Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 2461, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165323

RESUMO

Plants living at the edge of their range boundary tend to suffer an overall decline in their fitness, including growth and reproduction. However, the reproductive performance of plants in artificially expanded habitats is rarely investigated, although this type of study would provide a better understanding of range limitations and improved conservation of ex situ plants. In the current study, we transplanted a narrowly dispersed species of Gentiana officinalis H. Smith (Gentianaceae) from its natural area of distribution to two different elevations and natural elevation to comprehensively study its pollination biology, including flowering phenology and duration, floral display, reproductive allocation, pollinator activity, and seed production. The findings indicated that the starting point and endpoint of the flowering phenology of G. officinalis were earlier at the low elevation, but the peak flowering periods did not differ significantly between any of the experimental plots. When transplanted, the flowering duration, especially the female phase, was reduced; the floral display, including spray numbers, flower numbers, and flower size (length and width), decreased, especially at high elevations. Moreover, the pollen numbers and pollen-ovule ratio were decreased at both high and low elevations, although the ovule numbers showed no change, and aboveground reproductive allocation was decreased. Furthermore, pollinator richness and activity were significantly decreased, and the seed-set ratio decreased under both natural conditions and with supplemental pollination. Finally, more severe pollen limitation was found in transplanted individuals. These results indicated an overall decrease in reproductive fitness in plants living outside their original area of distribution when the geographical range of G. officinalis was expanded.


Assuntos
Ecossistema , Aptidão Genética , Gentiana/genética , Dispersão Vegetal/genética , Polinização/genética , Flores/crescimento & desenvolvimento , Pólen/genética , Estações do Ano , Sementes/crescimento & desenvolvimento
2.
Plant Physiol ; 188(2): 879-897, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34893913

RESUMO

The ability to trace every cell in some model organisms has led to the fundamental understanding of development and cellular function. However, in plants the complexity of cell number, organ size, and developmental time makes this a challenge even in the diminutive model plant Arabidopsis (Arabidopsis thaliana). Duckweed, basal nongrass aquatic monocots, provide an opportunity to follow every cell of an entire plant due to their small size, reduced body plan, and fast clonal growth habit. Here we present a chromosome-resolved genome for the highly invasive Lesser Duckweed (Lemna minuta) and generate a preliminary cell atlas leveraging low cell coverage single-nuclei sequencing. We resolved the 360 megabase genome into 21 chromosomes, revealing a core nonredundant gene set with only the ancient tau whole-genome duplication shared with all monocots, and paralog expansion as a result of tandem duplications related to phytoremediation. Leveraging SMARTseq2 single-nuclei sequencing, which provided higher gene coverage yet lower cell count, we profiled 269 nuclei covering 36.9% (8,457) of the L. minuta transcriptome. Since molecular validation was not possible in this nonmodel plant, we leveraged gene orthology with model organism single-cell expression datasets, gene ontology, and cell trajectory analysis to define putative cell types. We found that the tissue that we computationally defined as mesophyll expressed high levels of elemental transport genes consistent with this tissue playing a role in L. minuta wastewater detoxification. The L. minuta genome and preliminary cell map provide a paradigm to decipher developmental genes and pathways for an entire plant.


Assuntos
Araceae/genética , Espécies Introduzidas , Dispersão Vegetal/genética , Transcriptoma , Genoma de Planta
3.
Philos Trans R Soc Lond B Biol Sci ; 376(1826): 20200117, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33866809

RESUMO

Biological invasions impose ecological and economic problems on a global scale, but also provide extraordinary opportunities for studying contemporary evolution. It is critical to understand the evolutionary processes that underly invasion success in order to successfully manage existing invaders, and to prevent future invasions. As successful invasive species sometimes are suspected to rapidly adjust to their new environments in spite of very low genetic diversity, we are obliged to re-evaluate genomic-level processes that translate into phenotypic diversity. In this paper, we review work that supports the idea that trait variation, within and among invasive populations, can be created through epigenetic or other non-genetic processes, particularly in clonal invaders where somatic changes can persist indefinitely. We consider several processes that have been implicated as adaptive in invasion success, focusing on various forms of 'genomic shock' resulting from exposure to environmental stress, hybridization and whole-genome duplication (polyploidy), and leading to various patterns of gene expression re-programming and epigenetic changes that contribute to phenotypic variation or even novelty. These mechanisms can contribute to transgressive phenotypes, including hybrid vigour and novel traits, and may thus help to understand the huge successes of some plant invaders, especially those that are genetically impoverished. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'


