Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.828
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 88, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840253

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the coding sequence of huntingtin protein. Initially, it predominantly affects medium-sized spiny neurons (MSSNs) of the corpus striatum. No effective treatment is still available, thus urging the identification of potential therapeutic targets. While evidence of mitochondrial structural alterations in HD exists, previous studies mainly employed 2D approaches and were performed outside the strictly native brain context. In this study, we adopted a novel multiscale approach to conduct a comprehensive 3D in situ structural analysis of mitochondrial disturbances in a mouse model of HD. We investigated MSSNs within brain tissue under optimal structural conditions utilizing state-of-the-art 3D imaging technologies, specifically FIB/SEM for the complete imaging of neuronal somas and Electron Tomography for detailed morphological examination, and image processing-based quantitative analysis. Our findings suggest a disruption of the mitochondrial network towards fragmentation in HD. The network of interlaced, slim and long mitochondria observed in healthy conditions transforms into isolated, swollen and short entities, with internal cristae disorganization, cavities and abnormally large matrix granules.


Assuntos
Modelos Animais de Doenças , Doença de Huntington , Imageamento Tridimensional , Mitocôndrias , Animais , Doença de Huntington/patologia , Doença de Huntington/genética , Doença de Huntington/metabolismo , Mitocôndrias/ultraestrutura , Mitocôndrias/patologia , Mitocôndrias/metabolismo , Imageamento Tridimensional/métodos , Camundongos , Camundongos Transgênicos , Encéfalo/patologia , Encéfalo/ultraestrutura , Encéfalo/metabolismo , Microscopia Eletrônica/métodos , Masculino , Neurônios/patologia , Neurônios/ultraestrutura , Neurônios/metabolismo
2.
Cell Commun Signal ; 22(1): 321, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863004

RESUMO

Huntington's disease (HD) is a neurological disorder caused by a CAG expansion in the Huntingtin gene (HTT). HD pathology mostly affects striatal medium-sized spiny neurons and results in an altered cortico-striatal function. Recent studies report that motor skill learning, and cortico-striatal stimulation attenuate the neuropathology in HD, resulting in an amelioration of some motor and cognitive functions. During physical training, extracellular vesicles (EVs) are released in many tissues, including the brain, as a potential means for inter-tissue communication. To investigate how motor skill learning, involving acute physical training, modulates EVs crosstalk between cells in the striatum, we trained wild-type (WT) and R6/1 mice, the latter with motor and cognitive deficits, on the accelerating rotarod test, and we isolated their striatal EVs. EVs from R6/1 mice presented alterations in the small exosome population when compared to WT. Proteomic analyses revealed that striatal R6/1 EVs recapitulated signaling and energy deficiencies present in HD. Motor skill learning in R6/1 mice restored the amount of EVs and their protein content in comparison to naïve R6/1 mice. Furthermore, motor skill learning modulated crucial pathways in metabolism and neurodegeneration. All these data provide new insights into the pathogenesis of HD and put striatal EVs in the spotlight to understand the signaling and metabolic alterations in neurodegenerative diseases. Moreover, our results suggest that motor learning is a crucial modulator of cell-to-cell communication in the striatum.


Assuntos
Corpo Estriado , Modelos Animais de Doenças , Vesículas Extracelulares , Doença de Huntington , Aprendizagem , Destreza Motora , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Doença de Huntington/genética , Animais , Vesículas Extracelulares/metabolismo , Destreza Motora/fisiologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Aprendizagem/fisiologia , Camundongos , Masculino , Camundongos Transgênicos , Camundongos Endogâmicos C57BL
3.
Elife ; 122024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869243

