Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.811
Filtrar
1.
Open Biol ; 14(6): 240035, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38862019

RESUMO

Neurodegenerative diseases, particularly Alzheimer's disease (AD), pose a significant challenge in ageing populations. Our current understanding indicates that the onset of toxic amyloid and tau protein pathologies initiates disease progression. However, existing treatments targeting these hallmark symptoms offer symptomatic relief without halting disease advancement. This review offers an alternative perspective on AD, centring on impaired adult hippocampal neurogenesis (AHN) as a potential early aetiological factor. By delving into the intricate molecular events during the initial stages of AD (Braak Stages I-III), a novel hypothesis is presented, interweaving the roles of Notch signalling and heparan sulfate proteoglycans (HSPGs) in compromised AHN. While acknowledging the significance of the amyloid and tau hypotheses, it calls for further exploration beyond these paradigms, suggesting the potential of altered HS sulfation patterns in AD initiation. Future directions propose more detailed investigations into early HS aggregation, aberrant sulfation patterns and examination of their temporal relationship with tau hyperphosphorylation. In challenging the conventional 'triggers' of AD and urging their reconsideration as symptoms, this review advocates an alternative approach to understanding this disease, offering new avenues of investigation into the intricacies of AD pathogenesis.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/etiologia , Proteínas tau/metabolismo , Animais , Neurogênese , Hipocampo/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Fosforilação , Transdução de Sinais , Peptídeos beta-Amiloides/metabolismo , Receptores Notch/metabolismo
2.
Front Cell Infect Microbiol ; 14: 1393809, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779559

RESUMO

Crohn's disease (CD) is a chronic inflammatory disease that most frequently affects part of the distal ileum, but it may affect any part of the gastrointestinal tract. CD may also be related to systemic inflammation and extraintestinal manifestations. Alzheimer's disease (AD) is the most common neurodegenerative disease, gradually worsening behavioral and cognitive functions. Despite the meaningful progress, both diseases are still incurable and have a not fully explained, heterogeneous pathomechanism that includes immunological, microbiological, genetic, and environmental factors. Recently, emerging evidence indicates that chronic inflammatory condition corresponds to an increased risk of neurodegenerative diseases, and intestinal inflammation, including CD, increases the risk of AD. Even though it is now known that CD increases the risk of AD, the exact pathways connecting these two seemingly unrelated diseases remain still unclear. One of the key postulates is the gut-brain axis. There is increasing evidence that the gut microbiota with its proteins, DNA, and metabolites influence several processes related to the etiology of AD, including ß-amyloid abnormality, Tau phosphorylation, and neuroinflammation. Considering the role of microbiota in both CD and AD pathology, in this review, we want to shed light on bacterial amyloids and their potential to influence cerebral amyloid aggregation and neuroinflammation and provide an overview of the current literature on amyloids as a potential linker between AD and CD.


Assuntos
Doença de Alzheimer , Doença de Crohn , Microbioma Gastrointestinal , Doença de Alzheimer/metabolismo , Doença de Alzheimer/etiologia , Doença de Crohn/metabolismo , Doença de Crohn/microbiologia , Humanos , Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Animais , Eixo Encéfalo-Intestino/fisiologia , Encéfalo/patologia , Encéfalo/metabolismo , Inflamação/metabolismo
3.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791206

