Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell Metab ; 36(6): 1394-1410.e12, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38838644

RESUMO

A vexing problem in mitochondrial medicine is our limited capacity to evaluate the extent of brain disease in vivo. This limitation has hindered our understanding of the mechanisms that underlie the imaging phenotype in the brain of patients with mitochondrial diseases and our capacity to identify new biomarkers and therapeutic targets. Using comprehensive imaging, we analyzed the metabolic network that drives the brain structural and metabolic features of a mouse model of pyruvate dehydrogenase deficiency (PDHD). As the disease progressed in this animal, in vivo brain glucose uptake and glycolysis increased. Propionate served as a major anaplerotic substrate, predominantly metabolized by glial cells. A combination of propionate and a ketogenic diet extended lifespan, improved neuropathology, and ameliorated motor deficits in these animals. Together, intermediary metabolism is quite distinct in the PDHD brain-it plays a key role in the imaging phenotype, and it may uncover new treatments for this condition.


Assuntos
Encéfalo , Glucose , Propionatos , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Animais , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Glucose/metabolismo , Propionatos/metabolismo , Camundongos , Dieta Cetogênica , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Masculino , Glicólise
2.
Mol Genet Genomic Med ; 9(8): e1728, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34156167

RESUMO

BACKGROUND: Pyruvate dehydrogenase complex (PDHC) deficiency is a common neurodegenerative disease associated with abnormal mitochondrial energy metabolism. The diagnosis of PDHC is difficult because of the lack of a rapid, accurate, and cost-effective clinical diagnostic method. METHODS: A 4-year-old boy was preliminarily diagnosed with putative Leigh syndrome based on the clinical presentation. PDHC activity in peripheral blood leukocytes and a corresponding gene analysis were subsequently undertaken. Sodium pyruvate 1-13 C was used for the analysis of PDHC activity in peripheral leukocytes. The genes encoding PDHC were then scanned for mutations. RESULTS: The results showed that the corresponding PDHC activity was dramatically decreased to 10.5 nmol/h/mg protein as compared with that of healthy controls (124.6 ± 7.1 nmol/h/mg). The ratio of PDHC to citrate synthase was 2.1% (control: 425.3 ± 27.1). The mutation analysis led to the identification of a missense mutation, NM_000284.4:g214C>T, in exon 3 of PDHC. CONCLUSION: The peripheral blood leukocyte PDHC activity assay may provide a practical enzymatic diagnostic method for PDHC-related mitochondrial diseases.


Assuntos
Ensaios Enzimáticos Clínicos/métodos , Leucócitos/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico , Complexo Piruvato Desidrogenase/metabolismo , Pré-Escolar , Testes Genéticos/métodos , Humanos , Masculino , Mutação de Sentido Incorreto , Complexo Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo
3.
Folia Morphol (Warsz) ; 79(2): 191-197, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32073132

RESUMO

The main source of energy for brain and other organs is glucose. To obtain energy for all tissue, glucose has to come through glycolysis; then as pyruvate it is converted to acetyl-CoA by pyruvate dehydrogenase complex (PDC) and finally enters citric acid cycle. What happens when one of these stages become disturb? Mutation in genes encoding subunits of PDC leads to pyruvate dehydrogenase deficiency. Abnormalities in PDC activity result in severe metabolic and brain malformations. For better understanding the development and mechanism of pyruvate dehydrogenase deficiency the murine model of this disease has been created. Studies on a murine model showed similar malformation in brain structures as in the patients suffered from pyruvate dehydrogenase deficiency such as reduced neuronal density, heterotopias of grey matter, reduced size of corpus callosum and pyramids. There is still no effective cure for PDC-deficiency. Promising therapy seemed to be ketogenic diet, which substitutes glucose to ketone bodies as a source of energy. Studies have shown that ketogenic diet decreases lactic acidosis and inhibits brain malformations, but not the mortality in early childhood. The newest reports say that phenylbutyrate increases the level of PDC in the brain, because it reduces the level of inactive form of PDH. Experiments on human fibroblast and zebra fish PDC-deficiency model showed that phenylbutyrate is promising cure to PDC-deficiency. This review summarizes the most important findings on the metabolic and morphological effects of PDC-deficiency and research for treatment therapy.


