Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265.421
Filtrar
1.
Cell Death Dis ; 15(6): 392, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834617

RESUMO

Keratinocyte proliferation and differentiation in epidermis are well-controlled and essential for reacting to stimuli such as ultraviolet light. Imbalance between proliferation and differentiation is a characteristic feature of major human skin diseases such as psoriasis and squamous cell carcinoma. However, the effect of keratinocyte metabolism on proliferation and differentiation remains largely elusive. We show here that the gluconeogenic enzyme fructose-1,6-bisphosphatase 1 (FBP1) promotes differentiation while inhibits proliferation of keratinocyte and suppresses psoriasis development. FBP1 is identified among the most upregulated genes induced by UVB using transcriptome sequencing and is elevated especially in upper epidermis. Fbp1 heterozygous mice exhibit aberrant epidermis phenotypes with local hyperplasia and dedifferentiation. Loss of FBP1 promotes proliferation and inhibits differentiation of keratinocytes in vitro. Mechanistically, FBP1 loss facilitates glycolysis-mediated acetyl-CoA production, which increases histone H3 acetylation at lysine 9, resulting in enhanced transcription of proliferation genes. We further find that the expression of FBP1 is dramatically reduced in human psoriatic lesions and in skin of mouse imiquimod psoriasis model. Fbp1 deficiency in mice facilitates psoriasis-like skin lesions development through glycolysis and acetyl-CoA production. Collectively, our findings reveal a previously unrecognized role of FBP1 in epidermal homeostasis and provide evidence for FBP1 as a metabolic psoriasis suppressor.


Assuntos
Diferenciação Celular , Proliferação de Células , Frutose-Bifosfatase , Histonas , Queratinócitos , Psoríase , Psoríase/patologia , Psoríase/metabolismo , Psoríase/genética , Animais , Queratinócitos/metabolismo , Queratinócitos/patologia , Humanos , Acetilação , Histonas/metabolismo , Frutose-Bifosfatase/metabolismo , Frutose-Bifosfatase/genética , Camundongos , Glicólise , Camundongos Endogâmicos C57BL , Acetilcoenzima A/metabolismo , Modelos Animais de Doenças
3.
J Vis Exp ; (207)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829111

RESUMO

The human enteric nervous system, ENS, is a large network of glial and neuronal cell types with remarkable neurotransmitter diversity. The ENS controls bowel motility, enzyme secretion, and nutrient absorption and interacts with the immune system and the gut microbiome. Consequently, developmental and acquired defects of the ENS are responsible for many human diseases and may contribute to symptoms of Parkinson's disease. Limitations in animal model systems and access to primary tissue pose significant experimental challenges in studies of the human ENS. Here, a detailed protocol is presented for effective in vitro derivation of the ENS lineages from human pluripotent stem cells, hPSC, using defined culture conditions. Our protocol begins with directed differentiation of hPSCs to enteric neural crest cells within 15 days and yields diverse subtypes of functional enteric neurons within 30 days. This platform provides a scalable resource for developmental studies, disease modeling, drug discovery, and regenerative applications.


Assuntos
Diferenciação Celular , Sistema Nervoso Entérico , Crista Neural , Células-Tronco Pluripotentes , Humanos , Sistema Nervoso Entérico/citologia , Células-Tronco Pluripotentes/citologia , Diferenciação Celular/fisiologia , Crista Neural/citologia , Técnicas Citológicas/métodos , Neurônios/citologia
4.
J Vis Exp ; (207)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829121

RESUMO

In the realm of regenerative medicine and therapeutic applications, stem cell research is rapidly gaining traction. Dental pulp stem cells (DPSCs), which are present in both deciduous and permanent teeth, have emerged as a vital stem cell source due to their accessibility, adaptability, and innate differentiation capabilities. DPSCs offer a readily available and abundant reservoir of mesenchymal stem cells, showcasing impressive versatility and potential, particularly for regenerative purposes. Despite their promise, the main hurdle lies in effectively isolating and characterizing DPSCs, given their representation as a minute fraction within dental pulp cells. Equally crucial is the proper preservation of this invaluable cellular resource. The two predominant methods for DPSC isolation are enzymatic digestion (ED) and outgrowth from tissue explants (OG), often referred to as spontaneous growth. This protocol concentrates primarily on the enzymatic digestion approach for DPSC isolation, intricately detailing the steps encompassing extraction, in-lab processing, and cell preservation. Beyond extraction and preservation, the protocol delves into the differentiation prowess of DPSCs. Specifically, it outlines the procedures employed to induce these stem cells to differentiate into adipocytes, osteoblasts, and chondrocytes, showcasing their multipotent attributes. Subsequent utilization of colorimetric staining techniques facilitates accurate visualization and confirmation of successful differentiation, thereby validating the caliber and functionality of the isolated DPSCs. This comprehensive protocol functions as a blueprint encompassing the entire spectrum of dental pulp stem cell extraction, cultivation, preservation, and characterization. It underscores the substantial potential harbored by DPSCs, propelling forward stem cell exploration and holding promise for future regenerative and therapeutic breakthroughs.