RESUMO

An expanded CAG repeat in the huntingtin gene (HTT) causes Huntington's disease (HD). Since the length of uninterrupted CAG repeat, not polyglutamine, determines the age-at-onset in HD, base editing strategies to convert CAG to CAA are anticipated to delay onset by shortening the uninterrupted CAG repeat. Here, we developed base editing strategies to convert CAG in the repeat to CAA and determined their molecular outcomes and effects on relevant disease phenotypes. Base editing strategies employing combinations of cytosine base editors and guide RNAs (gRNAs) efficiently converted CAG to CAA at various sites in the CAG repeat without generating significant indels, off-target edits, or transcriptome alterations, demonstrating their feasibility and specificity. Candidate BE strategies converted CAG to CAA on both expanded and non-expanded CAG repeats without altering HTT mRNA and protein levels. In addition, somatic CAG repeat expansion, which is the major disease driver in HD, was significantly decreased in the liver by a candidate BE strategy treatment in HD knock-in mice carrying canonical CAG repeats. Notably, CAG repeat expansion was abolished entirely in HD knock-in mice carrying CAA-interrupted repeats, supporting the therapeutic potential of CAG-to-CAA conversion strategies in HD and potentially other repeat expansion disorders.


Assuntos
Edição de Genes , Proteína Huntingtina , Doença de Huntington , Expansão das Repetições de Trinucleotídeos , Doença de Huntington/genética , Doença de Huntington/terapia , Animais , Edição de Genes/métodos , Camundongos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Modelos Animais de Doenças , Humanos , Mutação , Técnicas de Introdução de Genes
4.
Cell Death Dis ; 15(5): 337, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744826

RESUMO

Huntington's disease (HD) is a monogenic neurodegenerative disease, caused by the CAG trinucleotide repeat expansion in exon 1 of the Huntingtin (HTT) gene. The HTT gene encodes a large protein known to interact with many proteins. Huntingtin-associated protein 40 (HAP40) is one that shows high binding affinity with HTT and functions to maintain HTT conformation in vitro. However, the potential role of HAP40 in HD pathogenesis remains unknown. In this study, we found that the expression level of HAP40 is in parallel with HTT but inversely correlates with mutant HTT aggregates in mouse brains. Depletion of endogenous HAP40 in the striatum of HD140Q knock-in (KI) mice leads to enhanced mutant HTT aggregation and neuronal loss. Consistently, overexpression of HAP40 in the striatum of HD140Q KI mice reduced mutant HTT aggregation and ameliorated the behavioral deficits. Mechanistically, HAP40 preferentially binds to mutant HTT and promotes Lysine 48-linked ubiquitination of mutant HTT. Our results revealed that HAP40 is an important regulator of HTT protein homeostasis in vivo and hinted at HAP40 as a therapeutic target in HD treatment.


Assuntos
Proteína Huntingtina , Doença de Huntington , Animais , Doença de Huntington/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Camundongos , Humanos , Modelos Animais de Doenças , Ubiquitinação , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Mutação , Agregados Proteicos , Camundongos Transgênicos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Neurônios/metabolismo , Neurônios/patologia
5.
Sci Adv ; 10(20): eadl2036, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758800

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease characterized by preferential neuronal loss in the striatum. The mechanism underlying striatal selective neurodegeneration remains unclear, making it difficult to develop effective treatments for HD. In the brains of nonhuman primates, we examined the expression of Huntingtin (HTT), the gene responsible for HD. We found that HTT protein is highly expressed in striatal neurons due to its slow degradation in the striatum. We also identified tripartite motif-containing 37 (TRIM37) as a primate-specific protein that interacts with HTT and is selectively reduced in the primate striatum. TRIM37 promotes the ubiquitination and degradation of mutant HTT (mHTT) in vitro and modulates mHTT aggregation in mouse and monkey brains. Our findings suggest that nonhuman primates are crucial for understanding the mechanisms of human diseases such as HD and support TRIM37 as a potential therapeutic target for treating HD.


