Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.164
Filtrar
1.
Brain Behav ; 14(6): e3543, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837845

RESUMO

BACKGROUND: In addition to lowering cholesterol levels, the proprotein convertase subtilis kexin 9 (PCSK9) inhibitor has a variety of effects, including anti-neuroapoptosis. However, the effects of PCSK9 inhibitors on neurodegenerative diseases are controversial. Therefore, we used drug-targeted Mendelian randomization (MR) analysis to investigate the effects of PCSK9 inhibitors on different neurodegenerative diseases. METHODS: We collected single nucleotide polymorphisms (SNPs) of PCSK9 from published statistics of genome-wide association studies and performed drug target MR analyses to detect a causal relationship between PCSK9 inhibitors and the risk of neurodegenerative diseases. We utilized the effects of 3-Hydroxy -3- methylglutaryl-assisted enzyme A reductase (HMGCR) inhibitors (statin targets) for comparison with PCSK9 inhibitors. Coronary heart disease risk was used as a positive control, and primary outcomes included amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD). RESULTS: PCSK9 inhibitors marginally reduced the risk of ALS (OR [95%] = 0.89 [0.77 to 1.00], p = 0.048), while they increased the risk of PD (OR [95%] = 1.417 [1.178 to 1.657], p = 0.004). However, HMGCR inhibitors increased the risk of PD (OR [95%] = 1.907 [1.502 to 2.312], p = 0.001). CONCLUSION: PCSK9 inhibitors significantly reduce the risk of ALS but increase the risk of PD. HMGCR inhibitors may be the risk factor for PD.


Assuntos
Análise da Randomização Mendeliana , Doenças Neurodegenerativas , Inibidores de PCSK9 , Polimorfismo de Nucleotídeo Único , Humanos , Doenças Neurodegenerativas/genética , Doença de Parkinson/genética , Doença de Parkinson/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Doença de Alzheimer/genética , Doença de Alzheimer/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/epidemiologia , Estudo de Associação Genômica Ampla , Pró-Proteína Convertase 9
2.
J Cell Mol Med ; 28(11): e18412, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842132

RESUMO

Cyclin-dependent kinase 5 (Cdk5) is a protein expressed in postmitotic neurons in the central nervous system (CNS). Cdk5 is activated by p35 and p39 which are neuron regulatory subunits. Cdk5/p35 complex is activated by calpain protease to form Cdk5/p35 which has a neuroprotective effect by regulating the synaptic plasticity and memory functions. However, exaggerated Cdk5 is implicated in different types of neurodegenerative diseases including Parkinson disease (PD). Therefore, modulation of Cdk5 signalling may mitigate PD neuropathology. Therefore, the aim of the present review was to discuss the critical role of Cdk5 in the pathogenesis of PD, and how Cdk5 inhibitors are effectual in the management of PD. In conclusion, overactivated Cdk5 is involved the development of neurodegeneration, and Cdk5/calpain inhibitors such as statins, metformin, fenofibrates and rosiglitazone can attenuate the progression of PD neuropathology.


Assuntos
Quinase 5 Dependente de Ciclina , Doença de Parkinson , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Animais , Calpaína/metabolismo , Calpaína/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
3.
Int J Nanomedicine ; 19: 4857-4875, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828195

RESUMO

Brain diseases are the most devastating problem among the world's increasingly aging population, and the number of patients with neurological diseases is expected to increase in the future. Although methods for delivering drugs to the brain have advanced significantly, none of these approaches provide satisfactory results for the treatment of brain diseases. This remains a challenge due to the unique anatomy and physiology of the brain, including tight regulation and limited access of substances across the blood-brain barrier. Nanoparticles are considered an ideal drug delivery system to hard-to-reach organs such as the brain. The development of new drugs and new nanomaterial-based brain treatments has opened various opportunities for scientists to develop brain-specific delivery systems that could improve treatment outcomes for patients with brain disorders such as Alzheimer's disease, Parkinson's disease, stroke and brain tumors. In this review, we discuss noteworthy literature that examines recent developments in brain-targeted nanomedicines used in the treatment of neurological diseases.