Assuntos
Polpa Dentária , Células-Tronco , Dente Decíduo , Polpa Dentária/citologia , Humanos , Células-Tronco/citologia , Dente Decíduo/citologia , Dentição Permanente , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Separação Celular/métodos
5.
Carbohydr Polym ; 339: 122214, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823900

RESUMO

The polysaccharide, RGP2, was isolated from Russula griseocarnosa and its immunostimulatory effects were confirmed in cyclophosphamide (CTX)-induced immunosuppressed mice. Following purification via chromatography, structural analysis revealed that RGP2 had a molecular weight of 11.82 kDa and consisted of glucose (Glc), galactose (Gal), mannose, glucuronic acid and glucosamine. Bond structure analysis and nuclear magnetic resonance characterization confirmed that the main chain of RGP2 was formed by →6)-ß-D-Glcp-(1→, →3)-ß-D-Glcp-(1→ and →6)-α-D-Galp-(1→, which was substituted at O-3 of →6)-ß-D-Glcp-(1→ by ß-D-Glcp-(1→. RGP2 was found to ameliorate pathological damage in the spleen and enhance immune cell activity in immunosuppressed mice. Based on combined multiomics analysis, RGP2 altered the abundance of immune-related microbiota (such as Lactobacillus, Faecalibacterium, and Bacteroides) in the gut and metabolites (uridine, leucine, and tryptophan) in the serum. Compared with immunosuppressed mice, RGP2 also restored the function of antigen-presenting cells, promoted the polarization of macrophages into the M1 phenotype, positively affected the differentiation of helper T cells, and inhibited regulatory T cell differentiation through the protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, ultimately exerting an immune boosting function. Overall, our findings highlight therapeutic strategies to alleviate CTX-induced immunosuppression in a clinical setting.


Assuntos
Basidiomycota , Diferenciação Celular , Glucanos , Animais , Camundongos , Basidiomycota/química , Glucanos/química , Glucanos/farmacologia , Glucanos/isolamento & purificação , Diferenciação Celular/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Masculino , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , Ciclofosfamida/farmacologia , Camundongos Endogâmicos BALB C , Microbioma Gastrointestinal/efeitos dos fármacos
6.
Mol Biol Rep ; 51(1): 710, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824241

RESUMO

BACKGROUND: Circular RNA (circRNA) is a key player in regulating the multidirectional differentiation of stem cells. Previous research by our group found that the blue light-emitting diode (LED) had a promoting effect on the osteogenic/odontogenic differentiation of human stem cells from apical papilla (SCAPs). This research aimed to investigate the differential expression of circRNAs during the osteogenic/odontogenic differentiation of SCAPs regulated by blue LED. MATERIALS AND METHODS: SCAPs were divided into the irradiation group (4 J/cm2) and the control group (0 J/cm2), and cultivated in an osteogenic/odontogenic environment. The differentially expressed circRNAs during osteogenic/odontogenic differentiation of SCAPs promoted by blue LED were detected by high-throughput sequencing, and preliminarily verified by qRT-PCR. Functional prediction of these circRNAs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the circRNA-miRNA-mRNA networks were also constructed. RESULTS: It showed 301 circRNAs were differentially expressed. GO and KEGG analyses suggested that these circRNAs were associated with some signaling pathways related to osteogenic/odontogenic differentiation. And the circRNA-miRNA-mRNA networks were also successfully constructed. CONCLUSION: CircRNAs were involved in the osteogenic/odontogenic differentiation of SCAPs promoted by blue LED. In this biological process, circRNA-miRNA-mRNA networks served an important purpose, and circRNAs regulated this process through certain signaling pathways.


