Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.925
Filtrar
1.
Biofouling ; 40(7): 377-389, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955544

RESUMO

Biofouling on marine surfaces causes immense material and financial harm for maritime vessels and related marine industries. Previous reports have shown the effectiveness of amphiphilic coating systems based on poly(dimethylsiloxane) (PDMS) against such marine foulers. Recent studies on biofouling mechanisms have also demonstrated acidic microenvironments in biofilms and stronger adhesion at low-pH conditions. This report presents the design and utilization of amphiphilic polymer coatings with buffer functionalities as an active disruptor against four different marine foulers. Specifically, this study explores both neutral and zwitterionic buffer systems for marine coatings, offering insights into coating design. Overall, these buffer systems were found to improve foulant removal, and unexpectedly were the most effective against the diatom Navicula incerta.


Assuntos
Biofilmes , Incrustação Biológica , Diatomáceas , Dimetilpolisiloxanos , Incrustação Biológica/prevenção & controle , Diatomáceas/fisiologia , Dimetilpolisiloxanos/química , Animais , Soluções Tampão , Propriedades de Superfície , Concentração de Íons de Hidrogênio
2.
Sensors (Basel) ; 24(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000986

RESUMO

The capability to record data in passive, image-based wearable sensors can simplify data readouts and eliminate the requirement for the integration of electronic components on the skin. Here, we developed a skin-strain-actuated microfluidic pump (SAMP) that utilizes asymmetric aspect ratio channels for the recording of human activity in the fluidic domain. An analytical model describing the SAMP's operation mechanism as a wearable microfluidic device was established. Fabrication of the SAMP was achieved using soft lithography from polydimethylsiloxane (PDMS). Benchtop experimental results and theoretical predictions were shown to be in good agreement. The SAMP was mounted on human skin and experiments conducted on volunteer subjects demonstrated the SAMP's capability to record human activity for hundreds of cycles in the fluidic domain through the observation of a stable liquid meniscus. Proof-of-concept experiments further revealed that the SAMP could quantify a single wrist activity repetition or distinguish between three different shoulder activities.


Assuntos
Pele , Dispositivos Eletrônicos Vestíveis , Humanos , Dimetilpolisiloxanos/química , Microfluídica/métodos , Microfluídica/instrumentação , Dispositivos Lab-On-A-Chip , Desenho de Equipamento , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos
3.
Lab Chip ; 24(14): 3546-3555, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38949063

RESUMO

Microfluidic chips have emerged as significant tools in cell culture due to their capacity for supporting cells to adopt more physiologically relevant morphologies in 3D compared with traditional cell culture in 2D. Currently, irreversible bonding methods, where chips cannot be detached from their substrates without destroying the structure, are commonly used in fabrication, making it challenging to conduct further analysis on cells that have been cultured on-chip. Although some reversible bonding techniques have been developed, they are either restricted to certain materials such as glass, or require complex processing procedures. Here, we demonstrate a simple and reversible polydimethylsiloxane (PDMS)-polystyrene (PS) bonding technique that allows devices to withstand extended operations while pressurized, and supports long-term stable cell cultures. More importantly, it allows rapid and gentle live cell extraction for downstream manipulation and characterization after long-term on-chip culturing, and even further subculturing. Our new approach could greatly facilitate microfluidic chip-based cell and tissue cultures, overcoming current analytical limitations and opening up new avenues for downstream uses of on-chip cultures, including 3D-engineered tissue structures for biomedical applications.