Assuntos
Barreira Hematoencefálica , Encéfalo , Sistemas de Liberação de Medicamentos , Nanomedicina , Humanos , Nanomedicina/métodos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Animais , Nanopartículas/química , Encefalopatias/tratamento farmacológico , Sistemas de Liberação de Fármacos por Nanopartículas/química , Sistemas de Liberação de Fármacos por Nanopartículas/farmacocinética , Doença de Parkinson/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico
4.
Pak J Pharm Sci ; 37(2(Special)): 435-442, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38822547

RESUMO

Depression is a common non-motor symptom of Parkinson's disease. Previous studies demonstrated that hydroxysafflor yellow A had properties of improving motor symptoms of Parkinson's disease. The effect of hydroxysafflor yellow A on depression in Parkinson's disease mice is investigated in this study. To induce Parkinson's disease model, male Swiss mice were exposed to rotenone (30 mg/kg) for 6 weeks. The chronic unpredictable mild stress was employed to induce depression from week 3 to week 6. Sucrose preference, tail suspension, and forced swimming tests were conducted. Golgi and Nissl staining of hippocampus were carried out. The levels of dopamine, 5-hydroxytryptamine and the expression of postsynaptic density protein 95, brain-derived neurotrophic factor in hippocampus were assayed. It showed that HSYA improved the depression-like behaviors of Parkinson's disease mice. Hydroxysafflor yellow A attenuated the injury of nerve and elevated contents of dopamine, 5-hydroxytryptamine in hippocampus. Treatment with hydroxysafflor yellow A also augmented the expression of postsynaptic density protein 95 and brain-derived neurotrophic factor. These findings suggest that hydroxysafflor yellow A ameliorates depression-like behavior in Parkinson's disease mice through regulating the contents of postsynaptic density protein 95 and brain-derived neurotrophic factor, therefore protecting neurons and neuronal dendrites of the hippocampus.


Assuntos
Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo , Chalcona , Depressão , Hipocampo , Quinonas , Serotonina , Animais , Quinonas/farmacologia , Quinonas/uso terapêutico , Chalcona/análogos & derivados , Chalcona/farmacologia , Chalcona/uso terapêutico , Masculino , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Comportamento Animal/efeitos dos fármacos , Serotonina/metabolismo , Dopamina/metabolismo , Rotenona/farmacologia , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/psicologia
5.
Ideggyogy Sz ; 77(5-6): 161-166, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38829252

RESUMO

Background and purpose:

The aim of this study is to comprehensively determine the types of affected fibers in Parkinson’s disease (PD) patients by employing nerve conduction studies (NCS), sympathetic skin response (SSR) examinations, and current perception threshold (CPT) testing and to analyze the correlation between levodopa use and nerve involvement.

. Methods:

This retrospective study included 36 clinically diagnosed PD patients who were recruited between January 2018 and April 2019. All patients underwent NCS, SSR testing, and CPT sensory examinations. Additionally, the PD patients were assessed for disease staging using the Hoehn and Yahr (H-Y) scale. 

. Results:

Fifteen patients were included in the tremor-dominant subtype, ten patients in the rigid-dominant subtype, and eleven patients in the mixed subtype. Eleven patients were using levodopa, while twenty-five patients had never used any anti-Parkinson’s medication. Ten patients (28%) showed abnormal sympathetic skin responses (SSR). The CPT examination revealed sensory abnormalities in twenty-four patients (67%), with eighteen patients (75%) experiencing sensory hypersensitivity and six patients (25%) experiencing sensory hypoesthesia. Twelve patients (33%) had normal CPT results. Among the patients with abnormal CPT findings, seven cases (29%) involved large myelinated fiber damage, twenty-two cases (92%) involved small myelinated fiber damage, and nineteen cases (79%) involved unmyelinated fiber damage. The rate of sensory abnormalities was 64% (7/11) in the levodopa group and 68% (17/25) in the non-levodopa group, with no statistically significant difference between the two groups. 

. Conclusion:

The incidence of abnormal CPT findings in PD patients was higher than that of abnormal SSR responses, suggesting that nerve fiber damage primarily affects small fiber nerves (SFN).

.


Assuntos
Levodopa , Condução Nervosa , Doença de Parkinson , Humanos , Levodopa/administração & dosagem , Levodopa/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Doença de Parkinson/complicações , Pessoa de Meia-Idade , Feminino , Idoso , Estudos Retrospectivos , Masculino , Condução Nervosa/efeitos dos fármacos , Fibras Nervosas/patologia , Fibras Nervosas/efeitos dos fármacos , Antiparkinsonianos/uso terapêutico , Antiparkinsonianos/efeitos adversos , Nervos Periféricos/patologia
7.
Eur J Med Chem ; 274: 116566, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838545