Assuntos
Diferenciação Celular , Papila Dentária , Luz , Odontogênese , Osteogênese , RNA Circular , Células-Tronco , RNA Circular/genética , RNA Circular/metabolismo , Humanos , Osteogênese/genética , Diferenciação Celular/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Odontogênese/genética , Papila Dentária/citologia , Papila Dentária/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ontologia Genética , Células Cultivadas , Perfilação da Expressão Gênica/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Regulação da Expressão Gênica/efeitos da radiação , Luz Azul
7.
Mol Biol Rep ; 51(1): 719, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824271

RESUMO

BACKGROUND: Promoting the balance between bone formation and bone resorption is the main therapeutic goal for postmenopausal osteoporosis (PMOP), and bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation plays an important regulatory role in this process. Recently, several long non-coding RNAs (lncRNAs) have been reported to play an important regulatory role in the occurrence and development of OP and participates in a variety of physiological and pathological processes. However, the role of lncRNA tissue inhibitor of metalloproteinases 3 (lncTIMP3) remains to be investigated. METHODS: The characteristics of BMSCs isolated from the PMOP rat model were verified by flow cytometry assay, alkaline phosphatase (ALP), alizarin red and Oil Red O staining assays. Micro-CT and HE staining assays were performed to examine histological changes of the vertebral trabeculae of the rats. RT-qPCR and western blotting assays were carried out to measure the RNA and protein expression levels. The subcellular location of lncTIMP3 was analyzed by FISH assay. The targeting relationships were verified by luciferase reporter assay and RNA pull-down assay. RESULTS: The trabecular spacing was increased in the PMOP rats, while ALP activity and the expression levels of Runx2, Col1a1 and Ocn were all markedly decreased. Among the RNA sequencing results of the clinical samples, lncTIMP3 was the most downregulated differentially expressed lncRNA, also its level was significantly reduced in the OVX rats. Knockdown of lncTIMP3 inhibited osteogenesis of BMSCs, whereas overexpression of lncTIMP3 exhibited the reverse results. Subsequently, lncTIMP3 was confirmed to be located in the cytoplasm of BMSCs, implying its potential as a competing endogenous RNA for miRNAs. Finally, the negative targeting correlations of miR-214 between lncTIMP3 and Smad4 were elucidated in vitro. CONCLUSION: lncTIMP3 may delay the progress of PMOP by promoting the activity of BMSC, the level of osteogenic differentiation marker gene and the formation of calcium nodules by acting on the miR-214/Smad4 axis. This finding may offer valuable insights into the possible management of PMOP.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais , MicroRNAs , Osteogênese , Osteoporose Pós-Menopausa , RNA Longo não Codificante , Proteína Smad4 , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Osteoporose Pós-Menopausa/genética , Osteoporose Pós-Menopausa/metabolismo , Osteoporose Pós-Menopausa/patologia , Feminino , Diferenciação Celular/genética , Ratos , Proteína Smad4/metabolismo , Proteína Smad4/genética , Humanos , Modelos Animais de Doenças , Ratos Sprague-Dawley , Células da Medula Óssea/metabolismo
8.
Lasers Med Sci ; 39(1): 147, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822930

RESUMO

Photobiomodulation (PBM) holds promise as a therapy modality, but its applicability is hindered by the lack of a quantitative model to predict the optimal dose for all forms of PBM. This study investigated the optimal PBM parameters for 532 nm green laser irradiation on SHSY5Y neuroblastoma cells, a commonly used in vitro model for neurodegenerative disease studies. A two-tailed, two sample t-test with equal variance was used to obtain the p-values and statistical significance. There are 3 sets of parameters showing significant ( p < 0 . 01 ) positive percentage biostimulation. 160 m W , 15 m i n produce a percentage biostimulation of ( 9 ± 10 ) % ; 180 m W , 5 m i n produce a percentage biostimulation of ( 19 ± 7 ) % ; and ( 200 m W , 5 m i n ) produce a percentage biostimulation of ( 9 ± 2 ) % . The highest significant ( p < 0 . 01 ) percentage bioinhibition observed is for 220 m W , 15 m i n (dose: 1008 J / c m 2 ) producing a bioinhibition of ( 54 ± 1 ) % . After identifying several parameters that produce noticeable photobiological effects (biostimulation and bioinhibition), this study compared the reaction of undifferentiated and differentiated SHSY5Y cells to laser irradiation and found that undifferentiated SHSY5Y cells shows greater photobiological effect from 532 nm laser irradiation ( p < 0 . 01 ) . This study demonstrated the differentiation-dependant photobiological effect of SHSY5Y in 532 nm laser PBM. This shows that considerations on the differentiation state of cells is important in PBM studies. The hypothesis of difference in intracellular reactive oxygen species (ROS) accumulation from laser irradiation can serve as a versatile explanation of the observed difference in photobiological effect. Further investigation into the role of ROS as a mediator of various photobiological effects from laser of different wavelengths is warranted.