Assuntos
Evolução Biológica , Epigênese Genética , Espécies Introduzidas , Características de História de Vida , Dispersão Vegetal/genética , Plantas/genética , Genoma de Planta , Hibridização Genética , Fenótipo , Poliploidia
4.
Plant Commun ; 1(6): 100100, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33367263

RESUMO

Dispersal is one of the most important but least understood processes in plant ecology and evolutionary biology. Dispersal of seeds maintains and establishes populations, and pollen and seed dispersal are responsible for gene flow within and among populations. Traditional views of dispersal and gene flow assume models that are governed solely by geographic distance and do not account for variation in dispersal vector behavior in response to heterogenous landscapes. Landscape genetics integrates population genetics with Geographic Information Systems (GIS) to evaluate the effects of landscape features on gene flow patterns (effective dispersal). Surprisingly, relatively few landscape genetic studies have been conducted on plants. Plants present advantages because their populations are stationary, allowing more reliable estimates of the effects of landscape features on effective dispersal rates. On the other hand, plant dispersal is intrinsically complex because it depends on the habitat preferences of the plant and its pollen and seed dispersal vectors. We discuss strategies to assess the separate contributions of pollen and seed movement to effective dispersal and to delineate the effects of plant habitat quality from those of landscape features that affect vector behavior. Preliminary analyses of seed dispersal for three species indicate that isolation by landscape resistance is a better predictor of the rates and patterns of dispersal than geographic distance. Rates of effective dispersal are lower in areas of high plant habitat quality, which may be due to the effects of the shape of the dispersal kernel or to movement behaviors of biotic vectors. Landscape genetic studies in plants have the potential to provide novel insights into the process of gene flow among populations and to improve our understanding of the behavior of biotic and abiotic dispersal vectors in response to heterogeneous landscapes.


Assuntos
Ecossistema , Fluxo Gênico , Genética Populacional/instrumentação , Sistemas de Informação Geográfica/instrumentação , Dispersão Vegetal/genética , Plantas/genética
5.
Curr Biol ; 30(24): 4989-4998.e7, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33007244

RESUMO

Evolutionary radiations on oceanic islands have fascinated biologists since Darwin's exploration of the Galápagos archipelago [1, 2]. Island radiations can provide key insights for understanding rapid speciation, including evolutionary patterns and the processes behind them. However, lack of resolution of species relationships has historically hindered their investigation, particularly in the plant kingdom [3-5]. Here, we report a time-calibrated phylogenomic analysis based on genotyping-by-sequencing data [6] of the 15 species of Scalesia (Darwin's giant daisies), an iconic and understudied plant radiation endemic to the Galápagos Islands and considered the plant counterpart to Darwin's finches [1, 7-9]. Results support a Pliocene to early Pleistocene divergence between Scalesia and the closest South American relatives, and rapid diversification of extant Scalesia species from a common ancestor dated to the Middle Pleistocene. Major evolutionary patterns in Scalesia include the following: (1) lack of compliance with the "progression rule" hypothesis, in which earlier diverging lineages are expected to occupy older islands; (2) a predominance of within-island speciation over between-island speciation; and (3) repeated convergent evolution of potentially adaptive traits and habitat preferences on different islands during the course of diversification. Massive sequencing provided the essential framework for investigating evolutionary and ecological processes in the complex natural laboratory of the Galápagos, thereby advancing our understanding of island plant radiations.