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. The development of novel scaffolds for human monoamine oxidase B (hMAO-B) inhibitors with reversible properties represents an important strategy to improve the efficacy and safety for PD treatment. In the current work, we have devised and assessed two innovative derivative series serving as hMAO-B inhibitors. These series have utilized benzimidazole as a scaffold and strategically incorporated a primary amide group, which is recognized as a pivotal pharmacophore in subsequent activity screening and reversible mode of action. Among these compounds, 16d has emerged as the most potent hMAO-B inhibitor with an IC50 value of 67.3 nM, comparable to safinamide (IC50 = 42.6 nM) in vitro. Besides, 16d demonstrated good selectivity towards hMAO-B isoenzyme with a selectivity index over 387. Importantly, in line with the design purpose, 16d inhibited hMAO-B in a competitive and reversible manner (Ki = 82.50 nM). Moreover, 16d exhibited a good safety profile in both cellular and acute toxicity assays in mice. It also displayed ideal pharmacokinetic properties and blood-brain barrier permeability in vivo, essential prerequisites for central nervous system medicines. In the MPTP-induced PD mouse model, 16d significantly alleviated the motor impairment, especially muscle relaxation and motor coordination. Therefore, 16d, serving as a lead compound, holds instructive significance for subsequent investigations regarding its application in the treatment of PD.


Assuntos
Benzimidazóis , Descoberta de Drogas , Inibidores da Monoaminoxidase , Monoaminoxidase , Doença de Parkinson , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/síntese química , Monoaminoxidase/metabolismo , Humanos , Animais , Relação Estrutura-Atividade , Camundongos , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzimidazóis/síntese química , Doença de Parkinson/tratamento farmacológico , Estrutura Molecular , Relação Dose-Resposta a Droga , Masculino , Camundongos Endogâmicos C57BL , Antiparkinsonianos/farmacologia , Antiparkinsonianos/síntese química , Antiparkinsonianos/química , Antiparkinsonianos/uso terapêutico
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 876-884, 2024 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-38862445

RESUMO

OBJECTIVE: To investigate the mechanisms that mediate the neuroprotective effect of the intestinal microbial metabolite sodium butyrate (NaB) in a mouse model of Parkinson's disease (PD) via the gut-brain axis. METHODS: Thirty-nine 7-week-old male C57BL/6J mice were randomized equally into control group, PD model group, and NaB treatment group. In the latter two groups, PD models were established by intraperitoneal injection of 30 mg/kg 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) once daily for 5 consecutive days, and normal saline was injected in the control group. After modeling, the mice received daily gavage of NaB (300 mg/kg) or an equal volume of saline for 14 days. Behavioral tests were carried out to assess the changes in motor function of the mice, and Western blotting was performed to detect the expressions of tyrosine hydroxylase (TH) and α-synuclein (α-syn) in the striatum and nuclear factor-κB (NF-κB), tumor necrosis factor (TNF-α), interleukin 6 (IL-6), and the tight junction proteins ZO-1, Occludin, and Claudinin the colon. HE staining was used to observe inflammatory cell infiltration in the colon of the mice. RNA sequencing analysis was performed to identify the differentially expressed genes in mouse colon tissues, and their expressions were verified using qRT-PCR and Western blotting. RESULTS: The mouse models of PD with NaB treatment showed significantly increased movement speed and pulling strength of the limbs with obviously upregulated expressions of TH, Occludin, and Claudin and downregulated expressions of α-syn, NF-κB, TNF-α, and IL-6 (all P < 0.05). HE staining showed that NaB treatment significantly ameliorated inflammatory cell infiltration in the colon of the PD mice. RNA sequencing suggested that Bmal1 gene probably mediated the neuroprotective effect of NaB in PD mice (P < 0.05). CONCLUSION: NaB can improve motor dysfunction, reduce dopaminergic neuron loss in the striatum, and ameliorate colonic inflammation in PD mice possibly through a mechanism involving Bmal1.


Assuntos
Ácido Butírico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Camundongos , Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/genética , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Corpo Estriado/metabolismo , Ocludina/metabolismo , Ocludina/genética , Eixo Encéfalo-Intestino
9.
Mol Biol Rep ; 51(1): 768, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884894