Assuntos
Diferenciação Celular , Terapia com Luz de Baixa Intensidade , Neuroblastoma , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Diferenciação Celular/efeitos da radiação , Neuroblastoma/radioterapia , Neuroblastoma/patologia , Linhagem Celular Tumoral
9.
FASEB J ; 38(11): e23702, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38837439

RESUMO

Pyruvate kinase is a glycolytic enzyme that converts phosphoenolpyruvate and ADP into pyruvate and ATP. There are two genes that encode pyruvate kinase in vertebrates; Pkm and Pkl encode muscle- and liver/erythrocyte-specific forms, respectively. Each gene encodes two isoenzymes due to alternative splicing. Both muscle-specific enzymes, PKM1 and PKM2, function in glycolysis, but PKM2 also has been implicated in gene regulation due to its ability to phosphorylate histone 3 threonine 11 (H3T11) in cancer cells. Here, we examined the roles of PKM1 and PKM2 during myoblast differentiation. RNA-seq analysis revealed that PKM2 promotes the expression of Dpf2/Baf45d and Baf250a/Arid1A. DPF2 and BAF250a are subunits that identify a specific sub-family of the mammalian SWI/SNF (mSWI/SNF) of chromatin remodeling enzymes that is required for the activation of myogenic gene expression during differentiation. PKM2 also mediated the incorporation of DPF2 and BAF250a into the regulatory sequences controlling myogenic gene expression. PKM1 did not affect expression but was required for nuclear localization of DPF2. Additionally, PKM2 was required not only for the incorporation of phosphorylated H3T11 in myogenic promoters but also for the incorporation of phosphorylated H3T6 and H3T45 at myogenic promoters via regulation of AKT and protein kinase C isoforms that phosphorylate those amino acids. Our results identify multiple unique roles for PKM2 and a novel function for PKM1 in gene expression and chromatin regulation during myoblast differentiation.


Assuntos
Diferenciação Celular , Histonas , Mioblastos , Piruvato Quinase , Animais , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Camundongos , Fosforilação , Histonas/metabolismo , Histonas/genética , Mioblastos/metabolismo , Mioblastos/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a Hormônio da Tireoide , Humanos , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Isoenzimas/metabolismo , Isoenzimas/genética
10.
J Dig Dis ; 25(4): 255-265, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38837552

RESUMO

OBJECTIVES: In this study we aimed to assess the impact of acetylation of hepatocyte nuclear factor 4α (HNF4α) on lysine 458 on the differentiation therapy of hepatocellular carcinoma (HCC). METHODS: Periodic acid-Schiff (PAS) staining, Dil-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake, and senescence-associated ß-galactosidase (SA-ß-gal) activity analysis were performed to assess the differentiation of HCC cells. HNF4α protein was detected by western blot and immunohistochemistry (IHC). The effects of HNF4α-K458 acetylation on HCC malignancy were evaluated in HCC cell lines, a Huh-7 xenograft mouse model, and an orthotopic model. The differential expression genes in Huh-7 xenograft tumors were screened by RNA-sequencing analysis. RESULTS: K458R significantly enhanced the inhibitory effect of HNF4α on the malignancy of HCC cells, whereas K458Q reduced the inhibitory effects of HNF4α. Moreover, K458R promoted, while K458Q decreased, HNF4α-induced HCC cell differentiation. K458R stabilized HNF4α, while K458Q accelerated the degradation of HNF4α via the ubiquitin proteasome system. K458R also enhanced the ability of HNF4α to inhibit cell growth of HCC in the Huh-7 xenograft mouse model and the orthotopic model. RNA-sequencing analysis revealed that inhibiting K458 acetylation enhanced the transcriptional activity of HNF4α without altering the transcriptome induced by HNF4α in HCC. CONCLUSION: Our data revealed that inhibiting K458 acetylation of HNF4α might provide a more promising candidate for differential therapy of HCC.


Assuntos
Carcinoma Hepatocelular , Diferenciação Celular , Fator 4 Nuclear de Hepatócito , Neoplasias Hepáticas , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Acetilação , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Lisina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Proc Natl Acad Sci U S A ; 121(24): e2319301121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38838011

RESUMO

Alcohol dehydrogenase 1B (ADH1B) is a primate-specific enzyme which, uniquely among the ADH class 1 family, is highly expressed both in adipose tissue and liver. Its expression in adipose tissue is reduced in obesity and increased by insulin stimulation. Interference with ADH1B expression has also been reported to impair adipocyte function. To better understand the role of ADH1B in adipocytes, we used CRISPR/Cas9 to delete ADH1B in human adipose stem cells (ASC). Cells lacking ADH1B failed to differentiate into mature adipocytes manifested by minimal triglyceride accumulation and a marked reduction in expression of established adipocyte markers. As ADH1B is capable of converting retinol to retinoic acid (RA), we conducted rescue experiments. Incubation of ADH1B-deficient preadipocytes with 9-cis-RA, but not with all-transretinol, significantly rescued their ability to accumulate lipids and express markers of adipocyte differentiation. A homozygous missense variant in ADH1B (p.Arg313Cys) was found in a patient with congenital lipodystrophy of unknown cause. This variant significantly impaired the protein's dimerization, enzymatic activity, and its ability to rescue differentiation in ADH1B-deficient ASC. The allele frequency of this variant in the Middle Eastern population suggests that it is unlikely to be a fully penetrant cause of severe lipodystrophy. In conclusion, ADH1B appears to play an unexpected, crucial and cell-autonomous role in human adipocyte differentiation by serving as a necessary source of endogenous retinoic acid.


