Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 961
Filtrar
1.
Int Immunopharmacol ; 137: 112536, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38909495

RESUMO

Microglial activation contributes to the neuropathology of Parkinson's disease (PD). Inhibiting M1 while simultaneously boosting M2 microglia activation may therefore be a potential treatment for PD. Apilarnil (API) is a bee product produced from drone larvae. Recent research has demonstrated the protective effects of API on multiple body systems. Nevertheless, its impact on PD or the microglial M1/M2 pathway has not yet been investigated. Thus, we intended to evaluate the dose-dependent effects of API in rotenone (ROT)-induced PD rat model and explore the role of M1/M2 in mediating its effect. Seventy-two Wistar rats were equally grouped as; control, API, ROT, and groups in which API (200, 400, and 800 mg/kg, p.o.) was given simultaneously with ROT (2 mg/kg, s.c.) for 28 days. The high dose of API (800 mg/kg) showed enhanced motor function, higher expression of tyrosine hydroxylase and dopamine levels, less dopamine turnover and α-synuclein expression, and a better histopathological picture when compared to the ROT group and the lower two doses. API's high dose exerted its neuroprotective effects through abridging the M1 microglial activity, illustrated in the reduced expression of miR-155, Iba-1, CD36, CXCL10, and other pro-inflammatory markers' levels. Inversely, API high dose enhanced M2 microglial activity, witnessed in the elevated expression of miR-124, CD206, Ym1, Fizz1, arginase-1, and other anti-inflammatory indices, in comparison to the diseased group. To conclude, our study revealed a novel neuroprotective impact for API against experimentally induced PD, where the high dose showed the highest protection via rebalancing M1/M2 polarization.


Assuntos
MicroRNAs , Microglia , Fármacos Neuroprotetores , Ratos Wistar , Rotenona , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Masculino , Ratos , Modelos Animais de Doenças , Dopamina/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/patologia , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/genética
2.
Neuromolecular Med ; 26(1): 19, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703217

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder associated with mitochondrial dysfunctions and oxidative stress. However, to date, therapeutics targeting these pathological events have not managed to translate from bench to bedside for clinical use. One of the major reasons for the lack of translational success has been the use of classical model systems that do not replicate the disease pathology and progression with the same degree of robustness. Therefore, we employed a more physiologically relevant model involving alpha-synuclein-preformed fibrils (PFF) exposure to SH-SY5Y cells and Sprague Dawley rats. We further explored the possible involvement of transient receptor potential canonical 5 (TRPC5) channels in PD-like pathology induced by these alpha-synuclein-preformed fibrils with emphasis on amelioration of oxidative stress and mitochondrial health. We observed that alpha-synuclein PFF exposure produced neurobehavioural deficits that were positively ameliorated after treatment with the TRPC5 inhibitor clemizole. Furthermore, Clemizole also reduced p-alpha-synuclein and diminished oxidative stress levels which resulted in overall improvements in mitochondrial biogenesis and functions. Finally, the results of the pharmacological modulation were further validated using siRNA-mediated knockdown of TRPC5 channels, which also decreased p-alpha-synuclein expression. Together, the results of this study could be superimposed in the future for exploring the beneficial effects of TRPC5 channel modulation for other neurodegenerative disorders and synucleopathies.


Assuntos
Mitocôndrias , Estresse Oxidativo , Ratos Sprague-Dawley , Canais de Cátion TRPC , alfa-Sinucleína , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Animais , Ratos , Estresse Oxidativo/efeitos dos fármacos , Humanos , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , Masculino , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/induzido quimicamente , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/tratamento farmacológico
3.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 100-106, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678620

RESUMO

Nervonic acid (NA) is a primary long-chain fatty acid and has been confirmed to have neuroprotective effects in neurologic diseases. Oxidative stress and neuronal damage are the main causes of Parkinson's disease (PD). This study mainly explored whether NA is involved in regulating oxidative stress and apoptosis in MPTP-induced mouse model and MPP-induced cell model. Through behavior tests, we proved that MPTP-induced motor dysfunction in mice was recovered by NA treatment. NA can reduce MPTP-induced neuronal damage, manifested by elevated levels of TH and dopamine, as well as decreased levels of α-syn. In the in vitro model, we observed from CCK8 assay and flow cytometry that the induction of MPP markedly suppressed cell activity and enhanced cell apoptosis, but these functions were all reversed by NA. Furthermore, NA administration reversed the increase in ROS production and MDA levels induced by MPTP or MPP, as well as the decrease in SOD levels, suggesting the antioxidant properties of NA in PD. Meanwhile, we confirmed that NA can regulate oxidative stress and neuronal damage by activating the MEK/ERK pathway. Overall, we concluded that NA could alleviate MPTP-induced PD via MEK/ERK pathway.