RESUMO

BACKGROUND: Parkinson's disease is a neurological disorder caused by the loss of dopaminergic neurons in the midbrain. Various mechanisms are involved in the incidence of the disease including oxidative stress. Several herbs and natural products may interfere with the oxidative-stress pathway due to their antioxidant effects. OBJECTIVE: Herein, we aimed to investigate the neuroprotective role of F. vaillantii extract on Parkinson's in vitro and in vivo model owing to the presence of the bioactive agents with antioxidant properties. METHODS: In vitro experments showed that 6-hydroxydopamine could induce toxicity in PC12 cells. The impact of F. vaillantii extract on cell viability was measured by using MTT assay. Nuclear morphological changes were qualitatively evaluated employing Hoechst staining. The antioxidant activity of the extract was determined by ROS and lipid peroxidation assays. Tyrosine hydroxylase protein expression was measured by western blotting in PC12 cells. For in vivo study, movement parameters were evaluated. RESULTS: The results indicated that 75 µΜ of 6-OHDA induced 50% toxicity in PC12 cells for 24 h. Following post-treatment with F. vaillantii extract (0.1 mg/ml) for 72 h, we observed that the extract effectively prevented cell toxicity induced by 6-OHDA and reduced the apoptotic cell population. Furthermore, the extract attenuated the ROS level, lipid peroxidation and increased protein expression of TH after 72 h of treatment. In addition, oral administration of 300 mg/kg of F. vaillantii extract for 14 days improved locomotor activity, catalepsy, bradykinesia, motor coordination and reduced the apomorphine-caused rotation in 6-OHDA- induced Parkinson's disease-like symptoms in male rats. CONCLUSION: The present study suggests a protective role for the extract of F. vaillantii against oxidative stress-induced cell damage in the PC12 cells exposed to neurotoxin 6-OHDA which was verified in in vivo model by reducing the motor defects induced by 6-OHDA. This extract could be a promising therapeutic agent for the prevention of PD progression.


Assuntos
Antioxidantes , Sobrevivência Celular , Fármacos Neuroprotetores , Estresse Oxidativo , Oxidopamina , Extratos Vegetais , Animais , Células PC12 , Ratos , Extratos Vegetais/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Doença de Parkinson/tratamento farmacológico , Peroxidação de Lipídeos/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Masculino , Tirosina 3-Mono-Oxigenase/metabolismo
10.
J Parkinsons Dis ; 14(4): 883-888, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38788089

RESUMO

Background: Parkinson's disease (PD) is the second most common neurodegenerative disorder, with genetic factors accounting for about 15% of cases. There is a significant challenge in tracking disease progression and treatment response, crucial for developing new therapies. Traditional methods like imaging, clinical monitoring, and biomarker analysis have not conclusively tracked disease progression or treatment response in PD. Our previous research indicated that PD patients with increased dopamine transporter (DAT) and tyrosine hydroxylase (TH) in peripheral blood mononuclear cells (PBMCs) might show disease progression and respond to levodopa treatment. Objective: This study evaluates whether DAT- and TH-expressing PBMCs can monitor motor progression in a PD patient with a heterozygous TH mutation. Methods: We conducted a longitudinal follow-up of a 46-year-old female PD patient with a TH mutation, assessing her clinical features over 18 months through DaT scans and PBMC immunophenotyping. This was compared with idiopathic PD patients (130 subjects) and healthy controls (80 age/sex-matched individuals). Results: We found an increase in DAT+ immune cells concurrent with worsening motor scores (UPDRS-III). Following levodopa therapy, unlike idiopathic PD patients, TH+ immune cell levels in this patient remained high even as her motor scores improved. Conclusions: Longitudinal immunophenotyping in this PD patient suggests DAT+ and TH+ PBMCs as potential biomarkers for tracking PD progression and treatment efficacy, supporting further exploration of this approach in PD research.


Assuntos
Progressão da Doença , Proteínas da Membrana Plasmática de Transporte de Dopamina , Imunofenotipagem , Leucócitos Mononucleares , Doença de Parkinson , Tirosina 3-Mono-Oxigenase , Humanos , Doença de Parkinson/genética , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/diagnóstico , Doença de Parkinson/sangue , Feminino , Pessoa de Meia-Idade , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Leucócitos Mononucleares/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Mutação , Estudos Longitudinais , Seguimentos
11.
Biomaterials ; 309: 122622, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38797119

RESUMO

Nondestructive penetration of the blood-brain barrier (BBB) to specifically prevent iron deposition and the generation of reactive oxygen species (ROS) shows great potential for treating Parkinson's disease (PD). However, effective agents with distinct mechanisms of action remain scarce. Herein, a N-doping carbon dot (CD) emitting red light was prepared, which can sacrifice ROS and produce nitric oxide (NO) owing to its surface N-involved groups conjugated to the sp2-hybrided π-system. Meanwhile, CD can chelate iron ions, thus depressing the catalytic Fe cycle and *OH detaching to inhibit the Fenton reaction. By modifying lactoferrin (Lf) via polyethylene glycol (PEG), the resulting CD-PEG-Lf (CPL) can nondestructively cross the BBB, targeting the dopaminergic neurons via both NO-mediated reversible BBB opening and Lf receptor-mediated transportation. Accordingly, it can serve as an antioxidant, reducing oxidative stress via its unique iron chelation, free radical sacrificing, and synergy with iron reflux prevention originating from Lf. Thus, it can significantly reduce brain inflammation and improve the behavioral performance of PD mice. Additionally, CPL can image the PD via its red fluorescence. Finally, this platform can be metabolized out of the brain through cerebrospinal fluid circulation without causing obvious side effects, promising a robust treatment for PD.