Assuntos
Asteraceae/genética , Especiação Genética , Dispersão Vegetal/genética , Equador , Ilhas , Filogenia
6.
BMC Plant Biol ; 19(1): 543, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31805856

RESUMO

BACKGROUND: Paris (Melanthiaceae) is an economically important but taxonomically difficult genus, which is unique in angiosperms because some species have extremely large nuclear genomes. Phylogenetic relationships within Paris have long been controversial. Based on complete plastomes and nuclear ribosomal DNA (nrDNA) sequences, this study aims to reconstruct a robust phylogenetic tree and explore historical biogeography and clade diversification in the genus. RESULTS: All 29 species currently recognized in Paris were sampled. Whole plastomes and nrDNA sequences were generated by the genome skimming approach. Phylogenetic relationships were reconstructed using the maximum likelihood and Bayesian inference methods. Based on the phylogenetic framework and molecular dating, biogeographic scenarios and historical diversification of Paris were explored. Significant conflicts between plastid and nuclear datasets were identified, and the plastome tree is highly congruent with past interpretations of the morphology. Ancestral area reconstruction indicated that Paris may have originated in northeastern Asia and northern China, and has experienced multiple dispersal and vicariance events during its diversification. The rate of clade diversification has sharply accelerated since the Miocene/Pliocene boundary. CONCLUSIONS: Our results provide important insights for clarifying some of the long-standing taxonomic debates in Paris. Cytonuclear discordance may have been caused by ancient and recent hybridizations in the genus. The climatic and geological changes since the late Miocene, such as the intensification of Asian monsoon and the rapid uplift of Qinghai-Tibet Plateau, as well as the climatic fluctuations during the Pleistocene, played essential roles in driving range expansion and radiative diversification in Paris. Our findings challenge the theoretical prediction that large genome sizes may limit speciation.


Assuntos
Evolução Biológica , Genomas de Plastídeos , Melanthiaceae/genética , Filogenia , Dispersão Vegetal/genética
7.
Sci Rep ; 9(1): 11639, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406227

RESUMO

Tropical forests, a key-category of land ecosystems, are faced with the world's highest levels of habitat conversion and associated biodiversity loss. In tropical Asia, Dipterocarpaceae are one of the economically and ecologically most important tree families, but their genomic diversity and evolution remain understudied, hampered by a lack of available genetic resources. Southern China represents the northern limit for Dipterocarpaceae, and thus changes in habitat ecology, community composition and adaptability to climatic conditions are of particular interest in this group. Phylogenomics is a tool for exploring both biodiversity and evolutionary relationships through space and time using plastome, nuclear and mitochondrial genome. We generated full plastome and Nuclear Ribosomal Cistron (NRC) data for Chinese Dipterocarpaceae species as a first step to improve our understanding of their ecology and evolutionary relationships. We generated the plastome of Dipterocarpus turbinatus, the species with the widest distribution using it as a baseline for comparisons with other taxa. Results showed low level of genomic diversity among analysed range-edge species, and different evolutionary history of the incongruent NRC and plastome data. Genomic resources provided in this study will serve as a starting point for future studies on conservation and sustainable use of these dominant forest taxa, phylogenomics and evolutionary studies.


Assuntos
Biodiversidade , Evolução Biológica , Dipterocarpaceae/genética , Genoma de Planta , Genomas de Plastídeos , Núcleo Celular/genética , China , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Florestas , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Dispersão Vegetal/genética , Ribossomos/genética , Análise de Sequência de DNA , Árvores/genética
8.
Am J Bot ; 106(6): 757-759, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31162640
9.
PLoS One ; 14(6): e0218322, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31220130