Assuntos
Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Animais , Masculino , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos Monoinsaturados/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo
4.
J Viral Hepat ; 30(6): 544-550, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36872452

RESUMO

Research suggests a possible link between chronic infection with hepatitis C virus (HCV) and the development of Parkinson's Disease (PD) and secondary Parkinsonism (PKM). We investigated the impact of antiviral treatment status (untreated, interferon [IFN] treated, direct-acting antiviral [DAA] treated) and outcome (treatment failure [TF] or sustained virological response [SVR]) on risk of PD/PKM among patients with HCV. Using data from the Chronic Hepatitis Cohort Study (CHeCS), we applied a discrete time-to-event approach with PD/PKM as the outcome. We performed univariate followed by a multivariable modelling that used time-varying covariates, propensity scores to adjust for potential treatment selection bias and death as a competing risk. Among 17,199 confirmed HCV patients, we observed 54 incident cases of PD/PKM during a mean follow-up period of 17 years; 3753 patients died during follow-up. There was no significant association between treatment status/outcome and risk of PD/PKM. Type 2 diabetes tripled risk (hazard ratio [HR] 3.05; 95% CI 1.75-5.32; p < .0001) and presence of cirrhosis doubled risk of PD/PKM (HR 2.13, 95% CI 1.31-3.47). BMI >30 was associated with roughly 50% lower risk of PD/PKM than BMI <25 (HR 0.43; 0.22-0.84; p = .0138). After adjustment for treatment selection bias, we did not observe a significant association between HCV patients' antiviral treatment status/outcome on risk of PD/PKM. Several clinical risk factors-diabetes, cirrhosis and BMI-were associated with PD/PKM.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Hepatite C Crônica , Hepatite C , Neoplasias Hepáticas , Doença de Parkinson Secundária , Doença de Parkinson , Humanos , Antivirais/uso terapêutico , Estudos de Coortes , Doença de Parkinson/epidemiologia , Hepatite C Crônica/complicações , Hepatite C Crônica/tratamento farmacológico , Hepatite C/tratamento farmacológico , Hepacivirus , Resposta Viral Sustentada , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/complicações , Doença de Parkinson Secundária/tratamento farmacológico , Cirrose Hepática/complicações , Neoplasias Hepáticas/tratamento farmacológico , Carcinoma Hepatocelular/tratamento farmacológico
5.
Life Sci ; 310: 121129, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306871

RESUMO

AIMS: Parkinson's disease (PD) is characterized by motor disabilities precipitated by α-synuclein aggregation and dopaminergic neurodegeneration. The roles of oxidative stress, neuroinflammation, dysfunction of the mitogen-activated protein kinase (MAPK) pathway, and apoptosis in dopaminergic neurodegeneration have been established. We investigated the potential neuroprotective effect of xanthotoxin, a furanocoumarin extracted from family Apiaceae, in a rotenone-induced PD model in rats since it has not yet been elucidated. MAIN METHODS: For 21 days, rats received 11 rotenone injections (1.5 mg/kg, s.c.) on the corresponding days to induce a PD model and xanthotoxin (15 mg/kg, i.p.) daily. KEY FINDINGS: Xanthotoxin preserved dopaminergic neurons and restored tyrosine hydroxylase positive cells, with suppression of α-synuclein accumulation and restoration of striatal levels of dopamine and its metabolites resulting in amelioration of motor deficits. Furthermore, xanthotoxin impeded rotenone-stimulated neurodegeneration by reducing oxidative stress, which was confirmed by malondialdehyde suppression and glutathione antioxidant enzyme augmentation. It also suppressed neurotoxic inflammatory mediators including tumor necrosis factor-α, interleukin-1ß, and inducible nitric oxide synthase. Additionally, xanthotoxin attenuated the rotenone-mediated activation of MAPK kinases, C-Jun N-terminal kinase, p38 MAPK, and extracellular signal-regulated kinases 1/2, with consequent ablation of apoptotic mediators including Bax, cytochrome c, and caspase-3. SIGNIFICANCE: This study revealed the neuroprotective effect of xanthotoxin in a rotenone-induced PD model in rats, an action that could be attributed to its antioxidant, anti-inflammatory activities as well as to its ability to maintain the function of the MAPK signaling pathway and attenuate apoptosis. Therefore, it could be a valuable therapy for PD.


Assuntos
Metoxaleno , Fármacos Neuroprotetores , Doença de Parkinson Secundária , Animais , Ratos , alfa-Sinucleína/metabolismo , Antioxidantes/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos , Inflamação/patologia , Metoxaleno/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Ratos Wistar , Rotenona/efeitos adversos , Transdução de Sinais , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/metabolismo
6.
BMC Med ; 20(1): 412, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36303171