Assuntos
Corpo Estriado , Proteína Huntingtina , Doença de Huntington , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Ubiquitinação , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Doença de Huntington/genética , Animais , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Camundongos , Humanos , Modelos Animais de Doenças , Neurônios/metabolismo , Neurônios/patologia , Proteólise , Primatas
6.
Mol Cell ; 84(10): 1980-1994.e8, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759629

RESUMO

Aggregation of proteins containing expanded polyglutamine (polyQ) repeats is the cytopathologic hallmark of a group of dominantly inherited neurodegenerative diseases, including Huntington's disease (HD). Huntingtin (Htt), the disease protein of HD, forms amyloid-like fibrils by liquid-to-solid phase transition. Macroautophagy has been proposed to clear polyQ aggregates, but the efficiency of aggrephagy is limited. Here, we used cryo-electron tomography to visualize the interactions of autophagosomes with polyQ aggregates in cultured cells in situ. We found that an amorphous aggregate phase exists next to the radially organized polyQ fibrils. Autophagosomes preferentially engulfed this amorphous material, mediated by interactions between the autophagy receptor p62/SQSTM1 and the non-fibrillar aggregate surface. In contrast, amyloid fibrils excluded p62 and evaded clearance, resulting in trapping of autophagic structures. These results suggest that the limited efficiency of autophagy in clearing polyQ aggregates is due to the inability of autophagosomes to interact productively with the non-deformable, fibrillar disease aggregates.


Assuntos
Amiloide , Autofagossomos , Autofagia , Proteína Huntingtina , Doença de Huntington , Peptídeos , Agregados Proteicos , Proteína Sequestossoma-1 , Peptídeos/metabolismo , Peptídeos/química , Peptídeos/genética , Humanos , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/química , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Amiloide/metabolismo , Amiloide/química , Amiloide/genética , Doença de Huntington/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Microscopia Crioeletrônica , Animais , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/genética
7.
Biochem Biophys Res Commun ; 716: 150010, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704892

RESUMO

Calcium (Ca2+) in mitochondria plays crucial roles in neurons including modulating metabolic processes. Moreover, excessive Ca2+ in mitochondria can lead to cell death. Thus, altered mitochondrial Ca2+ regulation has been implicated in several neurodegenerative diseases including Huntington's disease (HD). HD is a progressive hereditary neurodegenerative disorder that results from abnormally expanded cytosine-adenine-guanine trinucleotide repeats in the huntingtin gene. One neuropathological hallmark of HD is neuronal loss in the striatum and cortex. However, mechanisms underlying selective loss of striatal and cortical neurons in HD remain elusive. Here, we measured the basal Ca2+ levels and Ca2+ uptake in single presynaptic mitochondria during 100 external electrical stimuli using highly sensitive mitochondria-targeted Ca2+ indicators in cultured cortical and striatal neurons of a knock-in mouse model of HD (zQ175 mice). We observed elevated presynaptic mitochondrial Ca2+ uptake during 100 electrical stimuli in HD cortical neurons compared with wild-type (WT) cortical neurons. We also found the highly elevated presynaptic mitochondrial basal Ca2+ level and Ca2+ uptake during 100 stimuli in HD striatal neurons. The elevated presynaptic mitochondrial basal Ca2+ level in HD striatal neurons and Ca2+ uptake during stimulation in HD striatal and cortical neurons can disrupt neurotransmission and induce mitochondrial Ca2+ overload, eventually leading to neuronal death in the striatum and cortex of HD.


Assuntos
Cálcio , Córtex Cerebral , Corpo Estriado , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Doença de Huntington , Mitocôndrias , Terminações Pré-Sinápticas , Animais , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Doença de Huntington/genética , Cálcio/metabolismo , Mitocôndrias/metabolismo , Camundongos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Terminações Pré-Sinápticas/metabolismo , Células Cultivadas , Neurônios/metabolismo , Neurônios/patologia , Camundongos Transgênicos
8.
BMC Biol ; 22(1): 121, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783261