Assuntos
Adipócitos , Adipogenia , Álcool Desidrogenase , Humanos , Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/genética , Adipogenia/genética , Adipócitos/metabolismo , Adipócitos/citologia , Tretinoína/metabolismo , Diferenciação Celular , Sistemas CRISPR-Cas , Mutação de Sentido Incorreto , Tecido Adiposo/metabolismo
12.
Proc Natl Acad Sci U S A ; 121(24): e2403054121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38838017

RESUMO

Chronic Toxoplasma gondii infection induces brain-resident CD8+ T cells (bTr), but the protective functions and differentiation cues of these cells remain undefined. Here, we used a mouse model of latent infection by T. gondii leading to effective CD8+ T cell-mediated parasite control. Thanks to antibody depletion approaches, we found that peripheral circulating CD8+ T cells are dispensable for brain parasite control during chronic stage, indicating that CD8+ bTr are able to prevent brain parasite reactivation. We observed that the retention markers CD69, CD49a, and CD103 are sequentially acquired by brain parasite-specific CD8+ T cells throughout infection and that a majority of CD69/CD49a/CD103 triple-positive (TP) CD8+ T cells also express Hobit, a transcription factor associated with tissue residency. This TP subset develops in a CD4+ T cell-dependent manner and is associated with effective parasite control during chronic stage. Conditional invalidation of Transporter associated with Antigen Processing (TAP)-mediated major histocompatibility complex (MHC) class I presentation showed that presentation of parasite antigens by glutamatergic neurons and microglia regulates the differentiation of CD8+ bTr into TP cells. Single-cell transcriptomic analyses revealed that resistance to encephalitis is associated with the expansion of stem-like subsets of CD8+ bTr. In summary, parasite-specific brain-resident CD8+ T cells are a functionally heterogeneous compartment which autonomously ensure parasite control during T. gondii latent infection and which differentiation is shaped by neuronal and microglial MHC I presentation. A more detailed understanding of local T cell-mediated immune surveillance of this common parasite is needed for harnessing brain-resident CD8+ T cells in order to enhance control of chronic brain infections.


Assuntos
Encéfalo , Linfócitos T CD8-Positivos , Diferenciação Celular , Toxoplasma , Toxoplasmose , Animais , Linfócitos T CD8-Positivos/imunologia , Toxoplasma/imunologia , Camundongos , Encéfalo/imunologia , Encéfalo/parasitologia , Diferenciação Celular/imunologia , Toxoplasmose/imunologia , Toxoplasmose/parasitologia , Infecção Latente/imunologia , Infecção Latente/parasitologia , Antígenos CD/metabolismo , Antígenos CD/imunologia , Antígenos CD/genética , Camundongos Endogâmicos C57BL , Feminino
13.
Sci Rep ; 14(1): 12654, 2024 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825595

RESUMO

Mesenchymal stromal cells (MSC) from adult bone marrow are the most commonly used cells in clinical trials. MSCs from single donors are the preferred starting material but suffer from a major setback of being heterogeneous that results in unpredictable and inconsistent clinical outcomes. To overcome this, we developed a method of pooling MSCs from different donors and created cell banks to cater clinical needs. Initially, the master cell banks (MCBs) were created at passage 1 (P1) from the bone marrow MSCs isolated from of nine different donors. At this stage, MCBs from three different donors were mixed in equal proportion and expanded till P3 to create working cell banks. Further, the pooled cells and individual donor MSCs were expanded till P5 and cryopreserved and extensively characterised. There was a large heterogeneity among the individual donor MSCs in terms of growth kinetics (90% Coefficient of variation (CV) for cell yield and 44% CV for population doubling time at P5), immunosuppressive ability (30% CV at 1:1 and 300% CV at 1:10 ratio), and the angiogenic factor secretion potential (20% CV for VEGF and71% CV for SDF-1). Comparatively, the pooled cells have more stable profiles (60% CV for cell yield and 7% CV for population doubling time at P5) and exhibit better immunosuppressive ability (15% CV at 1:1 and 32% CV at 1:10 ratio ) and consistent secretion of angiogenic factors (16% CV for VEGF and 51% CV for SDF-1). Further pooling does not compromise the trilineage differentiation capacity or phenotypic marker expression of the MSCs. The senescence and in vitro tumourigenicity characteristics of the pooled cells are also similar to those of individual donor MSCs. We conclude that pooling of MSCs from three different donors reduces heterogeneity among individual donors and produces MSCs with a consistent secretion and higher immunosuppressive profile.