RESUMO

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disease in middle-aged and elderly populations, whereas there is no cure for PD so far. Novel animal models and medications await development to elucidate the aetiology of PD and attenuate the symptoms, respectively. METHODS: A neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), was used in the current study to establish a PD pathologic model in silkworms. The time required to complete specific behaviours was recorded. Dopamine content was detected by ultra-performance liquid chromatography (UPLC). The activity of insect tyrosine hydroxylase (TH) was determined using a double-antibody sandwich method. Oxidative stress was assessed by changes in antioxidant enzyme activity and the content of oxidative products. RESULTS: MPTP-treated silkworms were characterized by impaired motor ability, reduced dopamine content, and elevated oxidative stress level. The expression of TH, a dopamine biosynthetic enzyme within dopaminergic neurons in the brain, was significantly reduced, indicating that dopaminergic neurons were damaged. Moreover, MPTP-induced motility impairment and reduced dopamine level in the silkworm PD model could be rescued after feeding a combination of levodopa (L-dopa [LD]) and carbidopa (CD). MPTP-induced oxidative damage was also alleviated, in ways consistent with other PD animal models. Interestingly, administration of Lycium barbarum polysaccharide (LBP) improved the motor ability, dopamine level, and TH activity, and the oxidative damage was concomitantly reduced in the silkworm PD model. CONCLUSIONS: This study provides a promising animal model for elucidating the pathogenesis of PD, as well as a relevant preliminary drug screening (e.g., LBP) and evaluation.


Assuntos
Medicamentos de Ervas Chinesas , Doença de Parkinson Secundária , Animais , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Antioxidantes , Modelos Animais de Doenças , Dopamina/metabolismo , Levodopa/farmacologia , Levodopa/uso terapêutico , Camundongos Endogâmicos C57BL , Tirosina 3-Mono-Oxigenase/metabolismo , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/patologia , Medicamentos de Ervas Chinesas/uso terapêutico
7.
Drug Discov Ther ; 16(4): 154-163, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36002316

RESUMO

Parkinson's disease (PD) is the world's second most common neurological disorder. Oxidative stress and neuroinflammation play a crucial role in the pathogenesis of PD. Eugenol is a phytochemical with potent antioxidant and anti-inflammatory activity. The present investigation is aimed to study the effect of eugenol in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mouse model of PD and its relationship to antioxidant effect. The effects of seven days of oral pre-treatment and post-treatment with three doses of eugenol (25, 50 and 100 mg/kg/day) were investigated against the MPTP-induced PD mouse model. In addition to the assessment of behavioural parameters using various tests (actophotometer, beam walking test, catalepsy, rearing, rotarod), biochemical parameters including lipid peroxidation and reduced glutathione levels in brain tissues, were also estimated in this study. The binding mode of eugenol in the human myeloid differentiation factor-2 (hMD-2) was also studied. Results showed that MPTP administration in mice resulted in the development of motor dysfunction (impaired motor coordination and hypo locomotion) similar to that of PD in different behavioural studies. Pre-treatment with eugenol reversed motor dysfunction caused by MPTP administration while post-treatment with eugenol at a high dose aggravated the symptoms of akinesia associated with MPTP administration. MPTP resulted in increased lipid peroxidation while decreased reduced glutathione levels in the brains of mice. MPTP-induced increased lipid peroxidation and attenuated levels of reduced glutathione were found to be alleviated with eugenol pre-treatment while augmented with eugenol post-treatment. Eugenol showed a binding affinity of -6.897 kcal/mol against the MD2 coreceptor of toll-like receptor-4 (TLR4). Biochemical, as well as neurobehavioral studies, showed that eugenol is having a protective effect, but does not have a curative effect on PD.


Assuntos
Eugenol , Fármacos Neuroprotetores , Doença de Parkinson Secundária , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Anti-Inflamatórios , Antioxidantes/farmacologia , Modelos Animais de Doenças , Eugenol/farmacologia , Eugenol/uso terapêutico , Glutationa/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson Secundária/tratamento farmacológico , Receptor 4 Toll-Like
8.
Metab Brain Dis ; 37(5): 1435-1450, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35488941

RESUMO

Wuzi Yanzong Pill (WYP) was found to play a protective role on nerve cells and neurological diseases, however the molecular mechanism is unclear. To understand the molecular mechanisms that underly the neuroprotective effect of WYP on dopaminergic neurons in Parkinson's disease (PD). PD mouse model was induced by the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Gait and hanging tests were used to assess motor behavioral function. Immunofluorescence assay was used to determine TH-positive neurons in substantia nigra (SN). Apoptosis, dopamine and neurotrophic factors as well as expression of PI3K/Akt pathway were detected by TUNEL staining, ELISA and western blotting, respectively. First, it was observed that WYP intervention improved abnormal motor function in MPTP-induced PD model, alleviated the loss of TH+ neurons in SN, and increased dopamine content in brain, revealing a potential protective effect. Second, network pharmacology was used to analyze the possible targets and pathways of WYP action in the treatment of PD. A total of 126 active components related to PD were screened in WYP, and the related core targets included ALB, GAPDH, Akt1, TP53, IL6 and TNF. Particularly, the effect of WYP on PD may be medicate through PI3K/Akt signaling pathway and apoptotic regulation. The WYP treated PD mice had higher expression of p-PI3K, p-Akt and Bcl-2 but lower expression of Bax and cleaved caspase-3 than the non-WYP treated PD mice. Secretion of brain-derived neurotrophic factor (BDNF) and cerebral dopamine neurotrophic factor (CDNF) were also increased in the treated mice. WYP may inhibit apoptosis and increase the secretion of neurotrophic factor via activating PI3K/ Akt signaling pathway, thus protecting the loss of dopamine neurons in MPTP-induced PD mice.