RESUMO

BACKGROUND: Huntington disease (HD) is a neurodegenerative disorder with complex motor and behavioural manifestations. The Q175 knock-in mouse model of HD has gained recent popularity as a genetically accurate model of the human disease. However, behavioural phenotypes are often subtle and progress slowly in this model. Here, we have implemented machine-learning algorithms to investigate behaviour in the Q175 model and compare differences between sexes and disease stages. We explore distinct behavioural patterns and motor functions in open field, rotarod, water T-maze, and home cage lever-pulling tasks. RESULTS: In the open field, we observed habituation deficits in two versions of the Q175 model (zQ175dn and Q175FDN, on two different background strains), and using B-SOiD, an advanced machine learning approach, we found altered performance of rearing in male manifest zQ175dn mice. Notably, we found that weight had a considerable effect on performance of accelerating rotarod and water T-maze tasks and controlled for this by normalizing for weight. Manifest zQ175dn mice displayed a deficit in accelerating rotarod (after weight normalization), as well as changes to paw kinematics specific to males. Our water T-maze experiments revealed response learning deficits in manifest zQ175dn mice and reversal learning deficits in premanifest male zQ175dn mice; further analysis using PyMouseTracks software allowed us to characterize new behavioural features in this task, including time at decision point and number of accelerations. In a home cage-based lever-pulling assessment, we found significant learning deficits in male manifest zQ175dn mice. A subset of mice also underwent electrophysiology slice experiments, revealing a reduced spontaneous excitatory event frequency in male manifest zQ175dn mice. CONCLUSIONS: Our study uncovered several behavioural changes in Q175 mice that differed by sex, age, and strain. Our results highlight the impact of weight and experimental protocol on behavioural results, and the utility of machine learning tools to examine behaviour in more detailed ways than was previously possible. Specifically, this work provides the field with an updated overview of behavioural impairments in this model of HD, as well as novel techniques for dissecting behaviour in the open field, accelerating rotarod, and T-maze tasks.


Assuntos
Comportamento Animal , Peso Corporal , Modelos Animais de Doenças , Doença de Huntington , Fenótipo , Animais , Doença de Huntington/fisiopatologia , Doença de Huntington/genética , Camundongos , Masculino , Feminino , Comportamento Animal/fisiologia , Fatores Sexuais , Fatores Etários , Aprendizado de Máquina , Aprendizagem em Labirinto
9.
Biomolecules ; 14(5)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38786006

RESUMO

Age is the primary risk factor for neurodegenerative diseases such as Alzheimer's and Huntington's disease. Alzheimer's disease is the most common form of dementia and a leading cause of death in the elderly population of the United States. No effective treatments for these diseases currently exist. Identifying effective treatments for Alzheimer's, Huntington's, and other neurodegenerative diseases is a major current focus of national scientific resources, and there is a critical need for novel therapeutic strategies. Here, we investigate the potential for targeting the kynurenine pathway metabolite 3-hydroxyanthranilic acid (3HAA) using Caenorhabditis elegans expressing amyloid-beta or a polyglutamine peptide in body wall muscle, modeling the proteotoxicity in Alzheimer's and Huntington's disease, respectively. We show that knocking down the enzyme that degrades 3HAA, 3HAA dioxygenase (HAAO), delays the age-associated paralysis in both models. This effect on paralysis was independent of the protein aggregation in the polyglutamine model. We also show that the mechanism of protection against proteotoxicity from HAAO knockdown is mimicked by 3HAA supplementation, supporting elevated 3HAA as the mediating event linking HAAO knockdown to delayed paralysis. This work demonstrates the potential for 3HAA as a targeted therapeutic in neurodegenerative disease, though the mechanism is yet to be explored.


Assuntos
Ácido 3-Hidroxiantranílico , Peptídeos beta-Amiloides , Caenorhabditis elegans , Paralisia , Peptídeos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Animais , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos/farmacologia , Ácido 3-Hidroxiantranílico/metabolismo , Paralisia/induzido quimicamente , Paralisia/metabolismo , Paralisia/genética , Modelos Animais de Doenças , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/tratamento farmacológico , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Doença de Huntington/metabolismo , Doença de Huntington/genética , Dioxigenases/metabolismo , Dioxigenases/genética
10.
Cells ; 13(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38786052