Assuntos
Modelos Animais de Doenças , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/patologia , Animais , Humanos , Camundongos
4.
Metabolomics ; 15(3): 32, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30830487

RESUMO

INTRODUCTION: A decline in mitochondrial function represents a key factor of a large number of inborn errors of metabolism, which lead to an extremely heterogeneous group of disorders. OBJECTIVES: To gain insight into the biochemical consequences of mitochondrial dysfunction, we performed a metabolic profiling study in human skin fibroblasts using galactose stress medium, which forces cells to rely on mitochondrial metabolism. METHODS: Fibroblasts from controls, complex I and pyruvate dehydrogenase (PDH) deficient patients were grown under glucose or galactose culture condition. We investigated extracellular flux using Seahorse XF24 cell analyzer and assessed metabolome fingerprints using NMR spectroscopy. RESULTS: Incubation of fibroblasts in galactose leads to an increase in oxygen consumption and decrease in extracellular acidification rate, confirming adaptation to a more aerobic metabolism. NMR allowed rapid profiling of 41 intracellular metabolites and revealed clear separation of mitochondrial defects from controls under galactose using partial least squares discriminant analysis. We found changes in classical markers of mitochondrial metabolic dysfunction, as well as unexpected markers of amino acid and choline metabolism. PDH deficient cell lines showed distinct upregulation of glutaminolytic metabolism and accumulation of branched-chain amino acids, while complex I deficient cell lines were characterized by increased levels in choline metabolites under galactose. CONCLUSION: Our results show the relevance of selective culture methods in discriminating normal from metabolic deficient cells. The study indicates that untargeted fingerprinting NMR profiles provide physiological insight on metabolic adaptations and can be used to distinguish cellular metabolic adaptations in PDH and complex I deficient fibroblasts.


Assuntos
Fibroblastos/metabolismo , Galactose/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Linhagem Celular , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético/fisiologia , Feminino , Glucose/metabolismo , Humanos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Mitocôndrias/metabolismo , Cultura Primária de Células , Piruvatos/metabolismo , Pele/metabolismo
5.
Sci Transl Med ; 11(480)2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787166

RESUMO

Glucose is the ultimate substrate for most brain activities that use carbon, including synthesis of the neurotransmitters glutamate and γ-aminobutyric acid via mitochondrial tricarboxylic acid (TCA) cycle. Brain metabolism and neuronal excitability are thus interdependent. However, the principles that govern their relationship are not always intuitive because heritable defects of brain glucose metabolism are associated with the paradoxical coexistence, in the same individual, of episodic neuronal hyperexcitation (seizures) with reduced basal cerebral electrical activity. One such prototypic disorder is pyruvate dehydrogenase (PDH) deficiency (PDHD). PDH is central to metabolism because it steers most of the glucose-derived flux into the TCA cycle. To better understand the pathophysiology of PDHD, we generated mice with brain-specific reduced PDH activity that paralleled salient human disease features, including cerebral hypotrophy, decreased amplitude electroencephalogram (EEG), and epilepsy. The mice exhibited reductions in cerebral TCA cycle flux, glutamate content, spontaneous, and electrically evoked in vivo cortical field potentials and gamma EEG oscillation amplitude. Episodic decreases in gamma oscillations preceded most epileptiform discharges, facilitating their prediction. Fast-spiking neuron excitability was decreased in brain slices, contributing to in vivo action potential burst prolongation after whisker pad stimulation. These features were partially reversed after systemic administration of acetate, which augmented cerebral TCA cycle flux, glutamate-dependent synaptic transmission, inhibition and gamma oscillations, and reduced epileptiform discharge duration. Thus, our results suggest that dysfunctional excitability in PDHD is consequent to reduced oxidative flux, which leads to decreased neuronal activation and impaired inhibition, and can be mitigated by an alternative metabolic substrate.