Assuntos
Técnicas de Cultura de Células , Dimetilpolisiloxanos , Poliestirenos , Dimetilpolisiloxanos/química , Técnicas de Cultura de Células/instrumentação , Humanos , Poliestirenos/química , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento
4.
Sci Rep ; 14(1): 16192, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003299

RESUMO

Quantifying small amounts of the 17-hydroxyprogesterone in various matrix is crucial for different purposes. In this study, a commercial polydimethylsiloxane stir bar was used to extract hormone from water and urine samples. Analysis was performed by high-performance liquid chromatography using a UV detector. The response surface methodology was used to optimize the desorption and extraction steps, with predicted optimal point relative errors of 1.25% and 6.40%, respectively. The optimized method was validated with a linear range of 1.21-1000.00 for aqueous and 2.43-2000.00 ng mL-1 for urine samples. The coefficient of determination was 0.9998 and 0.9967, and the detection limit of the proposed method was obtained to be 0.40 and 0.80 ng mL-1 for aqueous and urine samples, respectively. The recovery percentage and relative standard deviation within a day and between three days after the addition of three different concentration levels of the standard to the control sample were 87-103% and 0.4-3.6% for aqueous and 87.5-101% and 0.1-5.2% for urine samples, respectively. The results show that the proposed method can be appropriate and cost-effective for extracting and analyzing this hormone. In addition, using three different tools, the greenness of the proposed method was proven.


Assuntos
17-alfa-Hidroxiprogesterona , Dimetilpolisiloxanos , Cromatografia Líquida de Alta Pressão/métodos , 17-alfa-Hidroxiprogesterona/urina , Humanos , Dimetilpolisiloxanos/química , Química Verde/métodos , Limite de Detecção , Extração em Fase Sólida/métodos
5.
J Vis Exp ; (208)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38912772

RESUMO

Neuronal cultures have been a reference experimental model for several decades. However, 3D cell arrangement, spatial constraints on neurite outgrowth, and realistic synaptic connectivity are missing. The latter limits the study of structure and function in the context of compartmentalization and diminishes the significance of cultures in neuroscience. Approximating ex vivo the structured anatomical arrangement of synaptic connectivity is not trivial, despite being key for the emergence of rhythms, synaptic plasticity, and ultimately, brain pathophysiology. Here, two-photon polymerization (2PP) is employed as a 3D printing technique, enabling the rapid fabrication of polymeric cell culture devices using polydimethyl-siloxane (PDMS) at the micrometer scale. Compared to conventional replica molding techniques based on microphotolitography, 2PP micro-scale printing enables rapid and affordable turnaround of prototypes. This protocol illustrates the design and fabrication of PDMS-based microfluidic devices aimed at culturing modular neuronal networks. As a proof-of-principle, a two-chamber device is presented to physically constrain connectivity. Specifically, an asymmetric axonal outgrowth during ex vivo development is favored and allowed to be directed from one chamber to the other. In order to probe the functional consequences of unidirectional synaptic interactions, commercial microelectrode arrays are chosen to monitor the bioelectrical activity of interconnected neuronal modules. Here, methods to 1) fabricate molds with micrometer precision and 2) perform in vitro multisite extracellular recordings in rat cortical neuronal cultures are illustrated. By decreasing costs and future widespread accessibility of 2PP 3D-printing, this method will become more and more relevant across research labs worldwide. Especially in neurotechnology and high-throughput neural data recording, the ease and rapidity of prototyping simplified in vitro models will improve experimental control and theoretical understanding of in vivo large-scale neural systems.


Assuntos
Técnicas de Cultura de Células , Neurônios , Impressão Tridimensional , Neurônios/citologia , Animais , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Dimetilpolisiloxanos/química , Polimerização , Ratos
6.
Biosensors (Basel) ; 14(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38920598

RESUMO

A microfluidic sweat monitoring patch that collects human sweat for a long time is designed to achieve the effect of detecting the rise and fall of human sweat glucose over a long period of time by increasing the use time of a single patch. Five collection pools, four serpentine channels, and two different valves are provided. Among them, the three-dimensional valve has a large burst pressure as a balance between the internal and external air pressures of the patch. The bursting pressure of the two-dimensional diverter valve is smaller than that of the three-dimensional gas valve, and its role is to control the flow direction of the liquid. Through plasma hydrophilic treatment of different durations, the optimal hydrophilic duration is obtained. The embedded chromogenic disc detects the sweat glucose value at two adjacent time intervals and compares the information of the human body to increase or reduce glucose. The patch has good flexibility and can fit well with human skin, and because polydimethylsiloxane (PDMS) has good light transmission, it reduces the measurement error caused by the color-taking process and makes the detection results more accurate.