RESUMO

Huntington's disease (HD) arises from expanded CAG repeats in exon 1 of the Huntingtin (HTT) gene. The resultant misfolded HTT protein accumulates within neuronal cells, negatively impacting their function and survival. Ultimately, HTT accumulation results in cell death, causing the development of HD. A nonhuman primate (NHP) HD model would provide important insight into disease development and the generation of novel therapies due to their genetic and physiological similarity to humans. For this purpose, we tested CRISPR/Cas9 and a single-stranded DNA (ssDNA) containing expanded CAG repeats in introducing an expanded CAG repeat into the HTT gene in rhesus macaque embryos. Analyses were conducted on arrested embryos and trophectoderm (TE) cells biopsied from blastocysts to assess the insertion of the ssDNA into the HTT gene. Genotyping results demonstrated that 15% of the embryos carried an expanded CAG repeat. The integration of an expanded CAG repeat region was successfully identified in five blastocysts, which were cryopreserved for NHP HD animal production. Some off-target events were observed in biopsies from the cryopreserved blastocysts. NHP embryos were successfully produced, which will help to establish an NHP HD model and, ultimately, may serve as a vital tool for better understanding HD's pathology and developing novel treatments.


Assuntos
Proteína Huntingtina , Macaca mulatta , Animais , Macaca mulatta/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Blastocisto/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Embrião de Mamíferos/metabolismo , Sistemas CRISPR-Cas/genética , Feminino , Modelos Animais de Doenças
11.
J Mol Biol ; 436(12): 168607, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38734203

RESUMO

Polyglutamine (polyQ) sequences undergo repeat-length dependent formation of disease-associated, amyloid-like cross-ß core structures with kinetics and aggregate morphologies often influenced by the flanking sequences. In Huntington's disease (HD), the httNT segment on the polyQ's N-terminal flank enhances aggregation rates by changing amyloid nucleation from a classical homogeneous mechanism to a two-step process requiring an ɑ-helix-rich oligomeric intermediate. A folded, helix-rich httNT tetrameric structure suggested to be this critical intermediate was recently reported. Here we employ single alanine replacements along the httNT sequence to assess this proposed structure and refine the mechanistic model. We find that Ala replacement of hydrophobic residues within simple httNT peptides greatly suppresses helicity, supporting the tetramer model. These same helix-disruptive replacements in the httNT segment of an exon-1 analog greatly reduce aggregation kinetics, suggesting that an ɑ-helix rich multimer - either the tetramer or a larger multimer - plays an on-pathway role in nucleation. Surprisingly, several other Ala replacements actually enhance helicity and/or amyloid aggregation. The spatial localization of these residues on the tetramer surface suggests a self-association interface responsible for formation of the octomers and higher-order multimers most likely required for polyQ amyloid nucleation. Multimer docking of the tetramer, using the protein-protein docking algorithm ClusPro, predicts this symmetric surface to be a viable tetramer dimerization interface. Intriguingly, octomer formation brings the emerging polyQ chains into closer proximity at this tetramer-tetramer interface. Further supporting the potential importance of tetramer super-assembly, computational docking with a known exon-1 aggregation inhibitor predicts ligand contacts with residues at this interface.


Assuntos
Amiloide , Éxons , Proteína Huntingtina , Peptídeos , Multimerização Proteica , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Humanos , Amiloide/química , Amiloide/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/genética , Cinética , Interações Hidrofóbicas e Hidrofílicas , Agregados Proteicos , Modelos Moleculares
12.
Am J Hum Genet ; 111(6): 1165-1183, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38749429