RESUMO

INTRODUCTION: Knowledge of species richness patterns and their relation with climate is required to develop various forest management actions including habitat management, biodiversity and risk assessment, restoration and ecosystem modelling. In practice, the pattern of the data might not be spatially constant and cannot be well addressed by ordinary least square (OLS) regression. This study uses GWR to deal with spatial non-stationarity and to identify the spatial correlation between the plant richness distribution and the climate variables (i.e., the temperature and precipitation) in a 1° grid in different biogeographic zones of India. METHODOLOGY: We utilized the species richness data collected using 0.04 ha nested quadrats in an Indian study. The data from this national study, titled 'Biodiversity Characterization at Landscape Level', were aggregated at the 1° grid level and adjudged for sampling sufficiency. The performances of OLS and GWR models were compared in terms of the coefficient of determination (R2) and the corrected Akaike Information Criterion (AICc). RESULTS AND DISCUSSION: A comparative study of the R2 and AICc values of the models showed that all the GWR models performed better compared with the analogous OLS models. The climate variables were found to significantly influence the distribution of plant richness in India. The minimum precipitation (Pmin) consistently dominated individually (R2 = 0.69; AICc = 2608) and in combinations. Among the shared models, the one with a combination of Pmin and Tmin had the best model fits (R2 = 0.72 and AICc = 2619), and variation partitioning revealed that the influence of these parameters on the species richness distribution was dominant in the arid and the semi-arid zones and in the Deccan peninsula zone. CONCLUSION: The shift in climate variables and their power to explain the species richness of biogeographic zones suggests that the climate-diversity relationships of plants species vary spatially. In particular, the dominant influence of Tmin and Pmin could be closely linked to the climate tolerance hypothesis (CTH). We found that the climate variables had a significant influence in defining species richness patterns in India; however, various other environmental and non-environmental (edaphic, topographic and anthropogenic) variables need to be integrated in the models to understand climate-species richness relationships better at a finer scale.


Assuntos
Biodiversidade , Ecossistema , Florestas , Dispersão Vegetal/genética , Clima , Índia , Chuva , Especificidade da Espécie , Temperatura
10.
Am J Bot ; 106(5): 679-689, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31081928

RESUMO

PREMISE: Parasitic plants with large geographic ranges, and different hosts in parts of their range, may acquire horizontally transferred genes (HGTs), which might sometimes leave a footprint of gradual host and range expansion. Cynomorium coccineum, the only member of the Saxifragales family Cynomoriaceae, is a root holoparasite that occurs in water-stressed habitats from western China to the Canary Islands. It parasitizes at least 10 angiosperm families from different orders, some of them only in parts of its range. This parasite therefore offers an opportunity to trace HGTs as long as parasite-host pairs can be obtained and sequenced. METHODS: By sequencing mitochondrial, plastid, and nuclear loci from parasite-host pairs from throughout the parasite's range and with prior information from completely assembled mitochondrial and plastid genomes, we detected 10 HGTs of five mitochondrial genes. RESULTS: The 10 HGTs appear to have occurred sequentially as C. coccineum expanded from East to West. Molecular-clock models yield Cynomorium stem ages between 66 and 156 Myr, with relaxed clocks converging on 66-67 Myr. Chinese Sapindales, probably Nitraria, were the first source of transferred genes, followed by Iranian and Mediterranean Caryophyllales. The most recently acquired gene appears to come from a Tamarix host in the Iberian Peninsula. CONCLUSIONS: Data on HGTs that have accumulated over the past 15 years, along with this discovery of multiple HGTs within a single widespread species, underline the need for more whole-genome data from parasite-host pairs to investigate whether and how transferred copies coexist with, or replace, native functional genes.


Assuntos
Cynomorium/genética , Transferência Genética Horizontal , Genes de Plantas , Genoma Mitocondrial , Genomas de Plastídeos , Dispersão Vegetal/genética , Genes Mitocondriais , Itália
11.
Nat Commun ; 10(1): 1243, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30886148

RESUMO

Mutation rate and effective population size (Ne) jointly determine intraspecific genetic diversity, but the role of mutation rate is often ignored. Here we investigate genetic diversity, spontaneous mutation rate and Ne in the giant duckweed (Spirodela polyrhiza). Despite its large census population size, whole-genome sequencing of 68 globally sampled individuals reveals extremely low intraspecific genetic diversity. Assessed under natural conditions, the genome-wide spontaneous mutation rate is at least seven times lower than estimates made for other multicellular eukaryotes, whereas Ne is large. These results demonstrate that low genetic diversity can be associated with large-Ne species, where selection can reduce mutation rates to very low levels. This study also highlights that accurate estimates of mutation rate can help to explain seemingly unexpected patterns of genome-wide variation.