Assuntos
Encéfalo/metabolismo , Neurônios/fisiologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/fisiopatologia , Acetatos/metabolismo , Algoritmos , Animais , Isótopos de Carbono , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Potenciais Evocados , Ritmo Gama , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Aprendizado de Máquina , Camundongos , Inibição Neural , Convulsões/metabolismo , Convulsões/fisiopatologia , Vibrissas
6.
Cell Mol Life Sci ; 75(16): 3009-3026, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29445841

RESUMO

The pyruvate dehydrogenase complex (PDC) bridges glycolysis and the citric acid cycle. In human, PDC deficiency leads to severe neurodevelopmental delay and progressive neurodegeneration. The majority of cases are caused by variants in the gene encoding the PDC subunit E1α. The molecular effects of the variants, however, remain poorly understood. Using yeast as a eukaryotic model system, we have studied the substitutions A189V, M230V, and R322C in yeast E1α (corresponding to the pathogenic variants A169V, M210V, and R302C in human E1α) and evaluated how substitutions of single amino acid residues within different functional E1α regions affect PDC structure and activity. The E1α A189V substitution located in the heterodimer interface showed a more compact conformation with significant underrepresentation of E1 in PDC and impaired overall PDC activity. The E1α M230V substitution located in the tetramer and heterodimer interface showed a relatively more open conformation and was particularly affected by low thiamin pyrophosphate concentrations. The E1α R322C substitution located in the phosphorylation loop of E1α resulted in PDC lacking E3 subunits and abolished overall functional activity. Furthermore, we show for the E1α variant A189V that variant E1α accumulates in the Hsp60 chaperonin, but can be released upon ATP supplementation. Our studies suggest that pathogenic E1α variants may be associated with structural changes of PDC and impaired folding of E1α.


Assuntos
Substituição de Aminoácidos , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia Confocal , Dobramento de Proteína , Piruvato Desidrogenase (Lipoamida)/química , Piruvato Desidrogenase (Lipoamida)/metabolismo , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
9.
J Inherit Metab Dis ; 38(5): 895-904, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25601413

RESUMO

Pyruvate dehydrogenase complex (PDHC) is a key enzyme in metabolism linking glycolysis to tricarboxylic acid cycle and its activity is tightly regulated by phosphorylation catalyzed by four pyruvate dehydrogenase kinase (PDK) isoforms. PDKs are pharmacological targets for several human diseases including cancer, diabetes, obesity, heart failure, and inherited PDHC deficiency. We investigated the inhibitory activity of phenylbutyrate toward PDKs and found that PDK isoforms 1-to-3 are inhibited whereas PDK4 is unaffected. Moreover, docking studies revealed putative binding sites of phenylbutyrate on PDK2 and 3 that are located on different sites compared to dichloroacetate (DCA), a previously known PDK inhibitor. Based on these findings, we showed both in cells and in mice that phenylbutyrate combined to DCA results in greater increase of PDHC activity compared to each drug alone. These results suggest that therapeutic efficacy can be enhanced by combination of drugs increasing PDHC enzyme activity.


Assuntos
Ácido Dicloroacético/farmacologia , Fenilbutiratos/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Complexo Piruvato Desidrogenase/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Ácido Dicloroacético/química , Ácido Dicloroacético/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenilbutiratos/química , Fenilbutiratos/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Complexo Piruvato Desidrogenase/antagonistas & inibidores , Complexo Piruvato Desidrogenase/química , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo
10.
J Inherit Metab Dis ; 37(4): 577-85, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24789339

RESUMO

Thiamine, in the form of thiamine pyrophosphate, is a cofactor for a number of enzymes which play important roles in energy metabolism. Although dietary thiamine deficiency states have long been recognised, it is only relatively recently that inherited defects in thiamine uptake, activation and the attachment of the active cofactor to target enzymes have been described, and the underlying genetic defects identified. Thiamine is transported into cells by two carriers, THTR1 and THTR2, and deficiency of these results in thiamine-responsive megaloblastic anaemia and biotin-responsive basal ganglia disease respectively. Defective synthesis of thiamine pyrophosphate has been found in a small number of patients with episodic ataxia, delayed development and dystonia, while impaired transport of thiamine pyrophosphate into the mitochondrion is associated with Amish lethal microcephaly in most cases. In addition to defects in thiamine uptake and metabolism, patients with pyruvate dehydrogenase deficiency and maple syrup urine disease have been described who have a significant clinical and/or biochemical response to thiamine supplementation. In these patients, an intrinsic structural defect in the target enzymes reduces binding of the cofactor and this can be overcome at high concentrations. In most cases, the clinical and biochemical abnormalities in these conditions are relatively non-specific, and the range of recognised presentations is increasing rapidly at present as new patients are identified, often by genome sequencing. These conditions highlight the value of a trial of thiamine supplementation in patients whose clinical presentation falls within the spectrum of documented cases.