RESUMO

The pathological huntingtin (HTT) trinucleotide repeat underlying Huntington disease (HD) continues to expand throughout life. Repeat length correlates both with earlier age at onset (AaO) and faster progression, making slowing its expansion an attractive therapeutic approach. Genome-wide association studies have identified candidate variants associated with altered AaO and progression, with many found in DNA mismatch repair (MMR)-associated genes. We examine whether lowering expression of these genes affects the rate of repeat expansion in human ex vivo models using HD iPSCs and HD iPSC-derived striatal medium spiny neuron-enriched cultures. We have generated a stable CRISPR interference HD iPSC line in which we can specifically and efficiently lower gene expression from a donor carrying over 125 CAG repeats. Lowering expression of each member of the MMR complexes MutS (MSH2, MSH3, and MSH6), MutL (MLH1, PMS1, PMS2, and MLH3), and LIG1 resulted in characteristic MMR deficiencies. Reduced MSH2, MSH3, and MLH1 slowed repeat expansion to the largest degree, while lowering either PMS1, PMS2, or MLH3 slowed it to a lesser degree. These effects were recapitulated in iPSC-derived striatal cultures where MutL factor expression was lowered. CRISPRi-mediated lowering of key MMR factor expression to levels feasibly achievable by current therapeutic approaches was able to effectively slow the expansion of the HTT CAG tract. We highlight members of the MutL family as potential targets to slow pathogenic repeat expansion with the aim to delay onset and progression of HD and potentially other repeat expansion disorders exhibiting somatic instability.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteína Huntingtina , Doença de Huntington , Células-Tronco Pluripotentes Induzidas , Expansão das Repetições de Trinucleotídeos , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Reparo de Erro de Pareamento de DNA/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Genes Modificadores , Proteína 3 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas MutL/genética , Proteínas MutL/metabolismo , Sistemas CRISPR-Cas , Estudo de Associação Genômica Ampla
13.
Nat Cell Biol ; 26(6): 892-902, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38741019

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by expansion of a CAG trinucleotide repeat in the Huntingtin (HTT) gene, encoding a homopolymeric polyglutamine (polyQ) tract. Although mutant HTT (mHTT) protein is known to aggregate, the links between aggregation and neurotoxicity remain unclear. Here we show that both translation and aggregation of wild-type HTT and mHTT are regulated by a stress-responsive upstream open reading frame and that polyQ expansions cause abortive translation termination and release of truncated, aggregation-prone mHTT fragments. Notably, we find that mHTT depletes translation elongation factor eIF5A in brains of symptomatic HD mice and cultured HD cells, leading to pervasive ribosome pausing and collisions. Loss of eIF5A disrupts homeostatic controls and impairs recovery from acute stress. Importantly, drugs that inhibit translation initiation reduce premature termination and mitigate this escalating cascade of ribotoxic stress and dysfunction in HD.


Assuntos
Fator de Iniciação de Tradução Eucariótico 5A , Proteína Huntingtina , Doença de Huntington , Fatores de Iniciação de Peptídeos , Peptídeos , Proteostase , Proteínas de Ligação a RNA , Ribossomos , Doença de Huntington/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Animais , Peptídeos/metabolismo , Peptídeos/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Humanos , Ribossomos/metabolismo , Ribossomos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Camundongos , Camundongos Transgênicos , Modelos Animais de Doenças , Estresse Fisiológico , Encéfalo/metabolismo , Encéfalo/patologia , Expansão das Repetições de Trinucleotídeos/genética
14.
Biochim Biophys Acta Biomembr ; 1866(6): 184339, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38763270

RESUMO

Huntington's Disease (HD) is caused by an abnormal expansion of the polyglutamine (polyQ) domain within the first exon of the huntingtin protein (htt). This expansion promotes disease-related htt aggregation into amyloid fibrils and the formation of proteinaceous inclusion bodies within neurons. Fibril formation is a complex heterogenous process involving an array of aggregate species such as oligomers, protofibrils, and fibrils. In HD, structural abnormalities of membranes of several organelles develop. In particular, the accumulation of htt fibrils near the endoplasmic reticulum (ER) impinges upon the membrane, resulting in ER damage, altered dynamics, and leakage of Ca2+. Here, the aggregation of htt at a bilayer interface assembled from ER-derived liposomes was investigated, and fibril formation directly on these membranes was enhanced. Based on these observations, simplified model systems were used to investigate mechanisms associated with htt aggregation on ER membranes. As the ER-derived liposome fractions contained residual Ca2+, the role of divalent cations was also investigated. In the absence of lipids, divalent cations had minimal impact on htt structure and aggregation. However, the presence of Ca2+ or Mg2+ played a key role in promoting fibril formation on lipid membranes despite reduced htt insertion into and association with lipid interfaces, suggesting that the ability of divalent cations to promote fibril formation on membranes is mediated by induced changes to the lipid membrane physicochemical properties. With enhanced concentrations of intracellular calcium being a hallmark of HD, the ability of divalent cations to influence htt aggregation at lipid membranes may play a role in aggregation events that lead to organelle abnormalities associated with disease.