Assuntos
Células da Medula Óssea , Células-Tronco Mesenquimais , Doadores de Tecidos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Humanos , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Criopreservação/métodos , Proliferação de Células , Células Cultivadas , Adulto , Técnicas de Cultura de Células/métodos
14.
J Orthop Surg Res ; 19(1): 330, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825686

RESUMO

OBJECTIVE: The present study aimed to investigate the underlying mechanism of mechanical stimulation in regulating osteogenic differentiation. MATERIALS AND METHODS: Osteoblasts were exposed to compressive force (0-4 g/cm2) for 1-3 days or CGRP for 1 or 3 days. Expression of receptor activity modifying protein 1 (RAMP1), the transcription factor RUNX2, osteocalcin, p38 and p-p38 were analyzed by western blotting. Calcium mineralization was analyzed by alizarin red straining. RESULTS: Using compressive force treatments, low magnitudes (1 and 2 g/cm2) of compressive force for 24 h promoted osteoblast differentiation and mineral deposition whereas higher magnitudes (3 and 4 g/cm2) did not produce osteogenic effect. Through western blot assay, we observed that the receptor activity-modifying protein 1 (RAMP1) expression was upregulated, and p38 mitogen-activated protein kinase (MAPK) was phosphorylated during low magnitudes compressive force-promoted osteoblast differentiation. Further investigation of a calcitonin gene-related peptide (CGRP) peptide incubation, a ligand for RAMP1, showed that CGRP at concentration of 25 and 50 ng/ml could increase expression levels of RUNX2 and osteocalcin, and percentage of mineralization, suggesting its osteogenic potential. In addition, with the same conditions, CGRP also significantly upregulated RAMP1 and phosphorylated p38 expression levels. Also, the combination of compressive forces (1 and 2 g/cm2) with 50 ng/ml CGRP trended to increase RAMP1 expression, p38 activity, and osteogenic marker RUNX2 levels, as well as percentage of mineralization compared to compressive force alone. This suggest that RAMP1 possibly acts as an upstream regulator of p38 signaling during osteogenic differentiation. CONCLUSION: These findings suggest that CGRP-RAMP1/p38MAPK signaling implicates in osteoblast differentiation in response to optimal magnitude of compressive force. This study helps to define the underlying mechanism of compressive stimulation and may also enhance the application of compressive stimulation or CGRP peptide as an alternative approach for accelerating tooth movement in orthodontic treatment.


Assuntos
Diferenciação Celular , Osteoblastos , Osteogênese , Proteína 1 Modificadora da Atividade de Receptores , Proteínas Quinases p38 Ativadas por Mitógeno , Osteoblastos/fisiologia , Osteoblastos/metabolismo , Osteoblastos/citologia , Diferenciação Celular/fisiologia , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Osteogênese/fisiologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Estresse Mecânico , Animais , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Transdução de Sinais/fisiologia , Osteocalcina/metabolismo
15.
J Orthop Surg Res ; 19(1): 329, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825706

RESUMO

BACKGROUND: Fibrosis is a significant pathological feature of chronic skeletal muscle injury, profoundly affecting muscle regeneration. Fibro-adipogenic progenitors (FAPs) have the ability to differentiate into myofibroblasts, acting as a primary source of extracellular matrix (ECM). the process by which FAPs differentiate into myofibroblasts during chronic skeletal muscle injury remains inadequately explored. METHOD: mouse model with sciatic nerve denervated was constructed and miRNA expression profiles between the mouse model and uninjured mouse were analyzed. qRT/PCR and immunofluorescence elucidated the effect of miR-27b-3p on fibrosis in vivo and in vitro. Dual-luciferase reporter identified the target gene of miR-27b-3p, and finally knocked down or overexpressed the target gene and phosphorylation inhibition of Smad verified the influence of downstream molecules on the abundance of miR-27b-3p and fibrogenic differentiation of FAPs. RESULT: FAPs derived from a mouse model with sciatic nerves denervated exhibited a progressively worsening fibrotic phenotype over time. Introducing agomiR-27b-3p effectively suppressed fibrosis both in vitro and in vivo. MiR-27b-3p targeted Transforming Growth Factor Beta Receptor 1 (TGF-ßR1) and the abundance of miR-27b-3p was negatively regulated by TGF-ßR1/Smad. CONCLUSION: miR-27b-3p targeting the TGF-ßR1/Smad pathway is a novel mechanism for regulating fibrogenic differentiation of FAPs. Increasing abundance of miR-27b-3p, suppressing expression of TGF-ßR1 and inhibiting phosphorylation of smad3 presented potential strategies for treating fibrosis in chronic skeletal muscle injury.