Assuntos
Suor , Humanos , Suor/química , Hipoglicemia , Glucose/análise , Técnicas Biossensoriais , Microfluídica , Dimetilpolisiloxanos/química , Glicemia/análise
7.
J Colloid Interface Sci ; 672: 161-169, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838625

RESUMO

Intelligent shape memory polymer can be potentially used in manufacturing implantable devices that enables a benign variation of implant dimensions with the external stimuli, thus effectively lowering insertion forces and evading associated risks. However, in surgical implantation, biomaterials-associated infection has imposed a huge burden to healthcare system that urgently requires an efficacious replacement of antibiotic usages. Preventing the initial attachment and harvesting a biocidal function upon native surfaces may be deemed as a preferable strategy to tackle the issues of bacterial infection. Herein, a functionalized polylactic acid (PLA) composite membrane assembled with graphene (GE, a widely used photothermal agent) was fabricated through a blending process and then polydimethylsiloxane utilized as binders to pack hydrophobic SiO2 tightly onto polymer surface (denoted as PLA-GE/SiO2). Such an active platform exhibited a moderate shape-memory performance upon near-infrared (NIR) light stimulation, which was feasible for programmed deformation and shape recovery. Particularly stirring was that PLA-GE/SiO2 exerted a pronounced bacteria-killing effect under NIR illumination, 99.9 % of E. coli and 99.8 % of S. aureus were effectively eradicated in a lean period of 5 min. Furthermore, the obtained composite membrane manifested excellent antiadhesive properties, resulting in a bacteria-repelling efficacy of up to 99 % for both E. coli and S. aureus species. These findings demonstrated the potential value of PLA-GE/SiO2 as a shape-restorable platform in "kill&repel" integration strategy, further expanding its applications for clinical anti-infective treatment.


Assuntos
Antibacterianos , Escherichia coli , Grafite , Testes de Sensibilidade Microbiana , Poliésteres , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Poliésteres/química , Poliésteres/farmacologia , Grafite/química , Grafite/farmacologia , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Propriedades de Superfície , Membranas Artificiais , Tamanho da Partícula , Aderência Bacteriana/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Raios Infravermelhos , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacologia
8.
ACS Appl Mater Interfaces ; 16(26): 33907-33916, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38889049

RESUMO

Nociceptor is an important receptor in the organism's sensory system; it can perceive harmful stimuli and send signals to the brain in order to protect the body in time. The injury degree of nociceptor can be divided into three stages: self-healing injury, treatable injury, and permanent injury. However, the current studies on nociceptor simulation are limited to the self-healing stage due to the limitation of the untunable resistance switching behavior of memristors. In this study, we constructed Al/2DPTPAK+TAPB/Ag memristor arrays with adjustable memory behaviors to emulate the nociceptor of biological neural network of all three stages. For this purpose, a PDMS/AgNWs/ITO/PET pressure sensor was assembled to mimic the tactile perception of the skin. The memristor arrays can not only simulate all the response of nociceptor, i.e., the threshold, relaxation, no adaptation, and sensitization with the self-healing injury, but can also simulate the treatable injury and the permanent injury. These behaviors are both demonstrated with a single memristor and in the form of pattern mapping of the memristor array.


