Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 187(8): 481, 2020 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-32743681

RESUMO

A new fluorescence turn-on sensing platform has been developed applicable for sensitive profiling of multiple chemical and biological analytes, using azobenzene-quantum dot as a new stimuli-responsive optical nanoprobe. An azobenzene-carrying compound bis [4, 4'-(dithiophenyl azo)-1, 3-benzenediamine] (DTPABDA) is for the first time reported to be used for conjugation with CdSe/ZnS core/shell quantum dots (QDs) via the ligand exchange reaction. Due to the photo-induced electron-transfer (PET) effect, the electron-withdrawing azobenzene groups of DTPABDA can significantly cause the photoluminescence (PL) of QDs quenched. The QDs' PL can be subsequently reignited by the removal of azo moiety cleavable through three types of specific reactions: the dithionite reduction, hypochlorite oxidation, and azoreductase enzymatic catalysis, respectively. By monitoring of reaction-induced recovery of FL signals at 560 nm with an excitation of 450 nm, such azobenzene-QDs conjugates served as a new nanoprobe enabling the fluorescence turn-on sensing of dithionite, hypochlorite, and azoreductase with high sensitivity, broad linear range, and good selectivity. The successful detection of target analytes in real samples reveals the potential of our method in practical applications, such as biosensing, environmental and industrial monitoring. Graphical abstract A new stimuli-responsive fluorescence probe is reported for the sensitive detection of sodium dithionite, hypochlorite, and azoreductase. The probe consists of QDs with an azobenzene-carrying compound as a ligand. The fluorescence of QDs could be quenched by the azo group and subsequently recovered via the removal of azo group by these three compounds, resulting in the "turn-on" sensing of these compounds with high sensitivity, broad linear range, and good selectivity. The successful detection of azoreductase in serum samples reveals the practical use of this method.


Assuntos
Ditionita/análise , Corantes Fluorescentes/química , Ácido Hipocloroso/análise , Nitrorredutases/sangue , Pontos Quânticos/química , Compostos Azo/síntese química , Compostos Azo/química , Compostos de Cádmio/química , Compostos de Cádmio/efeitos da radiação , Corantes Fluorescentes/síntese química , Humanos , Luz , Limite de Detecção , Estudo de Prova de Conceito , Pontos Quânticos/efeitos da radiação , Compostos de Selênio/química , Compostos de Selênio/efeitos da radiação , Espectrometria de Fluorescência/métodos , Sulfetos/química , Sulfetos/efeitos da radiação , Compostos de Zinco/química , Compostos de Zinco/efeitos da radiação
2.
Org Biomol Chem ; 3(7): 1275-83, 2005 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-15785818

RESUMO

Glycerophospholipid flip-flop across biogenic membranes such as the endoplasmic reticulum (ER) is a fundamental feature of membrane biogenesis. Flip-flop requires the activity of specific membrane proteins called flippases. These proteins have yet to be identified in biogenic membranes and the molecular basis of their action is unknown. It is generally believed that flippase-facilitated glycerophospholipid flip-flop across the ER is governed by the stereochemistry of the glycerolipid, but this important issue has not been resolved. Here we investigate whether the ER flippase stereochemically recognizes the glycerophospholipids that it transports. To address this question we selected phosphatidylinositol (PI), a biologically important molecule with chiral centres in both its myo-inositol headgroup and its glycerol-lipid tail. The flip-flop of PI across the ER has not been previously reported. We synthesized fluorescence-labeled forms of all four diastereoisomers of PI and evaluated their flipping in rat liver ER vesicles, as well as in flippase-containing proteoliposomes reconstituted from a detergent extract of ER. Our results show that the flippase is able to translocate all four PI isomers and that both glycerol isomers of PI flip-flop across the ER membrane at rates similar to that measured for fluorescence-labeled phosphatidylcholine. Our data have important implications for recent hypotheses concerning the evolution of distinct homochiral glycerophospholipid membranes during the speciation of archaea and bacteria/eukarya from a common cellular ancestor.


Assuntos
Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Corantes Fluorescentes/química , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , 4-Cloro-7-nitrobenzofurazano/química , Animais , Ditionita/análise , Corantes Fluorescentes/síntese química , Espectroscopia de Ressonância Magnética , Fosfatidilinositóis/síntese química , Ratos , Espectrometria de Massas por Ionização por Electrospray , Estereoisomerismo , Relação Estrutura-Atividade
3.
Chem Phys Lipids ; 70(2): 205-12, 1994 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-8033291