Assuntos
Araceae/genética , Variação Genética , Genoma de Planta , Taxa de Mutação , Dispersão Vegetal/genética , África , América , Araceae/classificação , Ásia , Análise Mutacional de DNA , Europa (Continente) , Filogeografia
12.
PLoS One ; 13(11): e0207094, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30485285

RESUMO

The Strait of Gibraltar, the gateway between the Atlantic Ocean and the Mediterranean Sea, has a convulsive geological history, with recurring closing and opening events since the late Miocene. As a consequence, this region has played a major role in the evolutionary history of many species. Cynara baetica (Compositae) is a diploid perennial herb distributed in both sides of this strait. It is currently subdivided into two subspecies: C. baetica subsp. baetica for the Spanish populations, and C. baetica subsp. maroccana for the Moroccan ones. Following three different approximations of species delimitation, including phylogenetic and population genetic analyses (based on three AFLP primer combinations and two intergenic spacers of cpDNA), ecological niche modeling (ENM) and morphological studies, this taxon is investigated and reinterpreted. The results obtained showed a clear genetic, morphological and ecological differentiation between the two taxa and the important role played by the Strait of Gibraltar as a geographical barrier. Based on this evidence, the current taxonomic treatment is modified (both taxa should recover their specific rank) and specific conservation guidelines are proposed for the newly delimited taxa.


Assuntos
Cynara/classificação , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Evolução Biológica , Conservação dos Recursos Naturais , Cynara/anatomia & histologia , Cynara/genética , DNA de Plantas , Variação Genética , Mar Mediterrâneo , Modelos Biológicos , Marrocos , Filogenia , Filogeografia , Dispersão Vegetal/genética , Espanha
13.
Acta amaz ; 48(3): 217-223, July-Sept. 2018. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1455364

RESUMO

Pollen and seed dispersal patterns greatly influence the spatial distribution of plant genetic diversity. Microsatellite-based parentage analysis provides accurate estimates of contemporary gene dispersal. Although most tropical trees have been shown to exhibit widespread pollen dispersal, few studies have estimated contemporary gene dispersal after seedling establishment. Bertholletia excelsa (Lecythidaceae) is pollinated by large-bodied bees, while previous seed-tracking experiments suggest their seeds are mainly dispersed across very short distances by scatter-hoarding rodents, who primarily act as seed predators. Here we used parentage analysis to provide contemporary estimates of pollen and seed dispersal in B. excelsa recruits. We examined six 25-ha plots located in two natural stands in the Acre River valley, in the southwestern Brazilian Amazon. We used 11 microsatellite markers to estimate genetic diversity and fixation index parameters in adults, seedlings and saplings. Genetic diversity was moderate and did not differ across size classes or sampling locations. We assigned pollen and seed parents for < 20% of the recruits, indicating that most events of realized gene flow occurred beyond our 25-ha plots. Only 10 parentage assignments were confirmed with 80% confidence. Pollen distance ranged from 33 to 372 m and seed dispersal from 58 to 655 m. Actual seed-dispersal distances were far greater than the estimates obtained in previous seed-tracking experiments. Thus, studies encompassing larger sampling areas are necessary to determine a more representative spatial scale of B. excelsas pollen and seed dispersal capacity in natural stands.