Assuntos
Tato , Tato/fisiologia , Polímeros/química , Humanos , Dimetilpolisiloxanos/química
9.
ACS Appl Mater Interfaces ; 16(25): 32702-32712, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870327

RESUMO

Herein, we report a dual-functional flexible sensor (DFFS) using a magnetic conductive polymer composed of nickel (Ni), carbon black (CB), and polydimethylsiloxane (PDMS). The material selection for the DFFS utilizes the excellent elasticity of the PDMS matrix and the synergistic interaction between Ni and CB. The DFFS has a wide strain range of 0-170%, a high sensitivity of 74.13 (140-170%), and a low detection limit of 0.3% strain. The DFFS based on superior performance can accurately detect microstrain/microvibration, oncoming/contacting objects, and bicycle riding speed. Additionally, the DFFS can be used for comprehensive monitoring of human movements. Therefore, the DFFS of this work shows significant value for implementation in intelligent wearable devices and noncontact intelligent control.


Assuntos
Dimetilpolisiloxanos , Microesferas , Níquel , Fuligem , Dispositivos Eletrônicos Vestíveis , Dimetilpolisiloxanos/química , Humanos , Níquel/química , Fuligem/química , Movimento , Condutividade Elétrica
10.
Biosens Bioelectron ; 261: 116465, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38850735

RESUMO

Multiplex detection of low-abundance protein biomarkers in biofluids can contribute to diverse biomedical fields such as early diagnosis and precision medicine. However, conventional techniques such as digital ELISA, microarray, and hydrogel-based assay still face limitations in terms of efficient protein detection due to issues with multiplexing capability, sensitivity, or complicated assay procedures. In this study, we present the degassed micromold-based particle isolation technique for highly sensitive and multiplex immunoassay with enzymatic signal amplification. Using degassing treatment of nanoporous polydimethylsiloxane (PDMS) micromold, the encoded particles are isolated in the mold within 5 min absorbing trapped air bubbles into the mold by air suction capability. Through 10 min of signal amplification in the isolated spaces by fluorogenic substrate and horseradish peroxidase labeled in the particle, the assay signal is amplified with one order of magnitude compared to that of the standard hydrogel-based assay. Using the signal amplification assay, vascular endothelial growth factor (VEGF) and chorionic gonadotropin beta (CG beta), the preeclampsia-related protein biomarkers, are quantitatively detected with a limit of detection (LoD) of 249 fg/mL and 476 fg/mL in phosphate buffer saline. The multiplex immunoassay is conducted to validate negligible non-specific detection signals and robust recovery rates in the multiplex assay. Finally, the VEGF and CG beta in real urine samples are simultaneously and quantitatively detected by the developed assay. Given the high sensitivity, multiplexing capability, and process simplicity, the presented particle isolation-based signal amplification assay holds significant potential in biomedical and proteomic fields.


Assuntos
Técnicas Biossensoriais , Limite de Detecção , Fator A de Crescimento do Endotélio Vascular , Humanos , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Fator A de Crescimento do Endotélio Vascular/urina , Fator A de Crescimento do Endotélio Vascular/isolamento & purificação , Fator A de Crescimento do Endotélio Vascular/análise , Dimetilpolisiloxanos/química , Gonadotropina Coriônica Humana Subunidade beta/urina , Gonadotropina Coriônica Humana Subunidade beta/isolamento & purificação , Gonadotropina Coriônica Humana Subunidade beta/sangue , Gonadotropina Coriônica Humana Subunidade beta/análise , Biomarcadores/urina , Feminino , Gravidez , Desenho de Equipamento
11.
J R Soc Interface ; 21(215): 20230696, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842440

RESUMO

In the area of surgical applications, understanding the interaction between medical device materials and tissue is important since this interaction may cause complications. The interaction often consists of a cell monolayer touching the medical device that can be mimicked in vitro. Prominent examples of this are contact lenses, where epithelial cells interact with the contact lens, or stents and catheters, which are in contact with endothelial cells. To investigate those interactions, in previous studies, expensive microtribometers were used to avoid pressures in the contact area far beyond physiologically relevant levels. Here, we aim to present a new methodology that is cost- and time-efficient, more accessible than those used previously and allows for the application of more realistic pressures, while permitting a quantification of the damage caused to the monolayer. For this, a soft polydimethylsiloxane is employed that better mimics the mechanical properties of blood vessels than materials used in other studies. Furthermore, a technique to account for misalignments within the experiment set-up is presented. This is carried out using the raw spatial and force data recorded by the tribometer and adjusting for misalignments. The methodology is demonstrated using an endothelial cell (human umbilical vein endothelial cells) monolayer.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fricção , Dimetilpolisiloxanos/química
12.
Sensors (Basel) ; 24(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38894053