RESUMO

Dementia exists as a 'progressive clinical syndrome of deteriorating mental function significant enough to interfere with activities of daily living', with the most prevalent type of dementia being Alzheimer's disease (AD), accounting for about 80% of diagnosed cases. AD is associated with an increased risk of comorbidity with other clinical conditions such as hypertension, diabetes, and neuropsychiatric symptoms (NPS) including, agitation, anxiety, and depression as well as increased mortality in late life. For example, up to 70% of patients diagnosed with AD are affected by anxiety. As aging is the major risk factor for AD, this represents a huge global burden in ageing populations. Over the last 10 years, significant efforts have been made to recognize the complexity of AD and understand the aetiology and pathophysiology of the disease as well as biomarkers for early detection. Yet, earlier treatment options, including acetylcholinesterase inhibitors and glutamate receptor regulators, have been limited as they work by targeting the symptoms, with only the more recent FDA-approved drugs being designed to target amyloid-ß protein with the aim of slowing down the progression of the disease. However, these drugs may only help temporarily, cannot stop or reverse the disease, and do not act by reducing NPS associated with AD. The first-line treatment options for the management of NPS are selective serotonin reuptake inhibitors/selective noradrenaline reuptake inhibitors (SSRIs/SNRIs) targeting the monoaminergic system; however, they are not rational drug choices for the management of anxiety disorders since the GABAergic system has a prominent role in their development. Considering the overall treatment failures and side effects of currently available medication, there is an unmet clinical need for rationally designed therapies for anxiety disorders associated with AD. In this review, we summarize the current status of the therapy of AD and aim to highlight novel angles for future drug therapy in our ongoing efforts to alleviate the cognitive deficits and NPS associated with this devastating disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/etiologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Animais , Inibidores da Colinesterase/uso terapêutico
4.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791263

RESUMO

Stroke and Alzheimer's disease (AD) are prevalent age-related diseases; however, the relationship between these two diseases remains unclear. In this study, we aimed to investigate the ability of melatonin, a hormone produced by the pineal gland, to alleviate the effects of ischemic stroke leading to AD by observing the pathogenesis of AD hallmarks. We utilized SH-SY5Y cells under the conditions of oxygen-glucose deprivation (OGD) and oxygen-glucose deprivation and reoxygenation (OGD/R) to establish ischemic stroke conditions. We detected that hypoxia-inducible factor-1α (HIF-1α), an indicator of ischemic stroke, was highly upregulated at both the protein and mRNA levels under OGD conditions. Melatonin significantly downregulated both HIF-1α mRNA and protein expression under OGD/R conditions. We detected the upregulation of ß-site APP-cleaving enzyme 1 (BACE1) mRNA and protein expression under both OGD and OGD/R conditions, while 10 µM of melatonin attenuated these effects and inhibited beta amyloid (Aß) production. Furthermore, we demonstrated that OGD/R conditions were able to activate the BACE1 promoter, while melatonin inhibited this effect. The present results indicate that melatonin has a significant impact on preventing the aberrant development of ischemic stroke, which can lead to the development of AD, providing new insight into the prevention of AD and potential stroke treatments.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Melatonina , Neuroblastoma , Melatonina/farmacologia , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Linhagem Celular Tumoral , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Glucose/metabolismo , Peptídeos beta-Amiloides/metabolismo , Oxigênio/metabolismo , Hipóxia Celular/efeitos dos fármacos , Hipóxia/metabolismo
5.
Alcohol Res ; 44(1): 03, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812709

RESUMO

PURPOSE: By 2040, 21.6% of Americans will be over age 65, and the population of those older than age 85 is estimated to reach 14.4 million. Although not causative, older age is a risk factor for dementia: every 5 years beyond age 65, the risk doubles; approximately one-third of those older than age 85 are diagnosed with dementia. As current alcohol consumption among older adults is significantly higher compared to previous generations, a pressing question is whether drinking alcohol increases the risk for Alzheimer's disease or other forms of dementia. SEARCH METHODS: Databases explored included PubMed, Web of Science, and ScienceDirect. To accomplish this narrative review on the effects of alcohol consumption on dementia risk, the literature covered included clinical diagnoses, epidemiology, neuropsychology, postmortem pathology, neuroimaging and other biomarkers, and translational studies. Searches conducted between January 12 and August 1, 2023, included the following terms and combinations: "aging," "alcoholism," "alcohol use disorder (AUD)," "brain," "CNS," "dementia," "Wernicke," "Korsakoff," "Alzheimer," "vascular," "frontotemporal," "Lewy body," "clinical," "diagnosis," "epidemiology," "pathology," "autopsy," "postmortem," "histology," "cognitive," "motor," "neuropsychological," "magnetic resonance," "imaging," "PET," "ligand," "degeneration," "atrophy," "translational," "rodent," "rat," "mouse," "model," "amyloid," "neurofibrillary tangles," "α-synuclein," or "presenilin." When relevant, "species" (i.e., "humans" or "other animals") was selected as an additional filter. Review articles were avoided when possible. SEARCH RESULTS: The two terms "alcoholism" and "aging" retrieved about 1,350 papers; adding phrases-for example, "postmortem" or "magnetic resonance"-limited the number to fewer than 100 papers. Using the traditional term, "alcoholism" with "dementia" resulted in 876 citations, but using the currently accepted term "alcohol use disorder (AUD)" with "dementia" produced only 87 papers. Similarly, whereas the terms "Alzheimer's" and "alcoholism" yielded 318 results, "Alzheimer's" and "alcohol use disorder (AUD)" returned only 40 citations. As pertinent postmortem pathology papers were published in the 1950s and recent animal models of Alzheimer's disease were created in the early 2000s, articles referenced span the years 1957 to 2024. In total, more than 5,000 articles were considered; about 400 are herein referenced. DISCUSSION AND CONCLUSIONS: Chronic alcohol misuse accelerates brain aging and contributes to cognitive impairments, including those in the mnemonic domain. The consensus among studies from multiple disciplines, however, is that alcohol misuse can increase the risk for dementia, but not necessarily Alzheimer's disease. Key issues to consider include the reversibility of brain damage following abstinence from chronic alcohol misuse compared to the degenerative and progressive course of Alzheimer's disease, and the characteristic presence of protein inclusions in the brains of people with Alzheimer's disease, which are absent in the brains of those with AUD.