Assuntos
Fibrose , MicroRNAs , Músculo Esquelético , Transdução de Sinais , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Camundongos , Doença Crônica , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Smad/metabolismo , Proteínas Smad/genética , Masculino , Modelos Animais de Doenças , Diferenciação Celular , Nervo Isquiático/lesões
16.
Exp Dermatol ; 33(6): e15107, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840418

RESUMO

The skin plays an essential role in preventing the entry of external environmental threats and the loss of internal substances, depending on the epidermal permeability barrier. Nuclear receptors (NRs), present in various tissues and organs including full-thickness skin, have been demonstrated to exert significant effects on the epidermal lipid barrier. Formation of the lipid lamellar membrane and the normal proliferation and differentiation of keratinocytes (KCs) are crucial for the development of the epidermal permeability barrier and is regulated by specific NRs such as PPAR, LXR, VDR, RAR/RXR, AHR, PXR and FXR. These receptors play a key role in regulating KC differentiation and the entire process of epidermal lipid synthesis, processing and secretion. Lipids derived from sebaceous glands are influenced by NRs as well and participate in regulation of the epidermal lipid barrier. Furthermore, intricate interplay exists between these receptors. Disturbance of barrier function leads to a range of diseases, including psoriasis, atopic dermatitis and acne. Targeting these NRs with agonists or antagonists modulate pathways involved in lipid synthesis and cell differentiation, suggesting potential therapeutic approaches for dermatosis associated with barrier damage. This review focuses on the regulatory role of NRs in the maintenance and processing of the epidermal lipid barrier through their effects on skin lipid synthesis and KC differentiation, providing novel insights for drug targets to facilitate precision medicine strategies.


Assuntos
Diferenciação Celular , Epiderme , Queratinócitos , Metabolismo dos Lipídeos , Receptores Citoplasmáticos e Nucleares , Humanos , Epiderme/metabolismo , Queratinócitos/metabolismo , Queratinócitos/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Permeabilidade
17.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 135-141, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836669

RESUMO

Epigenetic change has been found to play an important role in cell differentiation and regulation and the dental pulp stem cell in tissue engineering is gaining attention due to the ability of cells to differentiate into odontoblast and other cells. This study evaluated the influence of poly L- lactic acid with hydroxyapatite-coated with polyaniline scaffold (PLLA/HA/PANI) on dental pulp stem cell (DPSC) proliferation and differentiation. After scaffold preparation and DPSCs seeding, the cells proliferation and differentiation were evaluated by immunocytochemistry assay and cell viability was measured by cytotoxicity / MTT assay. The results showed (PLLA/HA/PANI) scaffold facilitates DPSC proliferation and differentiation with gene expression. This finding underscores the promise of this biomaterial combination as a scaffold for dental tissue regeneration and application.


Assuntos
Materiais Biocompatíveis , Diferenciação Celular , Proliferação de Células , Polpa Dentária , Durapatita , Odontoblastos , Osteoblastos , Células-Tronco , Alicerces Teciduais , Polpa Dentária/citologia , Humanos , Diferenciação Celular/efeitos dos fármacos , Odontoblastos/citologia , Odontoblastos/efeitos dos fármacos , Odontoblastos/metabolismo , Alicerces Teciduais/química , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Proliferação de Células/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Durapatita/química , Durapatita/farmacologia , Compostos de Anilina/farmacologia , Compostos de Anilina/química , Poliésteres/química , Poliésteres/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Engenharia Tecidual/métodos
18.
Proc Natl Acad Sci U S A ; 121(24): e2322009121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38843187

RESUMO

Follicular helper T (TFH) cells mediate germinal center reactions to generate high affinity antibodies against specific pathogens, and their excessive production is associated with the pathogenesis of systemic autoimmune diseases such as systemic lupus erythematosus (SLE). ETV5, a member of the ETS transcription factor family, promotes TFH cell differentiation in mice. In this study, we examined the role of ETV5 in the pathogenesis of lupus in mice and humans. T cell-specific deletion of Etv5 alleles ameliorated TFH cell differentiation and autoimmune phenotypes in lupus mouse models. Further, we identified SPP1 as an ETV5 target that promotes TFH cell differentiation in both mice and humans. Notably, extracellular osteopontin (OPN) encoded by SPP1 enhances TFH cell differentiation by activating the CD44-AKT signaling pathway. Furthermore, ETV5 and SPP1 levels were increased in CD4+ T cells from patients with SLE and were positively correlated with disease activity. Taken together, our findings demonstrate that ETV5 is a lupus-promoting transcription factor, and secreted OPN promotes TFH cell differentiation.