Assuntos
Antioxidantes , Barreira Hematoencefálica , Carbono , Ferro , Óxido Nítrico , Doença de Parkinson , Animais , Óxido Nítrico/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Carbono/química , Ferro/metabolismo , Ferro/química , Antioxidantes/química , Antioxidantes/metabolismo , Camundongos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Masculino , Lactoferrina/química , Lactoferrina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Polietilenoglicóis/química , Pontos Quânticos/química , Estresse Oxidativo/efeitos dos fármacos , Nanopartículas/química , Íons , Humanos , Camundongos Endogâmicos C57BL
12.
Commun Biol ; 7(1): 668, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816577

RESUMO

Parkinson's disease is managed using levodopa; however, as Parkinson's disease progresses, patients require increased doses of levodopa, which can cause undesirable side effects. Additionally, the oral bioavailability of levodopa decreases in Parkinson's disease patients due to the increased metabolism of levodopa to dopamine by gut bacteria, Enterococcus faecalis, resulting in decreased neuronal uptake and dopamine formation. Parkinson's disease patients have varying levels of these bacteria. Thus, decreasing bacterial metabolism is a promising therapeutic approach to enhance the bioavailability of levodopa in the brain. In this work, we show that Mito-ortho-HNK, formed by modification of a naturally occurring molecule, honokiol, conjugated to a triphenylphosphonium moiety, mitigates the metabolism of levodopa-alone or combined with carbidopa-to dopamine. Mito-ortho-HNK suppresses the growth of E. faecalis, decreases dopamine levels in the gut, and increases dopamine levels in the brain. Mitigating the gut bacterial metabolism of levodopa as shown here could enhance its efficacy.


Assuntos
Encéfalo , Dopamina , Enterococcus faecalis , Microbioma Gastrointestinal , Levodopa , Doença de Parkinson , Levodopa/metabolismo , Levodopa/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Dopamina/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/microbiologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Animais , Enterococcus faecalis/metabolismo , Enterococcus faecalis/efeitos dos fármacos , Masculino , Antiparkinsonianos/metabolismo , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/farmacologia , Carbidopa , Humanos , Compostos de Bifenilo/metabolismo , Camundongos , Compostos Organofosforados/metabolismo , Camundongos Endogâmicos C57BL
13.
Sci Rep ; 14(1): 12519, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822123

RESUMO

Voriconazole is a second-generation azole used to treat serious fungal infections. Visual hallucinations constitute a representative adverse event caused by voriconazole. However, its mechanism of action remains unclear. In patients with schizophrenia or Parkinson's disease, the frequency of visual hallucinations is associated with brain dopamine levels. This study investigated the frequency of visual hallucinations in patients treated with voriconazole alone or in combination with dopaminergic medicines or dopamine antagonists, using data collected from the Food and Drug Administration Adverse event Reporting System (FAERS). The frequency of visual hallucinations with voriconazole alone and in combination with a dopaminergic medicine (levodopa) or dopamine antagonists (risperidone and chlorpromazine) was compared using data from the FAERS between 2004 and 2023, using the reporting odds ratio (ROR) with relevant 95% confidence intervals (CI). The reference group comprised patients who had been administered voriconazole without dopaminergic medication or dopamine antagonists. Of the patients, 22,839, 90,810, 109,757, 6,435, 20, 83, and 26, respectively were treated with voriconazole, levodopa, risperidone, chlorpromazine, voriconazole plus levodopa, voriconazole plus risperidone, and voriconazole plus chlorpromazine. The occurrence of visual hallucinations increased when used in combination with levodopa (ROR = 12.302, 95% CI = 3.587-42.183). No increase in incidence was associated with the concomitant use of dopamine antagonists (risperidone, ROR = 1.721, 95% CI = 0.421-7.030; chlorpromazine, ROR = none, 95% CI = none). Dopaminergic medicine may increase the risk of visual hallucinations in patients treated with voriconazole. Whether voriconazole positively modulates dopamine production warrants further investigation using a translational research approach.