RESUMO

The advancement of flexible electrodes triggered research on wearables and health monitoring applications. Metal-based bioelectrodes encounter low mechanical strength and skin discomfort at the electrode-skin interface. Thus, recent research has focused on the development of flexible surface electrodes with low electrochemical resistance and high conductivity. This study investigated the development of a novel, flexible, surface electrode based on a MXene/polydimethylsiloxane (PDMS)/glycerol composite. MXenes offer the benefit of featuring highly conductive transition metals with metallic properties, including a group of carbides, nitrides, and carbonitrides, while PDMS exhibits inherent biostability, flexibility, and biocompatibility. Among the various MXene-based electrode compositions prepared in this work, those composed of 15% and 20% MXene content were further evaluated for their potential in electrophysiological sensing applications. The samples underwent a range of characterization techniques, including electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), as well as mechanical and bio-signal sensing from the skin. The experimental findings indicated that the compositions demonstrated favorable bulk impedances of 280 and 111 Ω, along with conductivities of 0.462 and 1.533 mS/cm, respectively. Additionally, they displayed promising electrochemical stability, featuring charge storage densities of 0.665 mC/cm2 and 1.99 mC/cm2, respectively. By conducting mechanical tests, Young's moduli were determined to be 2.61 MPa and 2.18 MPa, respectively. The composite samples exhibited elongation of 139% and 144%, respectively. Thus, MXene-based bioelectrodes show promising potential for flexible and wearable electronics and bio-signal sensing applications.


Assuntos
Eletrodos , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Humanos , Dimetilpolisiloxanos/química , Espectroscopia Dielétrica , Condutividade Elétrica , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Impedância Elétrica , Glicerol/química , Fenômenos Eletrofisiológicos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos
13.
Integr Biol (Camb) ; 162024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38900168

RESUMO

Oxygen levels vary in the environment. Oxygen availability has a major effect on almost all organisms, and oxygen is far more than a substrate for energy production. However, less is known about related biological processes under hypoxic conditions and about the adaptations to changing oxygen concentrations. The yeast Saccharomyces cerevisiae can adapt its metabolism for growth under different oxygen concentrations and can grow even under anaerobic conditions. Therefore, we developed a microfluidic device that can generate serial, accurately controlled oxygen concentrations for single-cell studies of multiple yeast strains. This device can construct a broad range of oxygen concentrations, [O2] through on-chip gas-mixing channels from two gases fed to the inlets. Gas diffusion through thin polydimethylsiloxane (PDMS) can lead to the equilibration of [O2] in the medium in the cell culture layer under gas cover regions within 2 min. Here, we established six different and stable [O2] varying between ~0.1 and 20.9% in the corresponding layers of the device designed for multiple parallel single-cell culture of four different yeast strains. Using this device, the dynamic responses of different yeast transcription factors and metabolism-related proteins were studied when the [O2] decreased from 20.9% to serial hypoxic concentrations. We showed that different hypoxic conditions induced varying degrees of transcription factor responses and changes in respiratory metabolism levels. This device can also be used in studies of the aging and physiology of yeast under different oxygen conditions and can provide new insights into the relationship between oxygen and organisms. Integration, innovation and insight: Most living cells are sensitive to the oxygen concentration because they depend on oxygen for survival and proper cellular functions. Here, a composite microfluidic device was designed for yeast single-cell studies at a series of accurately controlled oxygen concentrations. Using this device, we studied the dynamic responses of various transcription factors and proteins to changes in the oxygen concentration. This study is the first to examine protein dynamics and temporal behaviors under different hypoxic conditions at the single yeast cell level, which may provide insights into the processes involved in yeast and even mammalian cells. This device also provides a base model that can be extended to oxygen-related biology and can acquire more information about the complex networks of organisms.