Assuntos
Alcoolismo , Demência , Humanos , Demência/etiologia , Demência/epidemiologia , Alcoolismo/epidemiologia , Idoso , Animais , Idoso de 80 Anos ou mais , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/epidemiologia , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Fatores de Risco
6.
Redox Biol ; 73: 103180, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795546

RESUMO

This study unveils a novel role of pyrogallol (PG), a recognized superoxide generator, in inducing beta-amyloid (Aß) secretion in an Alzheimer's disease (AD) cellular model. Contrary to expectations, the analysis of dihydroethidium fluorescence and UV-VIS spectrum scanning reveals that Aß secretion arises from PG reaction intermediates rather than superoxide or other by-products. Investigation into Aß secretion mechanisms identifies dynasore-dependent endocytosis and BFA-dependent exocytosis as independent pathways, regulated by tiron, tempol, and superoxide dismutase. Cell-type specificity is observed, with 293sw cells showing both pathways, while H4sw cells and primary astrocytes from an AD animal model exclusively exhibit the Aß exocytosis pathway. This exploration contributes to understanding PG's chemical reactions and provides insights into the interplay between environmental factors, free radicals, and AD, linking occupational PG exposure to AD risk as reported in the literature.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Pirogalol , Superóxidos , Peptídeos beta-Amiloides/metabolismo , Humanos , Pirogalol/farmacologia , Pirogalol/análogos & derivados , Superóxidos/metabolismo , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Astrócitos/metabolismo , Exocitose , Endocitose , Superóxido Dismutase/metabolismo , Óxidos N-Cíclicos/farmacologia
7.
Eur J Med Res ; 29(1): 261, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698427

RESUMO

BACKGROUND: Prior observational research has investigated the association between dietary patterns and Alzheimer's disease (AD) risk. Nevertheless, due to constraints in past observational studies, establishing a causal link between dietary habits and AD remains challenging. METHODS: Methodology involved the utilization of extensive cohorts sourced from publicly accessible genome-wide association study (GWAS) datasets of European descent for conducting Mendelian randomization (MR) analyses. The principal analytical technique utilized was the inverse-variance weighted (IVW) method. RESULTS: The MR analysis conducted in this study found no statistically significant causal association between 20 dietary habits and the risk of AD (All p > 0.05). These results were consistent across various MR methods employed, including MR-Egger, weighted median, simple mode, and weighted mode approaches. Moreover, there was no evidence of horizontal pleiotropy detected (All p > 0.05). CONCLUSION: In this MR analysis, our finding did not provide evidence to support the causal genetic relationships between dietary habits and AD risk.


