Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 214(6): 769-81, 2016 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-27597760

RESUMO

Translation is an essential step in gene expression. In this study, we used an improved SunTag system to label nascent proteins and image translation of single messenger ribonucleoproteins (mRNPs) in human cells. Using a dedicated reporter RNA, we observe that translation of single mRNPs stochastically turns on and off while they diffuse through the cytoplasm. We further measure a ribosome density of 1.3 per kilobase and an elongation rate of 13-18 amino acids per second. Tagging the endogenous POLR2A gene revealed similar elongation rates and ribosomal densities and that nearly all messenger RNAs (mRNAs) are engaged in translation. Remarkably, tagging of the heavy chain of dynein 1 (DYNC1H1) shows this mRNA accumulates in foci containing three to seven RNA molecules. These foci are translation sites and thus represent specialized translation factories. We also observe that DYNC1H1 polysomes are actively transported by motors, which may deliver the mature protein at appropriate cellular locations. The SunTag should be broadly applicable to study translational regulation in live single cells.


Assuntos
Dineínas do Citoplasma/biossíntese , Microscopia Confocal , Polirribossomos/metabolismo , RNA Polimerase II/biossíntese , Ribonucleoproteínas/metabolismo , Citoplasma/metabolismo , Dineínas do Citoplasma/genética , Difusão , Recuperação de Fluorescência Após Fotodegradação , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Elongação Traducional da Cadeia Peptídica , Polirribossomos/genética , Transporte Proteico , RNA Polimerase II/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Ribonucleoproteínas/genética , Fatores de Tempo , Transfecção
2.
Sci Rep ; 6: 28948, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27375225

RESUMO

Temozolomide (TMZ) is the main chemotherapeutic drug utilized for the treatment of glioblastoma multiforme (GMB), however, drug resistance often leads to tumor recurrence and poor outcomes. GMB cell lines were treated with TMZ for up to two weeks and then subjected to proteomics analysis to identify the underlying molecular pathology that is associated with TMZ resistance. Proteomics data showed that TMZ altered expression of proteins that related to cytoskeleton structure and function, such as DHC2 and KIF2B. qRT-PCR and immunofluorescence were used to verify expression of DHC2 and KIF2B in these cells. Immunohistochemistry was used to verify expression of these two proteins in xenografts of a nude mouse model, and ex vivo GBM tissue samples. Their expression was knocked down using siRNA to confirm their role in the regulation of GBM cell sensitivity to TMZ. Knockdown of DHC2 expression enhanced sensitivity of U87 cells to TMZ treatment. Ex vivo data showed that DHC2 expression in GBM tissue samples was associated with tumor recurrence after TMZ chemotherapy. These results indicated cytoskeleton related protein DHC2 reduced sensitivity of GBM cells to TMZ treatment. Further studies should assess DHC2 as a novel target in GBM for TMZ combination treatment.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Dineínas do Citoplasma/biossíntese , Dacarbazina/análogos & derivados , Resistência a Medicamentos , Glioblastoma/patologia , Neuroglia/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Dacarbazina/farmacologia , Modelos Animais de Doenças , Imunofluorescência , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Imuno-Histoquímica , Cinesinas/biossíntese , Camundongos Nus , Transplante de Neoplasias , Proteoma/análise , Reação em Cadeia da Polimerase em Tempo Real , Temozolomida
3.
Sci Rep ; 6: 21698, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26875667

RESUMO

Hypoxia-induced replication stress is one of the most physiologically relevant signals known to activate ATM in tumors. Recently, the ATM interactor (ATMIN) was identified as critical for replication stress-induced activation of ATM in response to aphidicolin and hydroxyurea. This suggests an essential role for ATMIN in ATM regulation during hypoxia, which induces replication stress. However, ATMIN also has a role in base excision repair, a process that has been demonstrated to be repressed and less efficient in hypoxic conditions. Here, we demonstrate that ATMIN is dispensable for ATM activation in hypoxia and in contrast to ATM, does not affect cell survival and radiosensitivity in hypoxia. Instead, we show that in hypoxic conditions ATMIN expression is repressed. Repression of ATMIN in hypoxia is mediated by both p53 and HIF-1α in an oxygen dependent manner. The biological consequence of ATMIN repression in hypoxia is decreased expression of the target gene, DYNLL1. An expression signature associated with p53 activity was negatively correlated with DYNLL1 expression in patient samples further supporting the p53 dependent repression of DYNLL1. Together, these data demonstrate multiple mechanisms of ATMIN repression in hypoxia with consequences including impaired BER and down regulation of the ATMIN transcriptional target, DYNLL1.


Assuntos
Hipóxia Celular , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Dineínas do Citoplasma/biossíntese , Humanos
4.
J Biol Chem ; 287(5): 3156-64, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22167198

RESUMO

The highly conserved DYNLL1 (LC8) protein was originally discovered as a light chain of the dynein motor complex, but is increasingly emerging as a sequence-specific regulator of protein dimerization with hundreds of targets and wide-ranging cellular functions. Despite its important roles, DYNLL1's own regulation remains poorly understood. Here we identify ASCIZ (ATMIN/ZNF822), an essential Zn(2+) finger protein with dual roles in the DNA base damage response and as a developmental transcription factor, as a conserved regulator of Dynll1 gene expression. DYNLL1 levels are reduced by ∼10-fold in the absence of ASCIZ in human, mouse and chicken cells. ASCIZ binds directly to the Dynll1 promoter and regulates its activity in a Zn(2+) finger-dependent manner. DYNLL1 protein in turn interacts with ten binding sites in the ASCIZ transcription activation domain, and high DYNLL1 levels inhibit the transcriptional activity of ASCIZ. In addition, DYNLL1 was also required for DNA damage-induced ASCIZ focus formation. The dual ability of ASCIZ to activate Dynll1 gene expression and to sense free DYNLL1 protein levels enables a simple dynamic feedback loop to adjust DYNLL1 levels to cellular needs. The ASCIZ-DYNLL1 feedback loop represents a novel mechanism for auto-regulation of gene expression, where the gene product directly inhibits the transcriptional activator while bound at its own promoter.


Assuntos
Proteínas de Transporte/metabolismo , Dineínas do Citoplasma/biossíntese , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/fisiologia , Zinco/metabolismo , Animais , Sítios de Ligação , Proteínas de Transporte/genética , Linhagem Celular , Galinhas , Dineínas do Citoplasma/genética , Humanos , Camundongos , Proteínas Nucleares/genética , Fatores de Transcrição , Transcrição Gênica/fisiologia , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...