Assuntos
Dopamina , Alucinações , United States Food and Drug Administration , Voriconazol , Humanos , Voriconazol/efeitos adversos , Alucinações/induzido quimicamente , Estados Unidos/epidemiologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Dopamina/metabolismo , Levodopa/efeitos adversos , Adulto , Antifúngicos/efeitos adversos , Sistemas de Notificação de Reações Adversas a Medicamentos , Clorpromazina/efeitos adversos , Risperidona/efeitos adversos , Antagonistas de Dopamina/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Adulto Jovem , Adolescente , Bases de Dados Factuais
14.
Complement Ther Med ; 82: 103045, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705493

RESUMO

OBJECTIVE: This study aimed to evaluate the clinical efficacy and safety of probiotics supplementation in the treatment of Parkinson's disease (PD). METHODS: We searched China National Knowledge Infrastructure (CNKI), Weipu (VIP) database, Wanfang Database, Sinomed (CBM), PubMed, Embase, Cochrane library and Web of Science databases for eligible studies from inception to January 4th, 2024. Randomized controlled trials (RCTS) comparing the effects of probiotic supplements and placebo in patients with PD. Meta-analysis was conducted with the software Review Manager 5.4. The quality assessment was performed according to Cochrane risk of bias tool. RESULTS: A total of 11 RCTs with 756 PD patients were included in this study. We found that probiotics could increase the number of complete bowel movements (CBMs) per week and improved the scores of Patient Assessment of Constipation Quality of Life Questionnaire (PAC-QOL) (SMD = 0.73, 95 % CI: 0.54 to 0.92, P < 0.00001, I2 = 45 %; SMD = - 0.79, 95 % CI: - 1.19 to - 0.39, P < 0.001, I2 = 55 %, respectively) compared with the placebo group. However, there was no significant difference between the two groups in improving fecal traits and defecation efforts in PD patients (SMD = 0.87, 95 % CI: 0.01 to 1.74, P = 0.05, I2 = 94 %; SMD = 1.24, 95 % CI: - 1.58 to 4.06, P > 0.05, I2 = 98 %, respectively). In terms of PD composite scale scores: after treatment, there was no significant difference in Movement Disorder Society-Unified-Parkinson Disease Rating Scale Ⅲ score (MDS-UPDRSⅢ) between the probiotic group and the placebo group (SMD = - 0.09, 95 % CI: - 0.35 to 0.16, P > 0.05, I2 = 0 %). CONCLUSIONS: In conclusion, based on the overall results of the available RCTs studies, our results suggested the potential value of probiotics in improving constipation symptoms in PD patients. Therefore, probiotics may be one of the adjuvant therapy for PD-related constipation patients. The findings of this study provide more proof supporting the effectiveness of probiotics, encouraging probiotics to be utilized alone or in combination with other therapies in clinical practice for PD patients. However, more well-designed RCTs with large sample sizes are required.


Assuntos
Constipação Intestinal , Doença de Parkinson , Probióticos , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Constipação Intestinal/tratamento farmacológico , Constipação Intestinal/terapia , Suplementos Nutricionais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/terapia , Probióticos/uso terapêutico , Qualidade de Vida
15.
Eur J Pharmacol ; 975: 176635, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38734296

RESUMO

BACKGROUND: Degeneration of the nigrostriatal dopaminergic pathway has been seen as a significant cause of movement disability in Parkinson's disease (PD) patients. However, the exact reason for these degenerative changes has remained obscure. In recent years, incretins have been neuroprotective in various pathologies. In the current study, we have investigated the neuroprotective potential of alogliptin (Alo), a dipeptidyl peptidase-IV (DPP-IV) inhibitor, in a lipopolysaccharide (LPS) induced experimental model of PD. EXPERIMENTAL APPROACH: LPS (5µg/5 µl) was infused intranigrally to induce PD in experimental rats. Post-LPS infusion, these animals were treated with Alo for 21 days in three successive dosages of 10, 20, and 40 mg/kg/day/per oral. The study is well supported with the determinations of motor functions biochemical, neurochemical, and histological analysis. KEY RESULTS: Intranigral infusion of LPS in rats produced motor deficit. It was accompanied by oxidative stress, elevation in neuroinflammatory cytokines, altered neurochemistry, and degenerative changes in the striatal brain region. While Alo abrogated LPS-induced biochemical/neurochemical alterations, improved motor functions, and preserved neuronal morphology in LPS-infused rats. CONCLUSION: The observed neuroprotective potential of Alo may be due to its antioxidant and anti-inflammatory actions and its ability to modulate monoaminergic signals. Nonetheless, current findings suggest that improving the availability of incretins through DPP-IV inhibition is a promising strategy for treating Parkinson's disease.