Os padrões de dispersão de pólen e sementes influenciam a distribuição espacial da diversidade genética. Muitas espécies arbóreas tropicais apresentam ampla dispersão de pólen, mas poucos estudos avaliaram fluxo gênico a partir de plântulas. Bertholletia excelsa (Lecythidaceae) é polinizada por abelhas e as sementes são dispersas por roedores do tipo scatter-hoarders (que estocam recursos em diferentes pontos de sua área de vida), que atuam primariamente como predadores de sementes. Experimentos de remoção de sementes tem mostrado que a dispersão de sementes por esses roedores é espacialmente limitada. Nosso objetivo foi obter estimativas de dispersão de pólen e sementes em B. excelsa a partir da análise de parentesco de regenerantes. Nós estudamos seis parcelas de 25 ha, em duas áreas de floresta nativa no vale do Rio Acre, no sudoeste da Amazônia brasileira. Parâmetros de diversidade genética e índice de fixação foram estimados em adultos, varetas e plântulas com 11 marcadores microssatélites. A diversidade genética foi moderada e não diferiu entre classes de tamanho ou entre localidades. A paternidade foi determinada em menos de 20% dos regenerantes, indicando que a maioria dos eventos de fluxo gênico ocorreu em distâncias maiores que as encontradas nas parcelas de 25 ha. As distâncias de pólen variaram de 33 a 372 m e as de dispersão de sementes variaram de 58 a 655 m. As distâncias de dispersão obtidas neste estudo excedem em muito as estimativas obtidas em experimentos de remoção de sementes. Estudos envolvendo áreas maiores são necessários para que possamos aprofundar nosso conhecimento sobre capacidade de dispersão de pólen e sementes em populações naturais de B. excelsa.


Assuntos
Bertholletia/genética , Dispersão Vegetal/genética , Dispersão de Sementes/genética , Pólen/genética , Fluxo Gênico , Reação em Cadeia da Polimerase , Variação Genética
14.
PLoS One ; 13(8): e0199275, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30114218

RESUMO

Dispersal beyond the local patch in clonal plants was typically thought to result from sexual reproduction via seed dispersal. However, evidence for the separation, transport by water, and re-establishment of asexual propagules (asexual hydrochory) is mounting suggesting other important means of dispersal in aquatic plants. Using an unprecedented sampling size and microsatellite genetic identification, we describe the distribution of seagrass clones along tens of km within a coastal lagoon in Southern Portugal. Our spatially explicit individual-based sampling design covered 84 km2 and collected 3 185 Zostera noltei ramets from 803 sites. We estimated clone age, assuming rhizome elongation as the only mechanism of clone spread, and contrasted it with paleo-oceanographic sea level change. We also studied the association between a source of disturbance and the location of large clones. A total of 16 clones were sampled more than 10 times and the most abundant one was sampled 59 times. The largest distance between two samples from the same clone was 26.4 km and a total of 58 and 10 clones were sampled across more than 2 and 10 km, respectively. The number of extremely large clone sizes, and their old ages when assuming the rhizome elongation as the single causal mechanism, suggests other processes are behind the span of these clones. We discuss how the dispersal of vegetative fragments in a stepping-stone manner might have produced this pattern. We found higher probabilities to sample large clones away from the lagoon inlet, considered a source of disturbance. This study corroborates previous experiments on the success of transport and re-establishment of asexual fragments and supports the hypothesis that asexual hydrochory is responsible for the extent of these clones.


Assuntos
Variação Genética/fisiologia , Dispersão Vegetal/genética , Reprodução Assexuada/genética , Zosteraceae/genética , Demografia , Genética Populacional , Portugal , Rizoma/genética , Rizoma/crescimento & desenvolvimento , Água do Mar , Dispersão de Sementes/genética , Análise de Sequência de DNA , Zosteraceae/classificação , Zosteraceae/crescimento & desenvolvimento
15.
Ann Bot ; 122(6): 1019-1032, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29955767