Assuntos
Diferenciação Celular , Lúpus Eritematoso Sistêmico , Osteopontina , Fatores de Transcrição , Animais , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/patologia , Osteopontina/metabolismo , Osteopontina/genética , Camundongos , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Células T Auxiliares Foliculares/imunologia , Células T Auxiliares Foliculares/metabolismo , Feminino , Modelos Animais de Doenças , Camundongos Knockout
19.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38832826

RESUMO

Germline maintenance relies on adult stem cells to continually replenish lost gametes over a lifetime and respond to external cues altering the demands on the tissue. Mating worsens germline homeostasis over time, yet a negative impact on stem cell behavior has not been explored. Using extended live imaging of the Drosophila testis stem cell niche, we find that short periods of mating in young males disrupts cytokinesis in germline stem cells (GSCs). This defect leads to failure of abscission, preventing release of differentiating cells from the niche. We find that GSC abscission failure is caused by increased Ecdysone hormone signaling induced upon mating, which leads to disrupted somatic encystment of the germline. Abscission failure is rescued by isolating males from females, but recurs with resumption of mating. Importantly, reiterative mating also leads to increased GSC loss, requiring increased restoration of stem cells via symmetric renewal and de-differentiation. Together, these results suggest a model whereby acute mating results in hormonal changes that negatively impact GSC cytokinesis but preserves the stem cell population.


Assuntos
Citocinese , Drosophila melanogaster , Ecdisona , Células Germinativas , Testículo , Animais , Masculino , Ecdisona/metabolismo , Testículo/metabolismo , Feminino , Drosophila melanogaster/metabolismo , Células Germinativas/metabolismo , Células Germinativas/citologia , Nicho de Células-Tronco , Células-Tronco/metabolismo , Células-Tronco/citologia , Diferenciação Celular , Transdução de Sinais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética
20.
Cell Death Dis ; 15(6): 387, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824145

RESUMO

Obesity exacerbates tissue degeneration and compromises the integrity and reparative potential of mesenchymal stem/stromal cells (MSCs), but the underlying mechanisms have not been sufficiently elucidated. Mitochondria modulate the viability, plasticity, proliferative capacity, and differentiation potential of MSCs. We hypothesized that alterations in the 5-hydroxymethylcytosine (5hmC) profile of mitochondria-related genes may mediate obesity-driven dysfunction of human adipose-derived MSCs. MSCs were harvested from abdominal subcutaneous fat of obese and age/sex-matched non-obese subjects (n = 5 each). The 5hmC profile and expression of nuclear-encoded mitochondrial genes were examined by hydroxymethylated DNA immunoprecipitation sequencing (h MeDIP-seq) and mRNA-seq, respectively. MSC mitochondrial structure (electron microscopy) and function, metabolomics, proliferation, and neurogenic differentiation were evaluated in vitro, before and after epigenetic modulation. hMeDIP-seq identified 99 peaks of hyper-hydroxymethylation and 150 peaks of hypo-hydroxymethylation in nuclear-encoded mitochondrial genes from Obese- versus Non-obese-MSCs. Integrated hMeDIP-seq/mRNA-seq analysis identified a select group of overlapping (altered levels of both 5hmC and mRNA) nuclear-encoded mitochondrial genes involved in ATP production, redox activity, cell proliferation, migration, fatty acid metabolism, and neuronal development. Furthermore, Obese-MSCs exhibited decreased mitochondrial matrix density, membrane potential, and levels of fatty acid metabolites, increased superoxide production, and impaired neuronal differentiation, which improved with epigenetic modulation. Obesity elicits epigenetic changes in mitochondria-related genes in human adipose-derived MSCs, accompanied by structural and functional changes in their mitochondria and impaired fatty acid metabolism and neurogenic differentiation capacity. These observations may assist in developing novel therapies to preserve the potential of MSCs for tissue repair and regeneration in obese individuals.


Assuntos
Tecido Adiposo , Diferenciação Celular , Epigênese Genética , Células-Tronco Mesenquimais , Mitocôndrias , Obesidade , Humanos , Células-Tronco Mesenquimais/metabolismo , Obesidade/metabolismo , Obesidade/genética , Obesidade/patologia , Mitocôndrias/metabolismo , Tecido Adiposo/metabolismo , Diferenciação Celular/genética , Feminino , Masculino , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Adulto , Pessoa de Meia-Idade , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...