Assuntos
Doença de Alzheimer , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Doença de Alzheimer/genética , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/etiologia , Humanos , Análise da Randomização Mendeliana/métodos , Estudo de Associação Genômica Ampla/métodos , Fatores de Risco , Comportamento Alimentar/fisiologia , Dieta/efeitos adversos , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença
8.
J Alzheimers Dis ; 99(3): 843-856, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38788067

RESUMO

Background: There is a common agreement that Alzheimers disease (AD) is inherently complex; otherwise, a general disagreement remains on its etiological underpinning, with numerous alternative hypotheses having been proposed. Objective: To perform a scoping review of original manuscripts describing hypotheses and theories of AD published in the past decades. Results: We reviewed 131 original manuscripts that fulfilled our inclusion criteria out of more than 13,807 references extracted from open databases. Each entry was characterized as having a single or multifactorial focus and assigned to one of 15 theoretical groupings. Impact was tracked using open citation tools. Results: Three stages can be discerned in terms of hypotheses generation, with three quarter of studies proposing a hypothesis characterized as being single-focus. The most important theoretical groupings were the Amyloid group, followed by Metabolism and Mitochondrial dysfunction, then Infections and Cerebrovascular. Lately, evidence towards Genetics and especially Gut/Brain interactions came to the fore. Conclusions: When viewed together, these multi-faceted reports reinforce the notion that AD affects multiple sub-cellular, cellular, anatomical, and physiological systems at the same time but at varying degree between individuals. The challenge of providing a comprehensive view of all systems and their interactions remains, alongside ways to manage this inherent complexity.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Encéfalo/patologia
9.
J Biochem Mol Toxicol ; 38(6): e23741, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816991

RESUMO

Alzheimer's disease (AD) is a progressive decline in cognitive ability and behavior which eventually disrupts daily activities. AD has no cure and the progression rate varies unlikely. Among various causative factors, heavy metals are reported to be a significant hazard in AD pathogenesis. Metal-induced neurodegeneration has been focused globally with thorough research to unravel the mechanistic insights in AD. Recently, heavy metals suggested to play an important role in epigenetic alterations which might provide evidential results on AD pathology. Epigenetic modifications are known to play towards novel therapeutic approaches in treating AD. Though many studies focus on epigenetics and heavy metal implications in AD, there is a lack of research on heavy metal influence on epigenetic toxicity in neurological disorders. The current review aims to elucidate the plausible role of cadmium (Cd), iron (Fe), arsenic (As), copper (Cu), and lithium (Li) metals on epigenetic factors and the increase in amyloid beta and tau phosphorylation in AD. Also, the review discusses the common methods of heavy metal detection to implicate in AD pathogenesis. Hence, from this review, we can extend the need for future research on identifying the mechanistic behavior of heavy metals on epigenetic toxicity and to develop diagnostic and therapeutic markers in AD.


Assuntos
Doença de Alzheimer , Epigênese Genética , Metais Pesados , Doença de Alzheimer/genética , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Doença de Alzheimer/etiologia , Humanos , Epigênese Genética/efeitos dos fármacos , Metais Pesados/toxicidade , Peptídeos beta-Amiloides/metabolismo , Animais , Proteínas tau/metabolismo , Proteínas tau/genética
11.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731800

RESUMO

Understanding the molecular underpinnings of neurodegeneration processes is a pressing challenge for medicine and neurobiology. Alzheimer's disease (AD) and Parkinson's disease (PD) represent the most prevalent forms of neurodegeneration. To date, a substantial body of experimental evidence has strongly implicated hypoxia in the pathogenesis of numerous neurological disorders, including AD, PD, and other age-related neurodegenerative conditions. Hypoxia-inducible factor (HIF) is a transcription factor that triggers a cell survival program in conditions of oxygen deprivation. The involvement of HIF-1α in neurodegenerative processes presents a complex and sometimes contradictory picture. This review aims to elucidate the current understanding of the interplay between hypoxia and the development of AD and PD, assess the involvement of HIF-1 in their pathogenesis, and summarize promising therapeutic approaches centered on modulating the activity of the HIF-1 complex.