Assuntos
Fármacos Neuroprotetores , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos , Medicamentos de Ervas Chinesas/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Substância Negra
9.
Metab Brain Dis ; 37(5): 1465-1476, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35353275

RESUMO

Neurodegenerative disease, for instance, Parkinson's disease (PD), is associated with substantia nigra dopaminergic neuronal loss with subsequent striatal dopamine reduction, leading to motor deficits. Currently, there is no available effective therapy for PD; thus, novel therapeutic agents such as natural antioxidants with neuroprotective effects are emerging. Alpha-mangostin (αM) is a xanthone derivative compound from mangosteen peel with a cytoprotective effect depicted in neurodegenerative disease models. However, αM has low aqueous solubility and low biodistribution in the brain. Nanostructured lipid carriers (NLC) have been used to encapsulate bioactive compounds delivered to target organs to improve the oral bioavailability and effectiveness. This study aimed to investigate the effect of αM and αM encapsulated in NLC (αM-NLC) in mice with rotenone-induced PD-like neurodegeneration. Forty male ICR mice were divided into normal, PD, PD + αM, and PD + αM-NLC groups. Vehicle, αM (25 mg/kg/48 h), and αM-NLC (25 mg/kg/48 h) were orally administered, along with PD induction by intraperitoneal injection of rotenone (2.5 mg/kg/48 h) for 4 consecutive weeks. Motor abilities were assessed once a week using rotarod and hanging wire tests. Biochemical analysis of brain oxidative status was conducted, and neuronal populations in substantia nigra par compacta (SNc), striatum, and motor cortex were evaluated using Nissl staining. Tyrosine hydroxylase (TH) immunostaining of SNc and striatum was also evaluated. Results showed that rotenone significantly induced motor deficits concurrent with significant SNc, striatum, and motor cortex neuronal reduction and significantly decreased TH intensity in SNc (p < 0.05). The significant reduction of brain superoxide dismutase activity (p < 0.05) was also detected. Administrations of αM and αM-NLC significantly reduced motor deficits, prevented the reduction of TH intensity in SNc and striatum, and prevented the reduction of neurons in SNc (p < 0.05). Only αM-NLC significantly prevented the reduction of neurons in both striatum and motor cortex (p < 0.05). These were found concurrent with significantly reduced malondialdehyde level and increased catalase and superoxide dismutase activities (p < 0.05). Therefore, this study depicted the neuroprotective effect of αM and αM-NLC against rotenone-induced PD-like neurodegeneration in mice. We indicated an involvement of NLC, emphasizing the protective effect of αM against oxidative stress. Moreover, αM-NLC exhibited broad protection against rotenone-induced neurodegeneration that was not limited to nigrostriatal structures and emphasized the benefit of NLC in enhancing αM neuroprotective effects.


Assuntos
Nanoestruturas , Fármacos Neuroprotetores , Doença de Parkinson Secundária , Xantonas , Animais , Modelos Animais de Doenças , Dopamina , Neurônios Dopaminérgicos , Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson Secundária/tratamento farmacológico , Rotenona , Substância Negra , Superóxido Dismutase/metabolismo , Distribuição Tecidual , Tirosina 3-Mono-Oxigenase/metabolismo , Xantonas/farmacologia , Xantonas/uso terapêutico
10.
Neuroscience ; 490: 100-119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35257795

RESUMO

Parkinson's disease (PD) is one of the most common chronic progressive neurodegenerative diseases that affects both motor and non-motor functions. Bile acids modulate the immune system by targeting brain receptors. INT-777, a 6α-ethyl-23(S)-methyl derivative of cholic acid (S-EMCA), acts as an agonist for Takeda G protein-coupled receptor-5 (TGR5) and has neuroprotective properties. However, the effects of INT-777 on PD have not yet been investigated. In a subchronic PD model, mice treated with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) developed motor deficits and cognitive impairment that were ameliorated after intranasal administration of INT-777. INT-777 prevented MPTP-induced neurodegeneration and microglia activation in the substantia nigra pars compacta, hippocampus, and cortical layer V. Based on bioinformatics and wet lab data, INT-777 inhibited microglia activation by suppressing the release of tumor necrosis factor alpha (TNF-α) in the hippocampus, along with secondary chemokines (C-C motif ligand 3 (CCL3) and CCL6) in these three brain regions. INT-777 inhibited TNF-α production by repairing mitochondrial damage, which was associated with nuclear factor-erythroid 2-related factor-2 (NRF2) activation and p62/LC3B-mediated autophagy. INT-777 reversed the downregulation of heme oxygenase-1 (HO1), NAD(P)H quinone oxidoreductase-1 (NQO1) and accumulation of p62 in microglia treated with 1-methyl-4-phenylpyridinium (MPP+). However, TGR5 knockdown in microglia abolished INT-777's inhibition of TNF-α release, resulting in neuronal death. Therefore, PD cognitive impairment is associated with hippocampal TNF-α elevation as a result of mitochondrial damage in microglia. Our data reveal the potential role of TGR5 in modulating inflammation-mediated neurodegeneration in PD, and provides new insights for bile acid metabolites as promising disease-modifying drugs for PD.