RESUMO

Background and Aims: The island of Gotland in the Baltic Sea has had no contact with surrounding continental areas since the withdrawal of the Weichselian ice sheet at approx. 17 ka BP. Plants present on Gotland must have arrived by long-distance dispersal, so populations are expected to exhibit reduced levels of genetic diversity compared with populations on surrounding mainlands. However, orchids have very small seeds, which appear well adapted to long-distance dispersal, and they should therefore be less affected than other plant species by colonization bottlenecks. The aim of this study was to analyse the genetic structure of orchids colonizing isolated islands, using the marsh orchid Dactylorhiza majalis ssp. lapponica as a case study. Methods: More than 500 samples from 27 populations were analysed for 15 plastid and eight nuclear marker loci. Population diversity and differentiation patterns were compared for nuclear and plastid marker systems and analysed in relation to geographical location. Key Results: We found high genetic diversity but no clear geographical structure of genetic differentiation between populations on Gotland. However, the between-population differentiation in plastid and nuclear markers were correlated and the greatest diversity was found at sites at comparatively high elevations, which were the first to emerge above the water after the Ice Age. Conclusions: The regional population on Gotland has been established by a minimum of four dispersal events from continental regions. Subsequent gene flow between sites has not yet homogenized the differentiation pattern originating from initial colonization. We conclude that long-distance seed dispersal in orchids has a strong impact on structuring genetic diversity during periods of expansion and colonization, but contributes less to gene flow between populations once a stable population structure has been achieved.


Assuntos
Variação Genética , Orchidaceae/fisiologia , Dispersão Vegetal/genética , Núcleo Celular/genética , Marcadores Genéticos , Ilhas , Orchidaceae/genética , Plastídeos/genética , Suécia
16.
Ann Bot ; 122(6): 993-1003, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29924293

RESUMO

Background and Aims: In dioecious plants, sexual reproduction requires close proximity to potential mates, but clonal growth can increase this distance and, therefore, reduce the probability of mating. Reduction in sexual propagules can lead to decreased dispersal and gene flow between populations. Gene flow and clonal growth may be further influenced by the size of the habitat patch. The effects of habitat size and reproductive mode (sexual or asexual reproduction) on spatial genetic structure and segregation of the sexes were tested by quantifying the distributions of genotypes and the sexes using the dioecious liverwort Marchantia inflexa. Methods: Plants were sampled from five pairs of small-large habitat patches to identify within- and among-population spatial genetic structure using 12 microsatellite markers. Spatial distributions were calculated as the likelihood that pairs of individuals were the same sex or genotype, and it was determined how that likelihood was affected by habitat patch size (small/large). Key Results: Asexual reproduction dominates within populations, and asexual dispersal also occurred across populations. Spatial segregation of the sexes was observed within populations; males were more likely to be near individuals of the same sex than were females. Although the likelihood of both sexes being near members of the same sex was similarly greater on small habitat patches, on large habitat patches male genotypes were almost 15 % more likely to be near clonemates than were female genotypes. Conclusions: The results show a sex difference in clonal clumping that was dependent upon habitat size, suggesting differential colonization and/or survival between males and females. The sexes and genotypes being structured differently within and among populations have implications for the persistence of populations and the interactions between them. This study demonstrates that studying only the sexes and not their genotypes (or vice versa) can limit our understanding of the extent to which reproductive modes (sexual or asexual) influence genetic structure both within and between populations.


Assuntos
Ecossistema , Variação Genética , Marchantia/fisiologia , Dispersão Vegetal/genética , Genótipo , Marchantia/genética , Reprodução , Reprodução Assexuada , Trinidad e Tobago
17.
Nat Ecol Evol ; 2(6): 991-999, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29735988

RESUMO

Invasion success of species introduced to novel environments may be facilitated by adaptive evolution and by phenotypic plasticity. Here we investigate the independent and joint contribution of both mechanisms as drivers of invasiveness in the perennial sunflower Helianthus tuberosus. We show that invasive genotypes have multiple origins, and that invasive spread was facilitated by the repeated evolution of extreme values in a single trait, clonality. In line with genetic accommodation theory, we establish that this evolutionary transition occurred by refining a preexisting plastic response of clonality to water availability. Further, we demonstrate that under the non-drought conditions typically experienced by this plant in its introduced range, invasive spread is mediated by hybrid vigour and/or two major additive-effect loci, and that these mechanisms are complementary. Thus, in H. tuberosus, evolution of invasiveness was facilitated by phenotypic plasticity, and involved the use of multiple genetic solutions to achieve the same invasiveness trait.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Variação Genética , Helianthus/fisiologia , Dispersão Vegetal/genética , Europa (Continente) , Espécies Introduzidas
18.
Nat Commun ; 8(1): 1996, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222461