Assuntos
Amiloide , Cálcio , Cátions Bivalentes , Retículo Endoplasmático , Proteína Huntingtina , Doença de Huntington , Lipossomos , Retículo Endoplasmático/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteína Huntingtina/química , Humanos , Cátions Bivalentes/metabolismo , Cálcio/metabolismo , Amiloide/metabolismo , Amiloide/química , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Doença de Huntington/genética , Lipossomos/química , Lipossomos/metabolismo , Magnésio/metabolismo , Magnésio/química , Peptídeos
15.
Cortex ; 176: 144-160, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795650

RESUMO

OBJECTIVE: Huntington's Disease (HD) is an inherited neurodegenerative disease caused by the mutation of the Htt gene, impacting all aspects of living and functioning. Among cognitive disabilities, spatial capacities are impaired, but their monitoring remains scarce as limited by lengthy experts' assessments. Language offers an alternative medium to evaluate patients' performance in HD. Yet, its capacities to assess HD's spatial abilities are unknown. Here, we aimed to bring proof-of-concept that HD's spatial deficits can be assessed through speech. METHODS: We developed the Spatial Description Model to graphically represent spatial relations described during the Cookie Theft Picture (CTP) task. We increased the sensitivity of our model by using only sentences with spatial terms, unlike previous studies in Alzheimer's disease. 78 carriers of the mutant Htt, including 56 manifest and 22 premanifest individuals, as well as 25 healthy controls were included from the BIOHD & (NCT01412125) & Repair-HD (NCT03119246) cohorts. The convergence and divergence of the model were validated using the SelfCog battery. RESULTS: Our Spatial Description Model was the only one among the four assessed approaches, revealing that individuals with manifest HD expressed fewer spatial relations and engaged in less spatial exploration compared to healthy controls. Their graphs correlated with both visuospatial and language SelfCog performances, but not with motor, executive nor memory functions. CONCLUSIONS: We provide the proof-of-concept using our Spatial Description Model that language can grasp HD patient's spatial disturbances. By adding spatial capabilities to the panel of functions tested by the language, it paves the way for eventual remote clinical application.


Assuntos
Doença de Huntington , Fala , Humanos , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Doença de Huntington/psicologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Fala/fisiologia , Testes Neuropsicológicos , Percepção Espacial/fisiologia , Idoso
16.
Chembiochem ; 25(11): e202400152, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38695673

RESUMO

Positron emission tomography imaging of misfolded proteins with high-affinity and selective radioligands has played a vital role in expanding our knowledge of neurodegenerative diseases such as Parkinson's and Alzheimer's disease. The pathogenesis of Huntington's disease, a CAG trinucleotide repeat disorder, is similarly linked to the presence of protein fibrils formed from mutant huntingtin (mHTT) protein. Development of mHTT fibril-specific radioligands has been limited by the lack of structural knowledge around mHTT and a dearth of available hit compounds for medicinal chemistry refinement. Over the past decade, the CHDI Foundation, a non-for-profit scientific management organisation has orchestrated a large-scale screen of small molecules to identify high affinity ligands of mHTT, with lead compounds now reaching clinical maturity. Here we describe the mHTT radioligands developed to date and opportunities for further improvement of this radiotracer class.


Assuntos
Proteína Huntingtina , Tomografia por Emissão de Pósitrons , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteína Huntingtina/química , Ligantes , Humanos , Agregados Proteicos/efeitos dos fármacos , Mutação , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/metabolismo , Doença de Huntington/genética , Compostos Radiofarmacêuticos/química
17.
Neurobiol Dis ; 198: 106542, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810948