Assuntos
Microglia , Dinâmica Mitocondrial , Doença de Parkinson Secundária , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , 1-Metil-4-fenilpiridínio , Animais , Ácidos Cólicos/farmacologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Doença de Parkinson Secundária/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo
11.
Int J Neurosci ; 132(4): 338-351, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32847457

RESUMO

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative disorder. The major causative factors that progress the PD are age, genetic abnormalities, environmental factors and degeneration of dopamine neurons in substantia nigra. PD normally exerts a tonic inhibitory effect on striatal cholinergic interneurons. Anticholinergics act by normalizing the disequilibrium between striatal dopamine and acetylcholine-resulted reduction in tremors. OBJECTIVE: This study sought to evaluate the anti-Parkinson potential of dicyclomine in haloperidol (HAL)- and paraquat (PQT)-induced Parkinsonism models in mice. MATERIALS AND METHODS: Sixty albino mice were divided into six groups (n = 10) for each model. Group I: received distilled water 1 mL/kg, Group II: diseased group received HAL (1 mg/kg) for consecutive 21 days and PQT (2 mg/kg) every three days for three weeks, Group III: treated with sinemet (20 mg/kg), Group IV-VI: received 40, 80 and 160 mg/kg dose of dicyclomine, respectively, for consecutive 21 days. The effect of treatments on spontaneous locomotor activity and motor co-ordination was evaluated by using open field, rotarod, actophotometer and light and dark box tests. Cataleptic behavior was estimated by the block method and triple horizontal bar apparatus. Biochemical markers of oxidative stress and levels of neurotransmitters were estimated. RESULTS: Findings from this study showed that dicyclomine at highest dose level of 160 mg/kg prevented HAL- and PQT-induced PD through enhancement of antioxidant defense system. CONCLUSION: The study concluded that dicyclomine could be the potential drug in the management of Parkinsonism.


Assuntos
Diciclomina , Doença de Parkinson Secundária , Transtornos Parkinsonianos , Animais , Diciclomina/uso terapêutico , Modelos Animais de Doenças , Dopamina , Haloperidol , Camundongos , Paraquat , Doença de Parkinson Secundária/tratamento farmacológico , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Substância Negra
12.
Behav Brain Res ; 417: 113585, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34536428

RESUMO

Tremor is one of the motor symptoms of Parkinson's disease (PD), present also in neuroleptic-induced parkinsonism. Tremulous Jaw Movements (TJMs) are suggested to be a well-validated rodent model of PD resting tremor. TJMs can be induced by typical antipsychotics and are known to be reduced by different drugs, including adenosine A2A receptor antagonists. The aim of the present study was to search for brain structures involved in the tremorolytic action of SCH58261, a selective A2A receptor antagonist, in TJMs induced by subchronic pimozide. Besides TJMs, we evaluated in the same animals the expression of zif-268 mRNA (neuronal responsiveness marker), and mRNA levels for glutamic acid decarboxylase 65-kDa isoform (GAD65) and vesicular glutamate transporters 1 and 2 (vGluT1/2) in selected brain structures, as markers of GABAergic and glutamatergic neurons, respectively. We found that SCH58261 reduced the pimozide-induced TJMs. Pimozide increased the zif-268 mRNA level in the striatum, nucleus accumbens (NAc) core, and substantia nigra pars reticulata (SNr). Additionally, it increased GAD65 mRNA in the striatum and SNr, and vGluT2 mRNA levels in the subthalamic nucleus (STN). A positive correlation between zif-268, GAD65 and vGluT2 mRNAs and TJMs was found. SCH58261 reversed the pimozide-increased zif-268 mRNA in the striatum and NAc core and GAD65 mRNA in the striatum and SNr. In contrast, SCH58261 did not influence vGluT2 mRNA in STN. The present study suggests an importance of the striato-subthalamo-nigro-thalamic circuit in neuroleptic-induced TJMs. The tremorolytic effect of A2A receptor blockade seems to involve this circuit bypassing, however, STN.


Assuntos
Antagonistas de Dopamina/efeitos adversos , Arcada Osseodentária/efeitos dos fármacos , Movimento/efeitos dos fármacos , Pimozida/efeitos adversos , Pirimidinas/antagonistas & inibidores , Receptor A2A de Adenosina/efeitos dos fármacos , Triazóis/antagonistas & inibidores , Animais , Antipsicóticos/farmacologia , Encéfalo/metabolismo , Corpo Estriado/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Glutamato Descarboxilase/metabolismo , Masculino , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/fisiopatologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Núcleo Subtalâmico/metabolismo , Tremor/induzido quimicamente
13.
Cells ; 10(12)2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34944056