Assuntos
Homeostase , Subunidade alfa do Fator 1 Induzível por Hipóxia , Doenças Neurodegenerativas , Oxigênio , Doença de Parkinson , Humanos , Oxigênio/metabolismo , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/etiologia , Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo
12.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731858

RESUMO

This editorial investigates chronic traumatic encephalopathy (CTE) as a course of Alzheimer's disease (AD). CTE is a debilitating neurodegenerative disease that is the result of repeated mild traumatic brain injury (TBI). Many epidemiological studies show that experiencing a TBI in early or middle life is associated with an increased risk of dementia later in life. Chronic traumatic encephalopathy (CTE) and Alzheimer's disease (AD) present a series of similar neuropathological features that were investigated in this work like recombinant tau into filaments or the accumulation and aggregation of Aß protein. However, these two conditions differ from each other in brain-blood barrier damage. The purpose of this review was to evaluate information about CTE and AD from various articles, focusing especially on new therapeutic possibilities for the improvement in cognitive skills.


Assuntos
Doença de Alzheimer , Encefalopatia Traumática Crônica , Humanos , Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Doença de Alzheimer/etiologia , Encefalopatia Traumática Crônica/patologia , Encefalopatia Traumática Crônica/complicações , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia
13.
Neurobiol Aging ; 139: 20-29, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583392

RESUMO

Brazilian green propolis (propolis) is a chemically complex resinous substance that is a potentially viable therapeutic agent for Alzheimer's disease. Herein, propolis induced a transient increase in intracellular Ca2+ concentration ([Ca2+]i) in Neuro-2A cells; moreover, propolis-induced [Ca2+]i elevations were suppressed prior to 24-h pretreatment with amyloid-ß. To reveal the effect of [Ca2+]i elevation on impaired cognition, we performed memory-related behavioral tasks in APP-KI mice relative to WT mice at 4 and 12 months of age. Propolis, at 300-1000 mg/kg/d for 8 wk, significantly ameliorated cognitive deficits in APP-KI mice at 4 months, but not at 12 months of age. Consistent with behavioral observations, injured hippocampal long-term potentiation was markedly ameliorated in APP-KI mice at 4 months of age following repeated propolis administration. In addition, repeated administration of propolis significantly activated intracellular calcium signaling pathway in the CA1 region of APP-KI mice. These results suggest a preventive effect of propolis on cognitive decline through the activation of intracellular calcium signaling pathways in CA1 region of AD mice model.


Assuntos
Doença de Alzheimer , Cálcio , Disfunção Cognitiva , Modelos Animais de Doenças , Própole , Animais , Própole/uso terapêutico , Própole/administração & dosagem , Própole/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/psicologia , Doença de Alzheimer/etiologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/tratamento farmacológico , Cálcio/metabolismo , Camundongos Transgênicos , Sinalização do Cálcio/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Peptídeos beta-Amiloides/metabolismo , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Camundongos
14.
Sci Adv ; 10(14): eadk3674, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569027

RESUMO

The immune system substantially influences age-related cognitive decline and Alzheimer's disease (AD) progression, affected by genetic and environmental factors. In a Mayo Clinic Study of Aging cohort, we examined how risk factors like APOE genotype, age, and sex affect inflammatory molecules and AD biomarkers in cerebrospinal fluid (CSF). Among cognitively unimpaired individuals over 65 (N = 298), we measured 365 CSF inflammatory molecules, finding age, sex, and diabetes status predominantly influencing their levels. We observed age-related correlations with AD biomarkers such as total tau, phosphorylated tau-181, neurofilament light chain (NfL), and YKL40. APOE4 was associated with lower Aß42 and higher SNAP25 in CSF. We explored baseline variables predicting cognitive decline risk, finding age, CSF Aß42, NfL, and REG4 to be independently correlated. Subjects with older age, lower Aß42, higher NfL, and higher REG4 at baseline had increased cognitive impairment risk during follow-up. This suggests that assessing CSF inflammatory molecules and AD biomarkers could predict cognitive impairment risk in the elderly.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/etiologia , Doença de Alzheimer/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Proteínas tau , Biomarcadores , Peptídeos beta-Amiloides , Fragmentos de Peptídeos
15.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674097