RESUMO

Transbilayer lipid distribution of small unilamellar vesicles (SUVs) and large unilamellar vesicles (LUVs) was measured using 31P-nuclear magnetic resonance (NMR) spectroscopy, chemical modification with 2,4,6-trinitrobenzene sulfonic acid (TNBS) and dithionite reduction of N-(7-nitrobenz-2-oxa-1,3-diazole-4-yl)-labeled lipid (NBD-lipid). The dithionite assay was the most reproducible of the three assays, with 1.2% error for SUVs and 3.9% error for LUVs. The dithionite assay also agreed best with theoretical inner:outer leaflet ratios, based on vesicle diameters determined by electron microscopy (Thomas et al. (1989) Biochem. Biophys. Acta 978, 85-90). Dithionite assay measurements were within 2.7% of theoretical ratios for SUVs and 2.3% for LUVs, while the NMR assay for SUVs was 14% lower than theoretical ratios and 23% lower for LUVs. The accuracy of NBD-lipids as markers for total transbilayer lipid was investigated. NBD-labeled phosphatidylserine, phosphatidylcholine and phosphatidylglycerol were accurate markers for total transbilayer lipid distribution, as their distributions were in close agreement with theoretical ratios. However, NBD-labeled phosphatidylethanolamine displayed a slight preference for the inner leaflet at low mole fractions of phosphatidylethanolamine, while native phosphatidylethanolamine showed a preference for the outer leaflet at the same concentration. NBD-labeled phosphatidic acid also showed a slight preference for the inner leaflet. We conclude that although dithionite-based assessment of NBD-labeled lipids across membrane bilayers can be a powerful analytical tool, caution must be used in the interpretation of results.


Assuntos
4-Cloro-7-nitrobenzofurazano , Membrana Celular/química , Bicamadas Lipídicas/química , Lipídeos/análise , 4-Cloro-7-nitrobenzofurazano/metabolismo , Membrana Celular/metabolismo , Ditionita/análise , Corantes Fluorescentes , Bicamadas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Lipossomos/análise , Espectroscopia de Ressonância Magnética/métodos , Microscopia Eletrônica , Fosfatidiletanolaminas , Fósforo , Reprodutibilidade dos Testes , Ácido Trinitrobenzenossulfônico
4.
Biochemistry ; 28(20): 8028-32, 1989 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-2557893

RESUMO

We have measured the steady-state tryptophan fluorescence spectrum of cytochrome oxidase in its oxidized and fully reduced states. Reduction of the oxidized enzyme by sodium dithionite causes an apparent shift in the fluorescence emission maximum from 328 nm, in the oxidized enzyme, to 348 nm, in the reduced enzyme. This spectroscopic change has been observed previously and assigned to a redox-linked, conformational change in cytochrome oxidase [Copeland, R. A., Smith, P. A., & Chan, S. I. (1987) Biochemistry 26, 7311-7316]. When dithionite-reduced enzyme sits in an open cuvette, the enzyme returns to the oxidized state, and the fluorescence maximum shifts back to 328 nm. However, the time course of the fluorescence change does not follow the redox state of the enzyme, monitored spectrophotometrically at 445,605, and 820 nm, but follows the disappearance of dithionite, which absorbs at 315 nm. Moreover, when the fluorescence emission spectrum of the dithionite-reduced enzyme is corrected for the absorbance due to dithionite, the fluorescence maximum is found 2 nm blue shifted, relative to that of the oxidized enzyme, at 326 nm. This dithionite-induced, red-shifted steady-state tryptophan fluorescence is also seen with the non-heme-containing enzyme carboxypeptidase A. The tryptophan emission spectrum of untreated carboxypeptidase A is at 332 nm, whereas in the presence of dithionite the emission spectrum of carboxypeptidase A is at 350 nm. When corrected for the absorbance of dithionite, the tryptophan emission maximum is at 332 nm. We have also used the photoreductant 3,10-dimethyl-5-deazaisoalloxazine (deazaflavin) to reduce cytochrome oxidase.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/análise , Triptofano/análise , Animais , Carboxipeptidases , Carboxipeptidases A , Bovinos , Ditionita/análise , Técnicas In Vitro , Mitocôndrias Cardíacas/enzimologia , Oxirredução , Conformação Proteica , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
5.
Anal Biochem ; 140(2): 434-42, 1984 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-6592986

RESUMO

Micromethods of direct chemical coupling have been developed for several different enzyme reactions, using the principles of flow injection analysis. Samples of 1-25 microliters are injected into a flowing stream of color-forming reagents and the peak of color change is measured after about 1 min. Alternatively, continuous slow infusion of a reacting system (5-100 microliters/min) gives a continuous change of color which can be monitored to derive enzyme reaction rates. These techniques are highly sensitive, requiring a few nanomoles of the substance being detected. Phosphate, ammonia, dithionite, creatine, and hydrazine have been measured. Consumption of reagents is less than 75 ml per hour; typical sample throughout is 30-40 samples per hour by the injection method, and 5 samples per hour by continuous infusion. The procedure has been applied to nitrogenase, continuously monitoring creatine produced from creatine phosphate by creatine kinase which is used to supply a constant level of ATP for nitrogenase. In this way nitrogenase activity can be determined over a wide range of enzyme concentrations. Production of inorganic phosphate directly from ATP, by injection of formaldehyde-quenched samples, was used when coupling to creatine kinase was not possible. Both injection of aliquots and continuous infusion were used for detection of hydrazine during nitrogenase reduction of azide, and the injection method has been used for ammonia assay during dinitrogen reduction. Dithionite oxidation was measured directly from decolorization of iodine, after trapping both dithionite and bisulfite with formaldehyde.


Assuntos
Nitrogenase/análise , Amônia/análise , Fenômenos Químicos , Química , Creatina/análise , Ditionita/análise , Hidrazinas/análise , Indicadores e Reagentes , Fosfatos/análise , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...