RESUMO

Parkinson's disease (PD) is a chronic neurodegenerative disorder associated with dopamine neuron loss and motor dysfunction. Neuroprotective agents that prevent dopamine neuron death hold great promise for slowing the disease's progression. The activation of cannabinoid (CB) receptors has shown neuroprotective effects in preclinical models of neurodegenerative disease, traumatic brain injury, and stroke, and may provide neuroprotection against PD. Here, we report that the selective CB2 agonist GW842166x exerted protective effects against the 6-hydroxydopamine (6-OHDA)-induced loss of dopamine neurons and its associated motor function deficits in mice, as shown by an improvement in balance beam walking, pole, grip strength, rotarod, and amphetamine-induced rotation tests. The neuroprotective effects of GW842166x were prevented by the CB2 receptor antagonist AM630, suggesting a CB2-dependent mechanism. To investigate potential mechanisms for the neuroprotective effects of GW842166x, we performed electrophysiological recordings from substantia nigra pars compacta (SNc) dopamine neurons in ex vivo midbrain slices prepared from drug-naïve mice. We found that the bath application of GW842166x led to a decrease in action potential firing, likely due to a decrease in hyperpolarization-activated currents (Ih) and a shift of the half-activation potential (V1/2) of Ih to a more hyperpolarized level. Taken together, the CB2 agonist GW842166x may reduce the vulnerability of dopamine neurons to 6-OHDA by decreasing the action potential firing of these neurons and the associated calcium load.


Assuntos
Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Piranos/farmacologia , Pirimidinas/farmacologia , Receptor CB2 de Canabinoide/genética , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Humanos , Camundongos , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/genética , Doença de Parkinson Secundária/patologia , Parte Compacta da Substância Negra/efeitos dos fármacos , Parte Compacta da Substância Negra/metabolismo , Receptor CB2 de Canabinoide/agonistas
14.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830228

RESUMO

Cell therapy is a promising treatment for Parkinson's disease (PD), however clinical trials to date have shown relatively low survival and significant patient-to-patient variability. Glucagon Like Peptide-1 receptor (GLP-1R) agonists have potential neuroprotective effects on endogenous dopaminergic neurons. This study explores whether these agents could similarly support the growth and survival of newly transplanted neurons. 6-OHDA lesioned Sprague Dawley rats received intra-striatal grafts of dopaminergic ventral mesencephalic cells from embryonic day 14 Wistar rat embryos. Transplanted rats then received either saline or L-dopa (12 mg/kg) administered every 48 h prior to, and following cell transplantation. Peripheral GLP-1R agonist administration (exendin-4, 0.5 µg/kg twice daily or liraglutide, 100 µg/kg once daily) commenced immediately after cell transplantation and was maintained throughout the study. Graft survival increased under administration of exendin-4, with motor function improving significantly following treatment with both exendin-4 and liraglutide. However, this effect was not observed in rats administered with L-dopa. In contrast, L-dopa treatment with liraglutide increased graft volume, with parallel increases in motor function. However, this improvement was accompanied by an increase in leukocyte infiltration around the graft. The co-administration of L-dopa and exendin-4 also led to indicators of insulin resistance not seen with liraglutide, which may underpin the differential effects observed between the two GLP1-R agonists. Overall, there may be some benefit to the supplementation of grafted patients with GLP-1R agonists but the potential interaction with other pharmacological treatments needs to be considered in more depth.


Assuntos
Neurônios Dopaminérgicos/transplante , Exenatida/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Levodopa/farmacologia , Liraglutida/farmacologia , Doença de Parkinson Secundária/tratamento farmacológico , Animais , Movimento Celular/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Interações Medicamentosas , Embrião de Mamíferos , Feminino , Expressão Gênica , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Sobrevivência de Enxerto/fisiologia , Resistência à Insulina , Leucócitos/efeitos dos fármacos , Leucócitos/patologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Fármacos Neuroprotetores/farmacologia , Oxidopamina/administração & dosagem , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/genética , Doença de Parkinson Secundária/patologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar
15.
PLoS One ; 16(11): e0258928, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34767546

RESUMO

The rotenone-induced animal model of Parkinson's disease (PD) has been used to investigate the pathogenesis of PD. Oxidative stress is one of the main contributors of neurodegeneration in PD. Flavonoids have the potential to modulate neuronal function and combat various neurodegenerative diseases. The pre- and post-supplementation of quercetin (50 mg/kg, p.o) was done in rats injected with rotenone (1.5 mg/kg, s.c). After the treatment, behavioral activities were monitored for motor activity, depression-like behavior, and cognitive changes. Rats were decapitated after behavioral analysis and the brain samples were dissected out for neurochemical and biochemical estimation. Results showed that supplementation of quercetin significantly (p<0.01) restored rotenone-induced motor and non-motor deficits (depression and cognitive impairments), enhanced antioxidant enzyme activities (p<0.01), and attenuated neurotransmitter alterations (p<0.01). It is suggested that quercetin supplementation improves neurotransmitter levels by mitigating oxidative stress via increasing antioxidant enzyme activity and hence improves motor activity, cognitive functions, and reduces depressive behavior. The results of the present study showed that quercetin pre-supplementation produced more significant results as compared to post-supplementation. These findings show that quercetin can be a potential therapeutic agent to reduce the risk and progression of PD.


