Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Urol Oncol ; 38(8): 687.e1-687.e11, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32430251

RESUMO

BACKGROUND: The vesicle fusion protein Dysferlin (DYSF) is mainly known as a membrane repair protein in muscle cells. Mutations of DYSF lead to muscular dystrophies and cardiomyopathies. In contrast to other members of the Ferlin protein family, few is known about its role in cancer. Our study was designed to investigate the expression and functional properties of DYSF in ccRCC and its association with clinicopathological parameters and survival. MATERIAL AND METHODS: TCGA cohort: mRNA expression data of DYSF were extracted from TCGA for patients with ccRCC (n = 603; ccRCC n = 522, benign n = 81). Study cohort: mRNA expression of DYSF in ccRCC was determined using qPCR (n = 126; ccRCC n = 82, benign n = 44). Immunohistochemical staining against DYSF was performed on tissue microarrays to validate protein expression (n = 172; ccRCC n = 142, benign n = 30). Correlations between mRNA/protein expression and clinicopathological data were statistically tested. Following siRNA-mediated knockdown of DYSF in ccRCC cell line ACHN, cell migration, invasion and proliferation were investigated. RESULTS: Both DYSF mRNA and protein expression are significantly up-regulated in ccRCC tissue. DYSF mRNA expression decreased during tumor progression: lower expression levels were measured in higher stage/grade and metastatic ccRCC with independent prognostic significance for overall and cancer-specific survival. In contrast, protein expression correlated positively with pathological parameters. Overexpression showed tendency toward poor survival. Accordingly, knockdown of DYSF suppressed migration and invasion of ccRCC cells. CONCLUSION: DYSF mRNA and protein expression are opposingly involved in tumor progression of ccRCC. DYSF could be used as a prognostic biomarker to predict survival of patients with ccRCC.


Assuntos
Carcinoma de Células Renais/etiologia , Carcinoma de Células Renais/mortalidade , Disferlina/fisiologia , Neoplasias Renais/etiologia , Neoplasias Renais/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Correlação de Dados , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Taxa de Sobrevida
2.
J Mol Histol ; 50(4): 375-387, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31218594

RESUMO

Dysferlin is a sarcolemmal muscle protein associated with the processes of membrane repair, trafficking, and fusion of intracellular vesicles and muscle regeneration. Mutations in the DYSF gene cause clinically distinct forms of muscular dystrophies. The dysferlin-deficient SJL/J mouse model presents a reduction of 85% of the protein but shows mild weakness and discrete histopathological alterations. To study the effect of dysferlin deficiency in the muscle regenerative process, we used a model of electrical injury by electroporation to induce muscle degeneration/regeneration in the SJL/J mouse. The relative expression of the genes Pax7, MyoD, Myf5, and Myog was accompanied by the histopathological evaluation during muscle recovery at different time points after injury. We also investigated the effects of dysferlin deficiency in the expression of genes encoding FAM65B and HDAC6 proteins, recently described as forming a tricomplex with dysferlin at the beginning of myoblast differentiation. We observed an altered time course through the process of degeneration and regeneration in dysferlin-deficient mice, with remarkable regenerative capacity characterized by a faster and effective response in the first days after injury, as compared to the WT mice. Also, dysferlin deficiency seems to significantly alter the gene expression of Fam65b and Hdac6 during regeneration, since higher levels of expression of both genes were observed in dysferlin-deficient mice. These results need further attention to define their relevance in the disease mechanism.


Assuntos
Moléculas de Adesão Celular/metabolismo , Disferlina/deficiência , Desacetilase 6 de Histona/metabolismo , Músculo Esquelético/fisiologia , Regeneração/efeitos dos fármacos , Animais , Moléculas de Adesão Celular/farmacologia , Disferlina/farmacologia , Disferlina/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Desacetilase 6 de Histona/farmacologia , Camundongos , Músculo Esquelético/lesões , Fatores de Tempo
3.
PLoS One ; 14(4): e0214908, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30970035