RESUMO

The insulin-like growth factor (IGF) system has paracrine and endocrine roles in the central nervous system. There is evidence that IGF signalling pathways have roles in the pathophysiology of neurodegenerative disease. This review focusses on Alzheimer's disease and Parkinson's disease, the two most common neurodegenerative disorders that are increasing in prevalence globally in relation to the aging population and the increasing prevalence of obesity and type 2 diabetes. Rodent models used in the study of the molecular pathways involved in neurodegeneration are described. However, currently, no animal model fully replicates these diseases. Mice with triple mutations in APP, PSEN and MAPT show promise as models for the testing of novel Alzheimer's therapies. While a causal relationship is not proven, the fact that age, obesity and T2D are risk factors in both strengthens the case for the involvement of the IGF system in these disorders. The IGF system is an attractive target for new approaches to management; however, there are gaps in our understanding that first need to be addressed. These include a focus beyond IGF-I on other members of the IGF system, including IGF-II, IGF-binding proteins and the type 2 IGF receptor.


Assuntos
Doenças Neurodegenerativas , Humanos , Animais , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Transdução de Sinais , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/genética , Somatomedinas/metabolismo , Modelos Animais de Doenças , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Peptídeos Semelhantes à Insulina
16.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674088

RESUMO

The aim of this comprehensive review is to summarize recent literature on associations between periodontitis and neurodegenerative diseases, explore the bidirectionality and provide insights into the plausible pathogenesis. For this purpose, systematic reviews and meta-analyses from PubMed, Medline and EMBASE were considered. Out of 33 retrieved papers, 6 articles complying with the inclusion criteria were selected and discussed. Additional relevant papers for bidirectionality and pathogenesis were included. Results show an association between periodontitis and Alzheimer's disease, with odds ratios of 3 to 5. A bidirectional relationship is suspected. For Parkinson's disease (PD), current evidence for an association appears to be weak, although poor oral health and PD seem to be correlated. A huge knowledge gap was identified. The plausible mechanistic link for the association between periodontitis and neurodegenerative diseases is the interplay between periodontal inflammation and neuroinflammation. Three pathways are hypothesized in the literature, i.e., humoral, neuronal and cellular, with a clear role of periodontal pathogens, such as Porphyromonas gingivalis. Age, gender, race, smoking, alcohol intake, nutrition, physical activity, socioeconomic status, stress, medical comorbidities and genetics were identified as common risk factors for periodontitis and neurodegenerative diseases. Future research with main emphasis on the collaboration between neurologists and dentists is encouraged.


Assuntos
Doenças Neurodegenerativas , Periodontite , Humanos , Periodontite/complicações , Periodontite/epidemiologia , Fatores de Risco , Doenças Neurodegenerativas/epidemiologia , Doenças Neurodegenerativas/etiologia , Doença de Parkinson/epidemiologia , Doença de Alzheimer/etiologia , Doença de Alzheimer/epidemiologia
17.
Pharmacol Res ; 203: 107171, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599469

RESUMO

The impact of Alzheimer's disease (AD) and its related dementias is rapidly expanding, and its mitigation remains an urgent social and technical challenge. To date there are no effective treatments or interventions for AD, but recent studies suggest that alcohol consumption is correlated with the risk of developing dementia. In this review, we synthesize data from preclinical, clinical, and epidemiological models to evaluate the combined role of alcohol consumption and serotonergic dysfunction in AD, underscoring the need for further research on this topic. We first discuss the limitations inherent to current data-collection methods, and how neuropsychiatric symptoms common among AD, alcohol use disorder, and serotonergic dysfunction may mask their co-occurrence. We additionally describe how excess alcohol consumption may accelerate the development of AD via direct effects on serotonergic function, and we explore the roles of neuroinflammation and proteostasis in mediating the relationship between serotonin, alcohol consumption, and AD. Lastly, we argue for a shift in current research to disentangle the pathogenic effects of alcohol on early-affected brainstem structures in AD.