Assuntos
Proteínas de Membrana Transportadoras/genética , Deficiência de Tiamina/genética , Tiamina/metabolismo , Animais , Transporte Biológico/genética , Humanos , Doença da Urina de Xarope de Bordo/genética , Doença da Urina de Xarope de Bordo/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Tiamina Pirofosfoquinase/deficiência , Tiamina Pirofosfoquinase/genética , Deficiência de Tiamina/metabolismo
11.
Mitochondrion ; 15: 59-64, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24462778

RESUMO

Lipoic acid metabolism defects are new metabolic disorders that cause neurological, cardiomuscular or pulmonary impairment. We report on a patient that presented with progressive neurological regression suggestive of an energetic disease, involving leukoencephalopathy with cysts. Elevated levels of glycine in plasma, urine and CSF associated with intermittent increases of lactate were consistent with a defect in lipoic acid metabolism. Support for the diagnosis was provided by pyruvate dehydrogenase deficiency and multiple mitochondrial respiratory chain deficiency in skin fibroblasts, as well as no lipoylated protein by western blot. Two mutations in the NFU1 gene confirmed the diagnosis. The p.Gly208Cys mutation has previously been reported suggesting a founder effect in Europe.


Assuntos
Proteínas de Transporte/genética , Cistos/genética , Leucoencefalopatias/genética , Acidemia Propiônica/genética , Líquido Cefalorraquidiano/química , Pré-Escolar , Europa (Continente) , Feminino , Fibroblastos/enzimologia , Humanos , Lactatos/análise , Doenças Mitocondriais/metabolismo , Plasma/química , Processamento de Proteína Pós-Traducional , Proteínas/química , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Urina/química
12.
Biomed J ; 36(1): 16-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23515149

RESUMO

Ketogenic diet (KD) was usually tried as a last resort in the treatment of intractable epilepsy after failure of many antiepileptics and even epilepsy surgery. Glucose transporter-1 deficiency and pyruvate dehydrogenase deficiency must be treated with KD as the first choice because of inborn errors of glucose metabolism. Infantile spasms, tuberous sclerosis complex, Rett syndrome, Doose syndrome, Dravet syndrome, etc., appear to respond to KD, and it has been suggested by the international consensus statement to use KD early. We believe that all patients with epilepsy, except those with contraindicated situations such as pyruvate carboxylase deficiency, porphyria, ß-oxidation defects, primary carnitine deficiency, etc., may try KD before trying other regimens.


Assuntos
Anticonvulsivantes/uso terapêutico , Dieta Cetogênica , Epilepsia/dietoterapia , Cardiomiopatias , Carnitina/deficiência , Epilepsia/tratamento farmacológico , Epilepsia/etiologia , Epilepsia/metabolismo , Humanos , Hiperamonemia , Doenças Musculares , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Resultado do Tratamento
13.
Mol Genet Metab ; 106(3): 385-94, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22896851

RESUMO

CONTEXT: Pyruvate dehydrogenase complex (PDC) deficiency is a genetic mitochondrial disorder commonly associated with lactic acidosis, progressive neurological and neuromuscular degeneration and, usually, death during childhood. There has been no recent comprehensive analysis of the natural history and clinical course of this disease. OBJECTIVE: We reviewed 371 cases of PDC deficiency, published between 1970 and 2010, that involved defects in subunits E1α and E1ß and components E1, E2, E3 and the E3 binding protein of the complex. DATA SOURCES AND EXTRACTION: English language peer-reviewed publications were identified, primarily by using PubMed and Google Scholar search engines. RESULTS: Neurodevelopmental delay and hypotonia were the commonest clinical signs of PDC deficiency. Structural brain abnormalities frequently included ventriculomegaly, dysgenesis of the corpus callosum and neuroimaging findings typical of Leigh syndrome. Neither gender nor any clinical or neuroimaging feature differentiated the various biochemical etiologies of the disease. Patients who died were younger, presented clinically earlier and had higher blood lactate levels and lower residual enzyme activities than subjects who were still alive at the time of reporting. Survival bore no relationship to the underlying biochemical or genetic abnormality or to gender. CONCLUSIONS: Although the clinical spectrum of PDC deficiency is broad, the dominant clinical phenotype includes presentation during the first year of life; neurological and neuromuscular degeneration; structural lesions revealed by neuroimaging; lactic acidosis and a blood lactate:pyruvate ratio ≤ 20.


