ni-NTA affinity purification. CONCLUSIONS: This study reports the first procedure for expressing full-length DGAT1 from any species using a bacterial expression system. The results suggest that recombinant DGAT1 is degraded extensively from the carboxyl terminus and associated with other proteins, lipids, and membranes.


Assuntos
Aleurites/enzimologia , Diacilglicerol O-Aciltransferase/biossíntese , Escherichia coli/genética , Proteínas de Plantas/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Cromatografia de Afinidade , Clonagem Molecular , Detergentes/química , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/isolamento & purificação , Diacilglicerol O-Aciltransferase/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Histidina/biossíntese , Histidina/genética , Immunoblotting , Proteínas Ligantes de Maltose/biossíntese , Proteínas Ligantes de Maltose/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Ureia/química
4.
Phytochemistry ; 69(5): 1119-27, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18179805

RESUMO

Vernonia galamensis accumulates vernolic acid (cis-12-epoxyoctadeca-cis-9-enoic acid) as the major fatty acid in its seed oil. Such epoxy fatty acids are useful in a number of industrial applications. Successful genetic engineering of commercial oilseed crops to produce high levels of vernolic acid depends on a better understanding of the source plant enzymes for vernolic acid accumulation. Developing V. galamensis seed microsome assays demonstrate that diacylglycerol acyltransferase (DGAT), an enzyme for the final step of triacylglycerol synthesis, has a strong substrate preference for vernolic acid bearing substrates including acyl-CoA and diacylglycerol. There are two classes of DGATs known as DGAT1 and DGAT2. Here we report on the isolation, characterization, and functional analysis of two DGAT1 cDNAs from V. galamensis (VgDGAT1a and VgDGAT1b). VgDGAT1a and VgDGAT1b are expressed in all plant tissues examined with highest expression in developing seeds. Enzymatic assays using isolated microsomes from transformed yeast show that VgDGAT1a and VgDGAT1b have the same DGAT activity levels and substrate specificities. Oleoyl-CoA and sn-1,2-dioleoylglycerol are preferred substrates over vernoloyl-CoA and sn-1,2-divernoloylglycerol. This data indicates that the two VgDGAT1s are functional, but not likely to be responsible for the selective accumulation of vernolic acid in V. galamensis seed oil.


Assuntos
Diacilglicerol O-Aciltransferase/genética , Proteínas de Plantas/genética , Sementes/enzimologia , Vernonia/enzimologia , Sequência de Aminoácidos , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Diacilglicerol O-Aciltransferase/química , Diacilglicerol O-Aciltransferase/isolamento & purificação , Compostos de Epóxi/química , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Engenharia Genética , Dados de Sequência Molecular , Estrutura Molecular , Ácidos Oleicos/química , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Alinhamento de Sequência , Vernonia/química
5.
BMC Biochem ; 7: 24, 2006 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-17192193

RESUMO

BACKGROUND: Diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the acyl-CoA-dependent acylation of sn-1, 2-diacylglycerol to generate triacylglycerol and CoA. The deduced amino acid sequence of cDNAs encoding DGAT1 from plants and mammals exhibit a hydrophilic N-terminal region followed by a number of potential membrane-spanning segments, which is consistent with the membrane-bound nature of this enzyme family. In order to gain insight into the structure/function properties of DGAT1 from Brassica napus (BnDGAT1), we produced and partially characterized a recombinant polyHis-tagged N-terminal fragment of the enzyme, BnDGAT1(1-116)His6, with calculated molecular mass of 13,278 Da. RESULTS: BnDGAT1(1-116)His6 was highly purified from bacterial lysate and plate-like monoclinic crystals were grown using this preparation. Lipidex-1000 binding assays and gel electrophoresis indicated that BnDGAT1(1-116)His6 interacts with long chain acyl-CoA. The enzyme fragment displayed enhanced affinity for erucoyl (22:1cisDelta13)-CoA over oleoyl (18:1cisDelta9)-CoA, and the binding process displayed positive cooperativity. Gel filtration chromatography and cross-linking studies indicated that BnDGAT1(1-116)His6 self-associated to form a tetramer. Polyclonal antibodies raised against a peptide of 15 amino acid residues representing a segment of BnDGAT1(1-116)His6 failed to react with protein in microsomal vesicles following treatment with proteinase K, suggesting that the N-terminal fragment of BnDGAT1 was localized to the cytosolic side of the ER. CONCLUSION: Collectively, these results suggest that BnDGAT1 may be allosterically modulated by acyl-CoA through the N-terminal region and that the enzyme self-associates via interactions on the cytosolic side of the ER.