Assuntos
Inibidores da Dipeptidil Peptidase IV , Lipopolissacarídeos , Fármacos Neuroprotetores , Estresse Oxidativo , Piperidinas , Uracila , Animais , Uracila/análogos & derivados , Uracila/farmacologia , Uracila/uso terapêutico , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Masculino , Ratos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Modelos Animais de Doenças , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Citocinas/metabolismo , Atividade Motora/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia
16.
Bioorg Chem ; 148: 107488, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797066

RESUMO

Progressive loss of dopaminergic neurons leads to the depletion of the striatal neurotransmitter dopamine, which is the main cause of Parkinson's disease (PD) motor symptoms. Simultaneous inhibition of the two key dopamine metabolic enzymes, catechol-O-methyltransferase (COMT) and monoamine oxidase B (MAO-B), could potentially be a breakthrough in achieving clinical efficacy. Representative compound C12 exhibits good COMT inhibitory activity (IC50 = 0.37 µM), metal chelation ability, and BBB permeability. Furthermore, results from in vivo biological activity evaluations indicate that C12 can improve dopamine levels and ameliorate MPTP-induced PD symptoms in mice. Preliminary in vivo and in vitro study results highlight the potential of compound C12 in PD treatment.


Assuntos
Dopamina , Inibidores da Monoaminoxidase , Monoaminoxidase , Doença de Parkinson , Animais , Camundongos , Dopamina/metabolismo , Relação Estrutura-Atividade , Monoaminoxidase/metabolismo , Estrutura Molecular , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/síntese química , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Catecol O-Metiltransferase/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Inibidores de Catecol O-Metiltransferase/farmacologia , Inibidores de Catecol O-Metiltransferase/química , Inibidores de Catecol O-Metiltransferase/síntese química , Humanos , Relação Dose-Resposta a Droga , Antiparkinsonianos/farmacologia , Antiparkinsonianos/química , Antiparkinsonianos/síntese química , Antiparkinsonianos/uso terapêutico
17.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 204-208, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38814215

RESUMO

Parkinson's disease (PD) remains the most common neurodegenerative disease worldwide, seriously affecting the normal life of patients. Currently, there is no effective clinical cure for PD. In this study, the research team explored the effect of ketamine (KET) on PD, which can lay a reliable foundation for future KET treatment of PD. First, the research team established a PD rat model with 6-hydroxydopamine (6-OHDA). The detection showed that the maximum angle of the inclined plate stay, the number of times of grid crossings and standing, and the ATPase activity in brain tissue were significantly lower in PD rats than in control rats, while the positive rate of α-synuclein in brain tissue was increased, showing typical pathological manifestations of PD. After using KET to intervene in PD rats, the behavioral and brain pathological changes were significantly alleviated, and the inflammation and oxidative stress damage of brain tissue were effectively reduced, suggesting the potential therapeutic effects of KET on PD. Furthermore, the use of KET inhibited the PI3K/AKT axis in the brain tissue of PD rats and promoted autophagy. Moreover, the significant suppression of the PI3K/AKT axis by KET was also demonstrated in the PD cell model established through lipopolysaccharide (LPS) inducement of astrocyte cell line HA1800. It is suggested that the mechanism of KET on PD is related to the inhibition of the PI3K/AKT axis.


Assuntos
Astrócitos , Ketamina , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Ketamina/farmacologia , Ketamina/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Ratos , Autofagia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Oxidopamina , Lipopolissacarídeos , Humanos
18.
Proc Natl Acad Sci U S A ; 121(22): e2316149121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768342

RESUMO

Speech impediments are a prominent yet understudied symptom of Parkinson's disease (PD). While the subthalamic nucleus (STN) is an established clinical target for treating motor symptoms, these interventions can lead to further worsening of speech. The interplay between dopaminergic medication, STN circuitry, and their downstream effects on speech in PD is not yet fully understood. Here, we investigate the effect of dopaminergic medication on STN circuitry and probe its association with speech and cognitive functions in PD patients. We found that changes in intrinsic functional connectivity of the STN were associated with alterations in speech functions in PD. Interestingly, this relationship was characterized by altered functional connectivity of the dorsolateral and ventromedial subdivisions of the STN with the language network. Crucially, medication-induced changes in functional connectivity between the STN's dorsolateral subdivision and key regions in the language network, including the left inferior frontal cortex and the left superior temporal gyrus, correlated with alterations on a standardized neuropsychological test requiring oral responses. This relation was not observed in the written version of the same test. Furthermore, changes in functional connectivity between STN and language regions predicted the medication's downstream effects on speech-related cognitive performance. These findings reveal a previously unidentified brain mechanism through which dopaminergic medication influences speech function in PD. Our study sheds light into the subcortical-cortical circuit mechanisms underlying impaired speech control in PD. The insights gained here could inform treatment strategies aimed at mitigating speech deficits in PD and enhancing the quality of life for affected individuals.