Assuntos
Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Feminino , Humanos , Masculino , PubMed , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/patologia
14.
Neurochem Int ; 61(7): 1036-43, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22884585

RESUMO

The pyruvate dehydrogenase complex (PDC), required for complete glucose oxidation, is essential for brain development. Although PDC deficiency is associated with a severe clinical syndrome, little is known about its effects on either substrate oxidation or synthesis of key metabolites such as glutamate and glutamine. Computational simulations of brain metabolism indicated that a 25% reduction in flux through PDC and a corresponding increase in flux from an alternative source of acetyl-CoA would substantially alter the (13)C NMR spectrum obtained from brain tissue. Therefore, we evaluated metabolism of [1,6-(13)C(2)]glucose (oxidized by both neurons and glia) and [1,2-(13)C(2)]acetate (an energy source that bypasses PDC) in the cerebral cortex of adult mice mildly and selectively deficient in brain PDC activity, a viable model that recapitulates the human disorder. Intravenous infusions were performed in conscious mice and extracts of brain tissue were studied by (13)C NMR. We hypothesized that mice deficient in PDC must increase the proportion of energy derived from acetate metabolism in the brain. Unexpectedly, the distribution of (13)C in glutamate and glutamine, a measure of the relative flux of acetate and glucose into the citric acid cycle, was not altered. The (13)C labeling pattern in glutamate differed significantly from glutamine, indicating preferential oxidation of [1,2-(13)C]acetate relative to [1,6-(13)C]glucose by a readily discernible metabolic domain of the brain of both normal and mutant mice, presumably glia. These findings illustrate that metabolic compartmentation is preserved in the PDC-deficient cerebral cortex, probably reflecting intact neuron-glia metabolic interactions, and that a reduction in brain PDC activity sufficient to induce cerebral dysgenesis during development does not appreciably disrupt energy metabolism in the mature brain.


Assuntos
Córtex Cerebral/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Animais , Isótopos de Carbono , Feminino , Masculino , Camundongos , Camundongos Transgênicos
15.
Mol Genet Metab ; 104(3): 255-60, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21846590

RESUMO

The pyruvate dehydrogenase complex (PDC) oxidizes pyruvate to acetyl CoA and is critically important in maintaining normal cellular energy homeostasis. Loss-of-function mutations in PDC give rise to congenital lactic acidosis and to progressive cellular energy failure. However, the subsequent biochemical consequences of PDC deficiency that may contribute to the clinical manifestations of the disorder are poorly understood. We postulated that altered flux through PDC would disrupt mitochondrial electron transport, resulting in oxidative stress. Compared to cells from 4 healthy subjects, primary cultures of skin fibroblasts from 9 patients with variable mutations in the gene encoding the alpha subunit (E1α) of pyruvate dehydrogenase (PDA1) demonstrated reduced growth and viability. Superoxide (O(2)(.-)) from the Qo site of complex III of the electron transport chain accumulated in these cells and was associated with decreased activity of manganese superoxide dismutase. The expression of uncoupling protein 2 was also decreased in patient cells, but there were no significant changes in the expression of cellular markers of protein or DNA oxidative damage. The expression of hypoxia transcription factor 1 alpha (HIF1α) also increased in PDC deficient fibroblasts. We conclude that PDC deficiency is associated with an increase in O(2)(.-) accumulation coupled to a decrease in mechanisms responsible for its removal. Increased HIF1α expression may contribute to the increase in glycolytic flux and lactate production in PDC deficiency and, by trans-activating pyruvate dehydrogenase kinase, may further suppress residual PDC activity through phosphorylation of the E1α subunit.