RESUMO

A number of post-mortem studies conducted in transplanted Huntington's disease (HD) patients from various trials have reported the presence of pathological and misfolded proteins, in particular mutant huntingtin (mHtt) and phosphorylated tau neuropil threads, in the healthy grafted tissue. Here, we extended these observations with histological analysis of post-mortem tissue from three additional HD patients who had received similar striatal allografts from the fetal tissue transplantation trial conducted in Los Angeles in 1998. Immunohistochemical staining was performed using anti-mHtt antibodies, EM48 and MW7, as well as anti-hyperphosphorylated tau antibodies, AT8 and CP13. Immunofluorescence was used to assess the colocalization of EM48+ mHtt aggregates with the neuronal marker MAP2 and/or the extracellular matrix protein phosphacan in both the host and grafts. We confirmed the presence of mHtt aggregates within grafts of all three cases as well as tau neuropil threads in the grafts of two of the three transplanted HD patients. Phosphorylated tau was also variably expressed in the host cerebral cortex of all three subjects. While mHtt inclusions were present within neurons (immunofluorescence co-localization of MAP2 and EM48) as well as within the extracellular matrix of the host (immunofluorescence co-localization of phosphacan and EM48), their localization was limited to the extracellular matrix in the grafted tissue. This study corroborates previous findings that both mHtt and tau pathology can be found in the host and grafts of HD patients years post-grafting.


Assuntos
Proteína Huntingtina , Doença de Huntington , Neurônios , Proteínas tau , Humanos , Doença de Huntington/patologia , Doença de Huntington/metabolismo , Doença de Huntington/genética , Proteínas tau/metabolismo , Proteínas tau/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Masculino , Pessoa de Meia-Idade , Feminino , Neurônios/metabolismo , Neurônios/patologia , Adulto , Transplante de Tecido Fetal/métodos , Idoso , Transplante de Tecido Encefálico/métodos
18.
Neurobiol Dis ; 195: 106488, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38565397

RESUMO

Given their highly polarized morphology and functional singularity, neurons require precise spatial and temporal control of protein synthesis. Alterations in protein translation have been implicated in the development and progression of a wide range of neurological and neurodegenerative disorders, including Huntington's disease (HD). In this study we examined the architecture of polysomes in their native brain context in striatal tissue from the zQ175 knock-in mouse model of HD. We performed 3D electron tomography of high-pressure frozen and freeze-substituted striatal tissue from HD models and corresponding controls at different ages. Electron tomography results revealed progressive remodelling towards a more compacted polysomal architecture in the mouse model, an effect that coincided with the emergence and progression of HD related symptoms. The aberrant polysomal architecture is compatible with ribosome stalling phenomena. In fact, we also detected in the zQ175 model an increase in the striatal expression of the stalling relief factor EIF5A2 and an increase in the accumulation of eIF5A1, eIF5A2 and hypusinated eIF5A1, the active form of eIF5A1. Polysomal sedimentation gradients showed differences in the relative accumulation of 40S ribosomal subunits and in polysomal distribution in striatal samples of the zQ175 model. These findings indicate that changes in the architecture of the protein synthesis machinery may underlie translational alterations associated with HD, opening new avenues for understanding the progression of the disease.


Assuntos
Modelos Animais de Doenças , Doença de Huntington , Polirribossomos , Ribossomos , Animais , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Doença de Huntington/genética , Camundongos , Polirribossomos/metabolismo , Ribossomos/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Camundongos Transgênicos , Progressão da Doença , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/genética
19.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612657

RESUMO

Huntington's disease (HD) arises from the abnormal expansion of CAG repeats in the huntingtin gene (HTT), resulting in the production of the mutant huntingtin protein (mHTT) with a polyglutamine stretch in its N-terminus. The pathogenic mechanisms underlying HD are complex and not yet fully elucidated. However, mHTT forms aggregates and accumulates abnormally in neuronal nuclei and processes, leading to disruptions in multiple cellular functions. Although there is currently no effective curative treatment for HD, significant progress has been made in developing various therapeutic strategies to treat HD. In addition to drugs targeting the neuronal toxicity of mHTT, gene therapy approaches that aim to reduce the expression of the mutant HTT gene hold great promise for effective HD therapy. This review provides an overview of current HD treatments, discusses different therapeutic strategies, and aims to facilitate future therapeutic advancements in the field.


Assuntos
Doença de Huntington , Humanos , Doença de Huntington/genética , Doença de Huntington/terapia , Terapia Genética , Proteínas Mutantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...