RESUMO

Dysferlinopathies are a form of muscular dystrophy caused by gene mutations resulting in deficiency of the protein dysferlin. Symptoms manifest later in life in a muscle specific manner, although the pathomechanism is not well understood. This study compared the impact of dysferlin-deficiency on in vivo and ex vivo muscle function, and myofibre type composition in slow (soleus) and fast type (extensor digitorum longus; EDL) muscles using male dysferlin-deficient (dysf-/-) BLAJ mice aged 10 months, compared with wild type (WT) C57Bl/6J mice. There was a striking increase in muscle mass of BLAJ soleus (+25%) (p<0.001), with no strain differences in EDL mass, compared with WT. In vivo measures of forelimb grip strength and wheel running capacity showed no strain differences. Ex vivo measures showed the BLAJ soleus had faster twitch contraction (-21%) and relaxation (-20%) times, and delayed post fatigue recovery (ps<0.05); whereas the BLAJ EDL had a slower relaxation time (+11%) and higher maximum rate of force production (+25%) (ps<0.05). Similar proportions of MHC isoforms were evident in the soleus muscles of both strains (ps>0.05); however, for the BLAJ EDL, there was an increased proportion of type IIx MHC isoform (+5.5%) and decreased type IIb isoform (-5.5%) (ps<0.01). This identification of novel differences in the impact of dysferlin-deficiency on slow and fast twitch muscles emphasises the importance of evaluating myofibre type specific effects to provide crucial insight into the mechanisms responsible for loss of function in dysferlinopathies; this is critical for the development of targeted future clinical therapies.


Assuntos
Disferlina/deficiência , Animais , Disferlina/genética , Disferlina/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Atividade Motora/fisiologia , Contração Muscular/genética , Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Força Muscular/genética , Força Muscular/fisiologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/fisiopatologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Distrofia Muscular Animal/fisiopatologia , Mutação
4.
J Physiol ; 595(15): 5191-5207, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28568606

RESUMO

KEY POINTS: Dysferlin, the protein missing in limb girdle muscular dystrophy 2B and Miyoshi myopathy, concentrates in transverse tubules of skeletal muscle, where it stabilizes voltage-induced Ca2+ transients against loss after osmotic shock injury (OSI). Local expression of dysferlin in dysferlin-null myofibres increases transient amplitude to control levels and protects them from loss after OSI. Inhibitors of ryanodine receptors (RyR1) and L-type Ca2+ channels protect voltage-induced Ca2+ transients from loss; thus both proteins play a role in injury in dysferlin's absence. Effects of Ca2+ -free medium and S107, which inhibits SR Ca2+ leak, suggest the SR as the primary source of Ca2+ responsible for the loss of the Ca2+ transient upon injury. Ca2+ waves were induced by OSI and suppressed by exogenous dysferlin. We conclude that dysferlin prevents injury-induced SR Ca2+ leak. ABSTRACT: Dysferlin concentrates in the transverse tubules of skeletal muscle and stabilizes Ca2+ transients when muscle fibres are subjected to osmotic shock injury (OSI). We show here that voltage-induced Ca2+ transients elicited in dysferlin-null A/J myofibres were smaller than control A/WySnJ fibres. Regional expression of Venus-dysferlin chimeras in A/J fibres restored the full amplitude of the Ca2+ transients and protected against OSI. We also show that drugs that target ryanodine receptors (RyR1: dantrolene, tetracaine, S107) and L-type Ca2+ channels (LTCCs: nifedipine, verapamil, diltiazem) prevented the decrease in Ca2+ transients in A/J fibres following OSI. Diltiazem specifically increased transients by ∼20% in uninjured A/J fibres, restoring them to control values. The fact that both RyR1s and LTCCs were involved in OSI-induced damage suggests that damage is mediated by increased Ca2+ leak from the sarcoplasmic reticulum (SR) through the RyR1. Congruent with this, injured A/J fibres produced Ca2+ sparks and Ca2+ waves. S107 (a stabilizer of RyR1-FK506 binding protein coupling that reduces Ca2+ leak) or local expression of Venus-dysferlin prevented OSI-induced Ca2+ waves. Our data suggest that dysferlin modulates SR Ca2+ release in skeletal muscle, and that in its absence OSI causes increased RyR1-mediated Ca2+ leak from the SR into the cytoplasm.


Assuntos
Cálcio/fisiologia , Disferlina/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Animais , Canais de Cálcio Tipo L/fisiologia , Disferlina/genética , Camundongos Knockout , Pressão Osmótica/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Retículo Sarcoplasmático/fisiologia , Tiazepinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...