Assuntos
Oxigênio , Saccharomyces cerevisiae , Análise de Célula Única , Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Dimetilpolisiloxanos/química , Dispositivos Lab-On-A-Chip , Proteínas de Saccharomyces cerevisiae/metabolismo , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/instrumentação , Microfluídica
14.
Molecules ; 29(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893504

RESUMO

The chemical industry explosion in the 20th century has led to increased environmental pollution, affecting fauna, flora, and waterways. These substances alter water's taste, color, and smell, making it unfit for consumption or toxic. Agricultural water networks face threats from pollution before and after treatment. Some chemical contaminants, like pesticides, are embedded in natural biogeochemical cycles. In this study, we developed a simple and low-cost procedure for the fabrication of needles coated with polydimethylsiloxane (PDMS) as an efficient sorbent for the microextraction of organic pollutant traces from water. The prepared needles were used as an alternative for commercial solid-phase micro-extraction (SPME) devices in analytical chemistry. The PDMS polymeric phase was characterized by Fourier-transform infrared spectroscopy (FT-IR), thermogravimetry (TGA), and scanning electron microscopy (SEM). The PDMS-coated needles were used for extraction of thirteen pesticides by direct-immersion solid-phase microextraction (DI-SPME) from contaminated waters, followed by determination with gas chromatography-mass spectrometry (GC-MS). The developed analytical method showed limits of detection (LODs) between 0.3 and 2.5 ng mL-1 and RSDs in the range of 0.8-12.2%. The homemade needles were applied for the extraction of pesticides in surface and ground aqueous samples collected from an agricultural area. Several target pesticides were identified and quantified in the investigated water samples.


Assuntos
Praguicidas , Microextração em Fase Sólida , Poluentes Químicos da Água , Microextração em Fase Sólida/métodos , Praguicidas/análise , Praguicidas/isolamento & purificação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Agricultura , Dimetilpolisiloxanos/química , Água/química , Espectroscopia de Infravermelho com Transformada de Fourier , Limite de Detecção , Agulhas
15.
Biomater Adv ; 162: 213905, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38815550

RESUMO

Conductive elastomers present desirable qualities for sensing pressure in-vivo, such as high piezoresistance in tiny volumes, conformability and, biocompatibility. Many electrically conductive nanocomposites however, are susceptible to electrical drift following repeated stress cycles and chemical aging. Here we propose an innovative approach to stabilize nanocomposite percolation network against incomplete recovery to improve reproducibility and facilitate sensor calibration. We decouple the tunnelling-percolation network of highly-oriented pyrolytic graphite (HOPG) nanoparticles from the incomplete viscoelastic recovery of the polydimethylsiloxane (PDMS) matrix by inserting minute amounts of insulating SiO2 nanospheres. SiO2 nanospheres effectively reduce the number of nearest neighbours at each percolation node switching off the parallel electrical pathways that might become activated under incomplete viscoelastic relaxation. We varied the size of SiO2 nanospheres and their filling fraction to demonstrate nearly complete piezoresistance recovery when SiO2 and HOPG nanoparticles have equal diameters (≈400 nm) and SiO2 and HOPG volume fractions are 1 % and 29.5 % respectively. We demonstrate an in-vivo blood pressure sensor based on this bi-filler composite.