Assuntos
Fibroblastos/metabolismo , Estresse Oxidativo/fisiologia , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Superóxidos/metabolismo , Western Blotting , Células Cultivadas , Dano ao DNA , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pele/citologia , Superóxido Dismutase/metabolismo , Proteína Desacopladora 2
16.
Lipids ; 45(11): 987-95, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20835892

RESUMO

The pyruvate dehydrogenase complex (PDC) plays a critical role in lipid synthesis and glucose homeostasis in the fed and fasting states. The central role of the liver in the maintenance of glucose homeostasis has been established by studying changes in key enzymes (including PDC) and the carbon-flux via several pathways under different metabolic states. In the present study we have developed a murine model of liver-specific PDC deficiency using Cre-loxP technology to investigate its consequences on lipid and carbohydrate metabolism. There was no incorporation of glucose-carbon into fatty acids by liver in vitro from liver-specific Pdha1 knockout (L-PDHKO) male mice due to absence of hepatic PDC activity. Interestingly, there was a compensatory increase in lipogenic capacity in epididymal adipose tissue from L-PDHKO mice. Both fat and lean body mass were significantly reduced in L-PDHKO mice, which might be explained by an increase in total energy expenditure compared with wild-type littermate mice. Furthermore, both liver and peripheral insulin sensitivities measured during a hyperinsulinemic-euglycemic clamp were improved in L-PDHKO mice. The findings presented here demonstrate (i) the indispensable role of PDC for lipogenesis from glucose in liver and (ii) specific adaptations in lipid and glucose metabolism in the liver and adipose tissue to compensate for loss of PDC activity in liver only.


Assuntos
Tecido Adiposo/metabolismo , Insulina/metabolismo , Lipogênese/genética , Fígado/enzimologia , Complexo Piruvato Desidrogenase/genética , Animais , Células Cultivadas , Feminino , Regulação Enzimológica da Expressão Gênica/fisiologia , Insulina/sangue , Resistência à Insulina/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos/genética , Piruvato Desidrogenase (Lipoamida)/genética , Piruvato Desidrogenase (Lipoamida)/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Regulação para Cima/genética
17.
Mol Genet Metab ; 101(2-3): 183-91, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20685142

RESUMO

We evaluated the feasibility of self-complementary adeno-associated virus (scAAV) vector-mediated knockdown of the pyruvate dehydrogenase complex using small interfering RNAs directed against the E1α subunit gene (PDHA1). AAV serotype 8 was used to stereotaxically deliver scAAV8-si3-PDHA1-Enhanced Green Fluorescent Protein (knockdown) or scAAV8-EGFP (control) vectors into the right striatum and substantia nigra of rats. Rotational asymmetry was employed to quantify abnormal rotation following neurodegeneration in the nigrostriatal system. By 20weeks after surgery, the siRNA-injected rats exhibited higher contralateral rotation during the first 10min following amphetamine administration and lower 90-min total rotations (p≤0.05). Expression of PDC E1α, E1ß and E2 subunits in striatum was decreased (p≤0.05) in the siRNA-injected striatum after 14weeks. By week 25, both PDC activity and expression of E1α were lower (p≤0.05) in siRNA-injected striata compared to controls. E1α expression was associated with PDC activity (R(2)=0.48; p=0.006) and modestly associated with counterclockwise rotation (R(2)=0.51;p=0.07). The use of tyrosine-mutant scAAV8 vectors resulted in ~17-fold increase in transduction efficiency of rat striatal neurons in vivo. We conclude that scAAV8-siRNA vector-mediated knockdown of PDC E1α in brain regions typically affected in humans with PDC deficiency results in a reproducible biochemical and clinical phenotype in rats that may be further enhanced with the use of tyrosine-mutant vectors.


Assuntos
Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Animais , Comportamento Animal , Corpo Estriado/enzimologia , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Vetores Genéticos , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Rotação , Transdução Genética
18.
J Biol Chem ; 283(1): 237-243, 2008 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-17923481