Assuntos
Consumo de Bebidas Alcoólicas , Doença de Alzheimer , Serotonina , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/etiologia , Serotonina/metabolismo , Consumo de Bebidas Alcoólicas/efeitos adversos , Animais , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Alcoolismo/metabolismo
18.
Mol Ther ; 32(5): 1373-1386, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38504517

RESUMO

Epidemiological studies show that individuals who carry the relatively uncommon APOE ε2 allele rarely develop Alzheimer disease, and if they do, they have a later age of onset, milder clinical course, and less severe neuropathological findings than people without this allele. The contrast is especially stark when compared with the major genetic risk factor for Alzheimer disease, APOE ε4, which has an age of onset several decades earlier, a more aggressive clinical course and more severe neuropathological findings, especially in terms of the amount of amyloid deposition. Here, we demonstrate that brain exposure to APOE ε2 via a gene therapy approach, which bathes the entire cortical mantle in the gene product after transduction of the ependyma, reduces Aß plaque deposition, neurodegenerative synaptic loss, and, remarkably, reduces microglial activation in an APP/PS1 mouse model despite continued expression of human APOE ε4. This result suggests a promising protective effect of exogenous APOE ε2 and reveals a cell nonautonomous effect of the protein on microglial activation, which we show is similar to plaque-associated microglia in the brain of Alzheimer disease patients who inherit APOE ε2. These data increase the potential that an APOE ε2 therapeutic could be effective in Alzheimer disease, even in individuals born with the risky ε4 allele.


Assuntos
Doença de Alzheimer , Apolipoproteína E2 , Modelos Animais de Doenças , Terapia Genética , Camundongos Transgênicos , Microglia , Placa Amiloide , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/etiologia , Camundongos , Terapia Genética/métodos , Humanos , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Microglia/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/terapia , Doenças Neuroinflamatórias/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores
19.
Sci Rep ; 14(1): 5385, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443419

RESUMO

Alzheimer's disease (AD) is the most common type of dementia with millions of affected patients worldwide. Currently, there is still no cure and AD is often diagnosed long time after onset because there is no clear diagnosis. Thus, it is essential to study the physiology and pathogenesis of AD, investigating the risk factors that could be strongly connected to the disease onset. Despite AD, like other complex diseases, is the result of the combination of several factors, there is emerging agreement that environmental pollution should play a pivotal role in the causes of disease. In this work, we implemented an Artificial Intelligence model to predict AD mortality, expressed as Standardized Mortality Ratio, at Italian provincial level over 5 years. We employed a set of publicly available variables concerning pollution, health, society and economy to feed a Random Forest algorithm. Using methods based on eXplainable Artificial Intelligence (XAI) we found that air pollution (mainly O 3 and N O 2 ) contribute the most to AD mortality prediction. These results could help to shed light on the etiology of Alzheimer's disease and to confirm the urgent need to further investigate the relationship between the environment and the disease.


Assuntos
Doença de Alzheimer , Poluentes Ambientais , Humanos , Inteligência Artificial , Doença de Alzheimer/etiologia , Aprendizado de Máquina , Poluição Ambiental
20.
Geroscience ; 46(3): 2977-2988, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38457008

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder and the most common cause of dementia globally. The pathogenesis of AD remains still unclear. The three main features of AD are extracellular deposits of amyloid beta (Aß) plaque, accumulation of abnormal formation hyper-phosphorylated tau protein, and neuronal loss. Mitochondrial impairment plays an important role in the pathogenesis of AD. There are problems with decreased activity of multiple complexes, disturbed mitochondrial fusion, and fission or formation of reactive oxygen species (ROS). Moreover, mitochondrial transport is impaired in AD. Mouse models in many research show disruptions in anterograde and retrograde transport. Both mitochondrial transportation and network impairment have a huge impact on synapse loss and, as a result, cognitive impairment. One of the very serious problems in AD is also disruption of insulin signaling which impairs mitochondrial Aß removal.Discovering precise mechanisms leading to AD enables us to find new treatment possibilities. Recent studies indicate the positive influence of metformin or antioxidants such as MitoQ, SS-31, SkQ, MitoApo, MitoTEMPO, and MitoVitE on mitochondrial functioning and hence prevent cognitive decline. Impairments in mitochondrial fission may be treated with mitochondrial division inhibitor-1 or ceramide.


Assuntos
Doença de Alzheimer , Doenças Mitocondriais , Camundongos , Animais , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/etiologia , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Doenças Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Antioxidantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...