Assuntos
Grafite , Nanocompostos , Dióxido de Silício , Nanocompostos/química , Dióxido de Silício/química , Grafite/química , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Humanos , Dimetilpolisiloxanos/química , Determinação da Pressão Arterial/instrumentação , Determinação da Pressão Arterial/métodos , Condutividade Elétrica
16.
Biomed Microdevices ; 26(2): 24, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709370

RESUMO

We report the fabrication and characterisation of magnetic liquid beads with a solid magnetic shell and liquid core using microfluidic techniques. The liquid beads consist of a fluorinated oil core and a polymer shell with magnetite particles. The beads are generated in a flow-focusing polydimethylsiloxane (PDMS) device and cured by photo polymerisation. We investigated the response of the liquid beads to an external magnetic field by characterising their motion towards a permanent magnet. Magnetic sorting of liquid beads in a channel was achieved with 90% efficiency. The results show that the liquid beads can be controlled magnetically and have potential applications in digital microfluidics including nucleic acid amplification, drug delivery, cell culture, sensing, and tissue engineering. The present paper also discusses the magnetophoretic behaviour of the liquid bead by varying its mass and magnetite concentration in the shell. We also demonstrated the two-dimensional self-assembly of magnetic liquid beads for potential use in digital polymerase chain reaction and digital loop mediated isothermal amplification.


Assuntos
Dimetilpolisiloxanos , Dimetilpolisiloxanos/química , Técnicas Analíticas Microfluídicas/instrumentação , Campos Magnéticos , Microesferas
17.
Arch Biochem Biophys ; 757: 110028, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768746

RESUMO

Biomechanical signals in the extracellular niche are considered promising for programming the lineage specification of stem cells. Recent studies have reported that biomechanics, such as the microstructure of nanomaterials, can induce adipose-derived stem cells (ASCs) to differentiate into osteoblasts, mediating gene regulation at the epigenetic level. Therefore, in this study, transcriptome expression levels of histone demethylases in ASCs were screened after treatment with different matrix stiffnesses, and histone lysine demethylase 3B (KDM3B) was found to promote osteogenic differentiation of ASCs in response to matrix stiffness, indicating a positive modulatory effect on this biological process. ASCs exhibited widespread and polygonal shapes with a distinct bundle-like expression of vinculin parallel to the axial cytoskeleton along the cell margins on the stiff matrix rather than round shapes with a smeared and shorter expression on the soft matrix. Comparatively rigid polydimethylsiloxane material directed ASCs into an osteogenic phenotype in inductive culture media via the upregulation of osteocalcin, alkaline phosphatase, and runt-related transcription factor 2. Treatment with KDM3B-siRNA decreased the expression of osteogenic differentiation markers and impaired mitochondrial dynamics and mitochondrial membrane potential. These results illustrate the critical role of KDM3B in the biomechanics-induced osteogenic commitment of ASCs and provide new avenues for the further application of stem cells as potential therapeutics for bone regeneration.


Assuntos
Tecido Adiposo , Diferenciação Celular , Histona Desmetilases com o Domínio Jumonji , Osteogênese , Células-Tronco , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Células Cultivadas , Matriz Extracelular/metabolismo , Dimetilpolisiloxanos/química
18.
Biomater Sci ; 12(13): 3401-3410, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38804980

RESUMO

Cell encapsulation devices are expected to be promising tools that can control the release of therapeutic proteins secreted from transplanted cells. The protein permeability of the device membrane is important because it allows the isolation of transplanted cells while enabling the effectiveness of the device. In this study, we investigated free-standing polymeric ultra-thin films (nanosheets) as an intrinsically semi-permeable membrane made from polydimethylsiloxane (PDMS). The PDMS nanosheet with a thickness of 600 nm showed intrinsic protein permeability, and the device fabricated with the PDMS nanosheet showed that VEGF secreted from implanted adipose tissue-derived stem cells (ASCs) could be released for at least 5 days. The ASC encapsulation device promoted angiogenesis and the development of granulation tissue 1 week after transplantation to the subcutaneous area of a mouse. This cell encapsulation device consisting of PDMS nanosheets provides a new method for pre-vascularization of the subcutaneous area in cell transplantation therapy.