Assuntos
Idioma , Doença de Parkinson , Fala , Núcleo Subtalâmico , Humanos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/tratamento farmacológico , Núcleo Subtalâmico/fisiopatologia , Núcleo Subtalâmico/efeitos dos fármacos , Masculino , Fala/fisiologia , Fala/efeitos dos fármacos , Feminino , Pessoa de Meia-Idade , Idoso , Imageamento por Ressonância Magnética , Dopamina/metabolismo , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiopatologia , Cognição/efeitos dos fármacos , Dopaminérgicos/farmacologia , Dopaminérgicos/uso terapêutico
19.
Genes (Basel) ; 15(5)2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38790243

RESUMO

Alzheimer's disease (AD), a multifactorial neurodegenerative disorder, is prevalent among the elderly population. It is a complex trait with mutations in multiple genes. Although the US Food and Drug Administration (FDA) has approved a few drugs for AD treatment, a definitive cure remains elusive. Research efforts persist in seeking improved treatment options for AD. Here, a hybrid pipeline is proposed to apply text mining to identify comorbid diseases for AD and an omics approach to identify the common genes between AD and five comorbid diseases-dementia, type 2 diabetes, hypertension, Parkinson's disease, and Down syndrome. We further identified the pathways and drugs for common genes. The rationale behind this approach is rooted in the fact that elderly individuals often receive multiple medications for various comorbid diseases, and an insight into the genes that are common to comorbid diseases may enhance treatment strategies. We identified seven common genes-PSEN1, PSEN2, MAPT, APP, APOE, NOTCH, and HFE-for AD and five comorbid diseases. We investigated the drugs interacting with these common genes using LINCS gene-drug perturbation. Our analysis unveiled several promising candidates, including MG-132 and Masitinib, which exhibit potential efficacy for both AD and its comorbid diseases. The pipeline can be extended to other diseases.


Assuntos
Doença de Alzheimer , Comorbidade , Mineração de Dados , Doença de Alzheimer/genética , Doença de Alzheimer/tratamento farmacológico , Humanos , Mineração de Dados/métodos , Doença de Parkinson/genética , Doença de Parkinson/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Síndrome de Down/genética , Síndrome de Down/tratamento farmacológico , Hipertensão/genética , Hipertensão/tratamento farmacológico
20.
Int J Biol Macromol ; 269(Pt 2): 132179, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723817

RESUMO

BACKGROUND: Parkinson's disease (PD) is a prevalent neurodegenerative disorder, marked by the degeneration of dopamine (DA) neurons in the substantia nigra (SN). Current evidence strongly suggests that neuroinflammation, primarily mediated by microglia, contributes to PD pathogenesis. Triggering receptor expressed on myeloid cells 2 (TREM2) might serve as a promising therapeutic target for PD due to its ability to suppress neuroinflammation. Dihydroquercetin (DHQ) is an important natural dihydroflavone and confers apparent anti-inflammatory, antioxidant and anti-fibrotic effects. Recently, DHQ-mediated neuroprotection was exhibited. However, the specific mechanisms of its neuroprotective effects remain incompletely elucidated. METHODS: In this study, rat models were utilized to induce damage to DA neurons using lipopolysaccharide (LPS) and 6-hydroxydopamine (6-OHDA) to assess the impacts of DHQ on the loss of DA neurons. Furthermore, DA neuronal MN9D cells and microglial BV2 cells were employed to investigate the function of TREM2 in DHQ-mediated DA neuroprotection. Finally, TREM2 knockout mice were used to investigate whether the neuroprotective effects mediated by DHQ through a mechanism dependent on TREM2. RESULTS: The main findings demonstrated that DHQ effectively protected DA neurons against neurotoxicity induced by LPS and 6-OHDA and inhibited microglia-elicited neuroinflammation. Meanwhile, DHQ promoted microglial TREM2 signaling activation. Notably, DHQ failed to reduce inflammatory cytokines release and further present neuroprotection from DA neurotoxicity upon TREM2 silencing. Similarly, DHQ didn't exert DA neuroprotection in TREM2 knockout mice. CONCLUSIONS: These findings suggest that DHQ exerted DA neuroprotection by regulating microglia TREM2 activation.


Assuntos
Neurônios Dopaminérgicos , Glicoproteínas de Membrana , Microglia , Fármacos Neuroprotetores , Quercetina , Receptores Imunológicos , Animais , Masculino , Camundongos , Ratos , Linhagem Celular , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Lipopolissacarídeos , Glicoproteínas de Membrana/metabolismo , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Oxidopamina , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Quercetina/farmacologia , Quercetina/análogos & derivados , Ratos Sprague-Dawley , Receptores Imunológicos/metabolismo , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...