Assuntos
Antioxidantes/administração & dosagem , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/tratamento farmacológico , Quercetina/administração & dosagem , Rotenona/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/metabolismo , Depressão/metabolismo , Modelos Animais de Doenças , Masculino , Neurotransmissores/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson Secundária/metabolismo , Ratos , Ratos Wistar , Rotenona/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
16.
J Neuroimmunol ; 361: 577738, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34628132

RESUMO

Parkinson's disease is a neurodegenerative disorder while secondary-parkinsonism can be caused by infectious, inflammatory, traumatic, vascular, hereditary, paraneoplastic, or even induced by drug/metal poisoning. Here we report an uncommon subacute parkinsonism who presented with micrographia and mild cognitive impairment. The CSF examination showed inflammatory profile and positive anti-NMDAR antibody. The patient showed no improvement with levodopa/benserazide administration but satisfactory response to immunotherapy with methylprednisolone. This case indicated that autoimmune etiology should also be considered in parkinsonism to exclude a treatable condition.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato/complicações , Autoanticorpos/líquido cefalorraquidiano , Disfunção Cognitiva/etiologia , Escrita Manual , Imunoterapia , Doença de Parkinson Secundária/imunologia , Adulto , Encefalite Antirreceptor de N-Metil-D-Aspartato/tratamento farmacológico , Encefalite Antirreceptor de N-Metil-D-Aspartato/imunologia , Antiparkinsonianos/uso terapêutico , Benserazida/uso terapêutico , Combinação de Medicamentos , Febre de Causa Desconhecida/etiologia , Humanos , Imunossupressores/uso terapêutico , Levodopa/uso terapêutico , Masculino , Metilprednisolona/uso terapêutico , Testes Neuropsicológicos , Doença de Parkinson Secundária/diagnóstico , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/psicologia , Tremor/etiologia
17.
Bull Exp Biol Med ; 171(4): 425-430, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34542745

RESUMO

We studied the possibilities of inhibition of neurodegeneration in MPTP-induced model of Parkinson's disease (PD) in C57Bl/6J mice and transgenic model of early PD stage (5-monthold B6.Cg-Tg(Prnp-SNCA*A53T)23Mkle/J mice) by autophagy activation through mTOR-dependent and mTOR-independent pathways with rapamycin and trehalose, respectively. Therapy with autophagy inducers in a "postponed" mode (7 days after MPTP intoxication) restored the expression of the dopaminergic neuron marker tyrosine hydroxylase and markedly improved cognitive function in the conditioned passive avoidance response (CPAR; fear memory). The transgenic model also showed an increase in the expression of tyrosine hydroxylase in the nigrostriatal system of the brain. An enhanced therapeutic effect of the combined treatment with the drugs was revealed on the expression of tyrosine hydroxylase, but not in the CPAR test. Thus, activation of both pathways of autophagy regulation in PD models with weakened neuroinflammation can restore the dopaminergic function of neurons and cognitive activity in mice.


Assuntos
Autofagia/efeitos dos fármacos , Doenças Neuroinflamatórias/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Adenina/análogos & derivados , Adenina/farmacologia , Adenina/uso terapêutico , Animais , Modelos Animais de Doenças , Inibidores de MTOR/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/genética , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , Serina-Treonina Quinases TOR/fisiologia , Trealose/farmacologia , Trealose/uso terapêutico
18.
Neuropharmacology ; 198: 108771, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34474045

RESUMO

Glutamate, GABA, acetylcholine, dopamine, and serotonin interact with each other to regulate the flow of neural information in the striatum. Serotonin type 1A receptor (5HT1A) is primarily expressed on glutamatergic nerve terminals, and 5HT1B is expressed on GABAergic medium spiny neurons (MSNs). Zonisamide (ZNS) reportedly improves the off period without worsening levodopa-induced dyskinesia (LID) in patients with advanced Parkinson's disease. In this study, LID model rats were prepared by administrating levodopa to unilaterally 6-OHDA-lesioned rats. We analyzed changes in serotonergic neurotransmission of LID model rats to elucidate the relationship between LID and the serotonergic system and pathomechanism of the anti-dyskinetic effects of ZNS. Abnormal involuntary movements (AIMs) were most severe in intermittently levodopa-treated rats but milder in rats intermittently medicated with levodopa and ZNS. Continuously levodopa-infused rats or intermittently ZNS-injected rats did not develop AIMs, and no differences in the expression of brain-derived neurotrophic factor, 5-HT transporter, 5HT1A, and 5HT1B mRNA between the lesioned striatum and normal side were observed. Expression of 5HT1B mRNA was elevated in the lesioned striatum of intermittently levodopa-treated rats, but this elevation was normalized by concomitant use of ZNS. The severity of AIMs was correlated with the ratio of 5HT1B to 5HT1A mRNA expression in the lesioned striatum, indicating that the anti-LID effect of ZNS is based on inhibition via 5HT1B receptors to direct pathway MSNs sensitized by intermittent levodopa treatment. Selectively acting serotonergic drugs, especially those that lower the 5HT1B to 5HT1A ratio, are promising new therapeutic agents to attenuate LID development.