RESUMO

The distribution and co-occurrence of species are partly the outcome of their interactions with environmental drivers. Drought is a key driver related to the distribution of plant species. Drought events continue to increase in frequency and severity and identifying those aspects of plant function that are related to drought is critical. Here, we perform a community-level analysis of gene expression in relation to experimental drought and relate the similarity in gene set enrichment across species to their natural co-occurrence. Species with similar gene set enrichment in response to experimental drought tend to non-randomly co-occur in a natural stand. We demonstrate that similarity in the transcriptomic response of species to drought is a significantly better indicator of natural co-occurrence than measures of functional trait similarity and phylogenetic relatedness and that transcriptomics has the capacity to greatly enhance ecological investigations of species distributions and community structure.


Assuntos
Secas , Meio Ambiente , Regulação da Expressão Gênica de Plantas , Dispersão Vegetal/genética , Transcriptoma/fisiologia , Florestas , Perfilação da Expressão Gênica , Filogenia
19.
PLoS One ; 12(5): e0177101, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28475607

RESUMO

Phylogeographical studies have suggested that several plant species on the Tibetan Plateau (TP) underwent recolonization during the Quaternary and may have had distinct range dynamics in response to the last glacial. To further test this hypothesis and locate the possible historical dispersal routes, we selected 20 plant species from different parts of the TP and modeled their geographical distributions over four time periods using species distribution models (SDMs). Furthermore, we applied the least-cost path method together with SDMs and shared haplotypes to estimate their historical dispersal corridors. We identified three general scenarios of species distribution change during the late Quaternary: the 'contraction-expansion' scenario for species in the northeastern TP, the 'expansion-contraction' scenario for species in the southeast and the 'stable' scenario for widespread species. During the Quaternary, we identified that these species were likely to recolonize along the low-elevation valleys, huge mountain ranges and flat plateau platform (e.g. the Yarlung Zangbo Valley and the Himalaya). We inferred that Quaternary cyclic glaciations along with the various topographic and climatic conditions of the TP could have resulted in the diverse patterns of range shift and dispersal of Tibetan plant species. Finally, we believe that this study would provide valuable insights for the conservation of alpine species under future climate change.


Assuntos
Variação Genética , Haplótipos , Dispersão Vegetal/genética , Plantas/genética , Genética Populacional , Filogeografia , Tibet
20.
Sci Rep ; 7: 44913, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28327669

RESUMO

Gene flow is an important component in evolutionary biology; however, the role of gene flow in dispersal of herbicide-resistant alleles among weed populations is poorly understood. Field experiments were conducted at the University of Nebraska-Lincoln to quantify pollen-mediated gene flow (PMGF) from glyphosate-resistant (GR) to -susceptible (GS) common waterhemp using a concentric donor-receptor design. More than 130,000 common waterhemp plants were screened and 26,199 plants were confirmed resistant to glyphosate. Frequency of gene flow from all distances, directions, and years was estimated with a double exponential decay model using Generalized Nonlinear Model (package gnm) in R. PMGF declined by 50% at <3 m distance from the pollen source, whereas 90% reduction was found at 88 m (maximum) depending on the direction of the pollen-receptor blocks. Amplification of the target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), was identified as the mechanism of glyphosate resistance in parent biotype. The EPSPS gene amplification was heritable in common waterhemp and can be transferred via PMGF, and also correlated with glyphosate resistance in pseudo-F2 progeny. This is the first report of PMGF in GR common waterhemp and the results are critical in explaining the rapid dispersal of GR common waterhemp in Midwestern United States.


Assuntos
Amaranthus/efeitos dos fármacos , Amaranthus/genética , Fluxo Gênico , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Pólen , Polinização , Glicina/farmacologia , Herbicidas/farmacologia , Padrões de Herança , Modelos Teóricos , Fenótipo , Dispersão Vegetal/genética , Plantas Daninhas/genética , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...