Assuntos
Brassica napus/enzimologia , Diacilglicerol O-Aciltransferase/química , Proteínas de Plantas/química , Acil Coenzima A/metabolismo , DNA Complementar , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/isolamento & purificação , Diacilglicerol O-Aciltransferase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade , Especificidade por Substrato
6.
Plant Physiol ; 141(4): 1533-43, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16798944

RESUMO

Triacylglycerols (TAGs) are the most important storage form of energy for eukaryotic cells. TAG biosynthetic activity was identified in the cytosolic fraction of developing peanut (Arachis hypogaea) cotyledons. This activity was NaF insensitive and acyl-coenzyme A (CoA) dependent. Acyl-CoA:diacylglycerol acyltransferase (DGAT) catalyzes the final step in TAG biosynthesis that acylates diacylglycerol to TAG. Soluble DGAT was identified from immature peanuts and purified by conventional column chromatographic procedures. The enzyme has a molecular mass of 41 +/- 1.0 kD. Based on the partial peptide sequence, a degenerate probe was used to obtain the full-length cDNA. The isolated gene shared less than 10% identity with the previously identified DGAT1 and 2 families, but has 13% identity with the bacterial bifunctional wax ester/DGAT. To differentiate the unrelated families, we designate the peanut gene as AhDGAT. Expression of peanut cDNA in Escherichia coli resulted in the formation of labeled TAG and wax ester from [14C]acetate. The recombinant E. coli showed high levels of DGAT activity but no wax ester synthase activity. TAGs were localized in transformed cells with Nile blue A and oil red O staining. The recombinant and native DGAT was specific for 1,2-diacylglycerol and did not utilize hexadecanol, glycerol-3-phosphate, monoacylglycerol, lysophosphatidic acid, and lysophosphatidylcholine. Oleoyl-CoA was the preferred acyl donor as compared to palmitoyl- and stearoyl-CoAs. These data suggest that the cytosol is one of the sites for TAG biosynthesis in oilseeds. The identified pathway may present opportunities of bioengineering oil-yielding plants for increased oil production.


Assuntos
Arachis/enzimologia , Diacilglicerol O-Aciltransferase/metabolismo , Triglicerídeos/biossíntese , Sequência de Aminoácidos , Arachis/genética , Arachis/crescimento & desenvolvimento , Clonagem Molecular , Cotilédone/enzimologia , Cotilédone/crescimento & desenvolvimento , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/isolamento & purificação , Escherichia coli/genética , Dados de Sequência Molecular , Família Multigênica , Filogenia , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína , Especificidade por Substrato
7.
Theor Appl Genet ; 112(6): 1086-97, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16432735

RESUMO

Diacylglycerol acyltransferase (DGAT), as an important enzyme in triacylglycerol synthesis, catalyzes the final acylation of the Kennedy pathway. In the present study, the GmDGAT gene was cloned from Glycine max by using AtDGAT as a query to search against the soybean EST database and the rapid amplification of cDNA ends (RACE) method. Allelic genes were also isolated from 13 soybean accessions and the divergence of the deduced amino acid sequences were compared. The comparison reveals that although GmDGAT is a highly conserved protein, several differences of insertion/deletion were identified in the N-terminal region of the GmDGATs from various soybean accessions. In the C-terminal regions, a single amino acid mutation specific to both G. max and G. soja was also found. The GmDGAT genomic sequences were further cloned and the number and size of exons in the DGAT genomic sequence were very similar among different plant species, whereas the introns were more diverged. These results may have significance in elucidating the genetic diversity of the GmDGAT among the soybean subgenus.


Assuntos
Diacilglicerol O-Aciltransferase/genética , Glycine max/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Primers do DNA , DNA Complementar , DNA de Plantas/genética , Diacilglicerol O-Aciltransferase/isolamento & purificação , Diacilglicerol O-Aciltransferase/metabolismo , Éxons/genética , Genes de Plantas/fisiologia , Íntrons/genética , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Glycine max/genética , Glycine max/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...