Assuntos
Antidiscinéticos/uso terapêutico , Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Levodopa/efeitos adversos , Neostriado/efeitos dos fármacos , Doença de Parkinson Secundária/tratamento farmacológico , Neurônios Serotoninérgicos/efeitos dos fármacos , Zonisamida/uso terapêutico , Animais , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Receptor 5-HT1B de Serotonina/efeitos dos fármacos , Serotoninérgicos/uso terapêutico
19.
Eur J Pharmacol ; 910: 174460, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34469756

RESUMO

Phosphodiesterase 10A (PDE10A), the enzyme which catalyzes hydrolysis of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), is located almost exclusively in striatal γ-amino-butyric acid (GABA)ergic medium spiny neurons (MSNs). Since dopaminergic deficiency in Parkinson's disease (PD) leads to functional imbalance of striatal direct and indirect output pathways formed by MSNs, PDE10A seems to be of special interest as a potential therapeutic target in PD. The aim of the present study was to examine the influence of 7-{5,8-dimethyl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl}-2-phenylimidazo[1,2-a]pyrimidine (CPL500036), a novel selective inhibitor of PDE10A, on sensorimotor deficits and therapeutic effects of L-3,4-dihydroxyphenylalanine (L-DOPA) in hemiparkinsonian rats. Animals were unilaterally lesioned with 6-hydroxydopamine, and their sensorimotor deficits were examined in the stepping, cylinder, vibrissae and catalepsy tests. CPL500036 (0.1 and 0.3 mg/kg) was administered either acutely or chronically (2 weeks), alone or in combination with L-DOPA/benserazide (6 mg/kg/6 mg/kg). Acute treatment with CPL500036 reversed the lesion-induced impairments of contralateral forelimb use in the stepping and cylinder tests but did not influence deficits in the vibrissae test and the lesion-induced catalepsy. Moreover, CPL500036 did not diminish the therapeutic effects produced by acute and chronic treatment with L-DOPA in these tests. The present study suggests a potential use of CPL500036 as a co-treatment to L-DOPA in PD therapy.


Assuntos
Antiparkinsonianos/uso terapêutico , Levodopa/uso terapêutico , Doença de Parkinson Secundária/tratamento farmacológico , Inibidores de Fosfodiesterase/uso terapêutico , Diester Fosfórico Hidrolases/metabolismo , Animais , Antiparkinsonianos/farmacologia , Modelos Animais de Doenças , Neurônios GABAérgicos/efeitos dos fármacos , Humanos , Levodopa/farmacologia , Masculino , Oxidopamina/administração & dosagem , Oxidopamina/toxicidade , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/diagnóstico , Doença de Parkinson Secundária/patologia , Inibidores de Fosfodiesterase/farmacologia , Ratos , Índice de Gravidade de Doença
20.
Eur J Pharmacol ; 909: 174413, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34391769

RESUMO

Ginsenoside Rg3, extracted from Panax ginseng C.A. Meyer, has been shown to possess neuroprotective properties. The present study aims to investigate the neuroprotective effects of ginsenoside Rg3 on rotenone-induced Parkinson's disease mice. Rotenone, a mitochondrial complex I inhibitor, leads to the augmentation of reactive oxygen species production in cells. Male C57/BL6 mice were intragastrically administered rotenone (30 mg/kg) and then treated with ginsenoside Rg3 (5, 10, or 20 mg/kg). Pole, rotarod, and open field tests were performed to evaluate motor function. Ginsenoside Rg3 decreased the climbing time in the pole test (p < 0.01), whereas it increased the latency in the rotarod test (p < 0.01) and the total distance (p < 0.01) and mean speed in the open field test (p < 0.01). Ginsenoside Rg3 treatment augmented the number of tyrosine hydroxylase-positive neurons in the substantia nigra (p < 0.01), mean density of tyrosine hydroxylase-positive nerve fibers (p < 0.01), and dopamine content (p < 0.01) in the striatum and reduced the reactive oxygen species level in the substantia nigra (p < 0.01). Glutathione cysteine ligase regulatory subunit and glutathione cysteine ligase modulatory subunit expression levels were elevated in the ginsenoside Rg3 groups. Ginsenoside Rg3 also improved motor function in rotenone-induced Parkinson's disease mice. The neuroprotective effects of ginsenoside Rg3 are at least partly associated with its anti-oxidative properties via regulation of glutathione cysteine ligase modulatory subunit and glutathione cysteine ligase regulatory subunit expression.


Assuntos
Antioxidantes/farmacologia , Ginsenosídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson Secundária/tratamento farmacológico , Animais , Antioxidantes/uso terapêutico , Modelos Animais de Doenças , Ginsenosídeos/uso terapêutico , Humanos , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson Secundária/etiologia , Doença de Parkinson Secundária/patologia , Espécies Reativas de Oxigênio/metabolismo , Rotenona/toxicidade , Substância Negra/efeitos dos fármacos , Substância Negra/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...