Assuntos
Tecido Adiposo , Dimetilpolisiloxanos , Neovascularização Fisiológica , Células-Tronco , Dimetilpolisiloxanos/química , Tecido Adiposo/citologia , Animais , Camundongos , Células-Tronco/citologia , Neovascularização Fisiológica/efeitos dos fármacos , Nanoestruturas/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/química , Permeabilidade , Angiogênese
19.
Colloids Surf B Biointerfaces ; 239: 113963, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759294

RESUMO

Among various biomimetic polymer materials, polydimethylsiloxane (PDMS) stands out as an ideal matrix for surface-enhanced Raman scattering (SERS) due to its unique intrinsic Raman signal and tenacity. In order to realize the precise detection of prostate-specific antigen (PSA), we proposed a sandwich-type SERS-active immunostructure composed of PDMS@silver nanoparticles (Ag NPs)@ZIF-67 biomimetic film as the immunosubstrate and gold nanorods (Au NRs) as immunoprobes. Due to the synergistic effect of electromagnetic enhancement facilitated by biomimetic surfaces and chemical enhancement achieved by ZIF-67, this structure enabled an ultrasensitive and selective detection of PSA across a broad range from 10-3 to 10-9 mg/mL. The achieved limit of detection was as low as 3.0 × 10-10 mg/mL. Particularly, the intrinsic Raman signal of PDMS matrix at 2905 cm-1 was employed as a potential internal standard (IS) in the detection, achieving a high coefficient of determination (R2) value of 0.996. This multifunctional SERS substrate-mediated immunoassay holds vast potential for early diagnosis of prostate cancer, offering promising prospects for clinical applications.


Assuntos
Dimetilpolisiloxanos , Nanopartículas Metálicas , Antígeno Prostático Específico , Prata , Análise Espectral Raman , Prata/química , Análise Espectral Raman/métodos , Imunoensaio/métodos , Antígeno Prostático Específico/análise , Nanopartículas Metálicas/química , Dimetilpolisiloxanos/química , Humanos , Ouro/química , Materiais Biomiméticos/química , Propriedades de Superfície , Limite de Detecção , Nanotubos/química , Masculino , Tamanho da Partícula , Imidazóis , Zeolitas
20.
Colloids Surf B Biointerfaces ; 239: 113977, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776594

RESUMO

Adoptive T cell therapy has undergone remarkable advancements in recent decades; nevertheless, the rapid and effective ex vivo expansion of tumor-reactive T cells remains a formidable challenge, limiting their clinical application. Artificial antigen-presenting substrates represent a promising avenue for enhancing the efficiency of adoptive immunotherapy and fostering T cell expansion. These substrates offer significant potential by providing flexibility and modularity in the design of tailored stimulatory environments. Polydimethylsiloxane (PDMS) silicone elastomer stands as a widely utilized biomaterial for exploring the varying sensitivity of T cell activation to substrate properties. This paper explores the optimization of PDMS surface modification and formulation to create customized stimulatory surfaces with the goal of enhancing T cell expansion. By employing soft PDMS elastomer functionalized through silanization and activating agent, coupled with site-directed protein immobilization techniques, a novel T cell stimulatory platform is introduced, facilitating T cell activation and proliferation. Notably, our findings underscore that softer modified elastomers (Young' modulus E∼300 kPa) exhibit superior efficacy in stimulating and activating mouse CD4+ T cells compared to their stiffer counterparts (E∼3 MPa). Furthermore, softened modified PDMS substrates demonstrate enhanced capabilities in T cell expansion and Th1 differentiation, offering promising insights for the advancement of T cell-based immunotherapy.


Assuntos
Proliferação de Células , Dimetilpolisiloxanos , Ativação Linfocitária , Propriedades de Superfície , Dimetilpolisiloxanos/química , Animais , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Proliferação de Células/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...