RESUMO

Congenital deficiencies of the human pyruvate dehydrogenase (PDH) complex are considered to be due to loss of function mutations in one of the component enzymes. Here we describe a case of PDH deficiency associated with the PDH E1beta subunit (PDHB) gene. The clinical phenotype of the patient was consistent with reported cases of PDH deficiency. Cultured skin fibroblasts demonstrated a 55% reduction in PDH activity and markedly decreased immunoreactivity for PDHB protein, compared with healthy controls. Surprisingly, nucleotide sequence analyses of cDNAs corresponding to the patient PDH E1alpha (PDHA1) and PDHB genes revealed no pathological mutations. Moreover, the relative expression level of PDHB mRNA and the rates of transcription and translation of the PDHB gene were normal. However, PDC activity could be restored in cells from this patient following treatment with MG132, a specific proteasome inhibitor, and normal levels of E1beta could be detected in MG132-treated cells. Similar results were obtained following treatment with Tyr-phostin 23 (Tyr23), a specific inhibitor of epidermal growth factor receptor-protein-tyrosine kinase (EGFR-PTK), which also restored E1beta protein levels to those in cells from healthy subjects or from patients with PDHA1 deficiency. The index patient's cells contained a high basal level of EGFR-PTK activity that correlated with the high level of ubiquitination of cellular proteins, although the total EGFR protein levels were similar to those in cells from Elalpha-deficient subjects and healthy subjects. These data indicate that PDH deficiency in our patient involves a post-translational modification in which EGFR-PTK-mediated tyrosine phosphorylation of the E1beta protein leads to enhanced ubiquitination followed by proteasome-mediated degradation. They also provide a novel mechanism accounting for congenital deficiency of the PDH complex and perhaps other inborn errors of metabolism.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Piruvato Desidrogenase (Lipoamida)/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Western Blotting , Células Cultivadas , Criança , Pré-Escolar , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Imunoprecipitação , Leupeptinas/farmacologia , Modelos Biológicos , Mutação , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteassoma , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/patologia , Ubiquitinação/efeitos dos fármacos
19.
Neurochem Res ; 32(4-5): 645-54, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17342409

RESUMO

Pyruvate dehydrogenase complex (PDC) deficiency is an inborn metabolic disorder that causes neurological abnormalities. In this report, a murine model of PDC deficiency was analyzed using histology, magnetic resonance (MR) imaging and MR spectroscopy (MRS) and the results compared to PDC-deficient female patients. Histological analysis of brains from PDC-deficient mice revealed defects in neuronal cytoarchitecture in grey matter and reduced size of white matter structures. MR results were comparable to previously published clinical MR findings obtained from PDC-deficient female patients. Specifically, a 15.4% increase in relative lactate concentration, 64.4% loss of N-acetylaspartate concentration and a near complete loss of discernable glutamine plus glutamate concentration were observed in a PDC deficient mouse compared to wild-type control. Lower apparent diffusion coefficients (ADCs) were observed within the brain consistent with atrophy. These results demonstrate the usefulness of this murine model to systematically evaluate the beneficial effects of dietary and pharmacological interventions.


Assuntos
Encéfalo/patologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/patologia , Animais , Animais Geneticamente Modificados , Encéfalo/anormalidades , Imagem de Difusão por Ressonância Magnética , Éxons , Feminino , Processamento de Imagem Assistida por Computador , Proteínas de Filamentos Intermediários/genética , Fígado/enzimologia , Imageamento por Ressonância Magnética , Camundongos , Proteínas do Tecido Nervoso/genética , Nestina , Complexo Piruvato Desidrogenase/metabolismo , Ratos
20.
Dev Med Child Neurol ; 48(9): 756-60, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16904023

RESUMO

Pyruvate dehydrogenase (PDH) deficiency is a major cause of neurological dysfunction and lactic acidosis in infancy and early childhood. The great majority of cases (>80%) result from mutations in the X-linked gene for the E1alpha subunit of the complex (PDHA1). Mutations in the genes for the other subunits have all been described, but only dihydrolipoamide dehydrogenase (E3) and E3 binding protein (E3BP) defects contribute significantly to the total number of patients with PDH deficiency. Although previously considered rare, with only 13 reported cases, we have found that mutations in PDX1, the gene for the E3 binding protein, are in fact relatively common. Clinical, biochemical, and genetic features of six new patients (four males, two females; age range 15mo-6y) with mutations in this gene are compared with previously reported cases. All patients with E3BP deficiency identified to date have mutations which completely prevent synthesis of the protein product. However, they are generally less severely affected than patients with PDHA1 mutations, although there is considerable overlap in clinical and neuroradiological features.


Assuntos
Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/genética , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Masculino , Subunidades Proteicas/deficiência , Subunidades Proteicas/genética , Complexo Piruvato Desidrogenase/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...