Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Hum Mol Genet ; 33(12): 1055-1063, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38493358

RESUMO

Claudin-25 (CLDN-25), also known as Claudin containing domain 1, is an uncharacterized claudin family member. It has less conserved amino acid sequences when compared to other claudins. It also has a very broad tissue expression profile and there is currently a lack of functional information from murine knockout models. Here, we report a de novo missense heterozygous variant in CLDN25 (c. 745G>C, p. A249P) found in a patient diagnosed with Pelizaeus-Merzbacher-like leukodystrophy and presenting with symptoms such as delayed motor development, several episodes of tonic absent seizures and generalized dystonia. The variant protein does not localize to the cell-cell borders where it would normally be expected to be expressed. Amino acid position 249 is located 4 amino acids from the C-terminal end of the protein where most claudin family members have a conserved binding motif for the key scaffolding protein ZO-1. However, CLDN-25 does not contain this motif. Here, we show that the C-terminal end of CLDN-25 is required for its junctional localization in a ZO-1 independent manner. The A249P mutant protein as well as a deletion mutant lacking its last 5 C-terminal amino acids also failed to localize to the cell-cell border in vitro. Intriguingly, cellular knockout of CLDN25, in vitro, appeared to increase the integrity of the tight junction between 2 contacting cells, while driving highly unusual increased movement of solutes between cells. We propose that the barrier function of CLDN-25 is akin to a decoy claudin, whereby decreasing its expression in "leaky" epithelial cells and endothelial cells will drive dynamic changes in the adhesion and interaction capacity of cell-cell contact points. While it remains unclear how this de novo CLDN-25 mutant induces leukodystrophy, our findings strongly suggest that this mutation induces haploinsufficiency of CLDN-25. Elucidating the function of this uncharacterized claudin protein will lead to a better understanding of the role of claudin proteins in health and disease.


Assuntos
Claudinas , Doença de Pelizaeus-Merzbacher , Humanos , Claudinas/genética , Claudinas/metabolismo , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/metabolismo , Mutação com Perda de Função , Masculino , Mutação de Sentido Incorreto , Feminino , Animais , Sequência de Aminoácidos
2.
Development ; 149(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35748297

RESUMO

Oligodendrocytes, the myelinating cells of the central nervous system, possess great potential for disease modeling and cell transplantation-based therapies for leukodystrophies. However, caveats to oligodendrocyte differentiation protocols ( Ehrlich et al., 2017; Wang et al., 2013; Douvaras and Fossati, 2015) from human embryonic stem and induced pluripotent stem cells (iPSCs), which include slow and inefficient differentiation, and tumorigenic potential of contaminating undifferentiated pluripotent cells, are major bottlenecks towards their translational utility. Here, we report the rapid generation of human oligodendrocytes by direct lineage conversion of human dermal fibroblasts (HDFs). We show that the combination of the four transcription factors OLIG2, SOX10, ASCL1 and NKX2.2 is sufficient to convert HDFs to induced oligodendrocyte precursor cells (iOPCs). iOPCs resemble human primary and iPSC-derived OPCs based on morphology and transcriptomic analysis. Importantly, iOPCs can differentiate into mature myelinating oligodendrocytes in vitro and in vivo. Finally, iOPCs derived from patients with Pelizaeus Merzbacher disease, a hypomyelinating leukodystrophy caused by mutations in the proteolipid protein 1 (PLP1) gene, showed increased cell death compared with iOPCs from healthy donors. Thus, human iOPCs generated by direct lineage conversion represent an attractive new source for human cell-based disease models and potentially myelinating cell grafts.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Pelizaeus-Merzbacher , Diferenciação Celular/fisiologia , Fibroblastos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Oligodendroglia/metabolismo , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/metabolismo , Doença de Pelizaeus-Merzbacher/terapia
3.
Mol Cell Neurosci ; 120: 103716, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276347

RESUMO

Pelizaeus-Merzbacher-like disease type 1 (PMLD1) is a hypomyelinating disorder arising in patients with mutations in GJC2, encoding Connexin47 (Cx47). PMLD1 causes nystagmus, cerebellar ataxia, spasticity and changes in CNS white matter detected by MRI. At least one mutation (p.I33M) yields a much milder phenotype, spastic paraplegia type 44 (SPG44). Cx47 contributes to gap junction communication channels between oligodendrocytes (OLs), the myelinating cells in the central nervous system (CNS), and between OLs and astrocytes. Prior studies in cell lines have shown that PMLD1 mutants such as p.P87S display defective protein trafficking, intracellular retention in the ER and loss-of-function. Here we show that when expressed in primary OLs, three PMLD1 associated mutants (p.P87S, p.Y269D and p.M283T) show ER retention of Cx47 and evidence of activation of the cellular stress (unfolded protein response, UPR) and apoptotic pathways. On the other hand, the milder SPG44 associated mutation p.I33M shows a wild-type-like subcellular distribution and no activation of the UPR or apoptotic pathways. These studies provide new insight into a potential element of toxic gain of function underlying the mechanism of PMLD1 that should help guide future therapeutic approaches.


Assuntos
Doenças Desmielinizantes , Doenças por Armazenamento dos Lisossomos , Doenças Neurodegenerativas , Doença de Pelizaeus-Merzbacher , Conexinas/genética , Conexinas/metabolismo , Doenças Desmielinizantes/metabolismo , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Humanos , Doenças por Armazenamento dos Lisossomos/metabolismo , Mutação , Doenças Neurodegenerativas/metabolismo , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/metabolismo , Resposta a Proteínas não Dobradas/genética
4.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070744

RESUMO

The ClC-2 channel plays a critical role in maintaining ion homeostasis in the brain and the testis. Loss-of-function mutations in the ClC-2-encoding human CLCN2 gene are linked to the white matter disease leukodystrophy. Clcn2-deficient mice display neuronal myelin vacuolation and testicular degeneration. Leukodystrophy-causing ClC-2 mutant channels are associated with anomalous proteostasis manifesting enhanced endoplasmic reticulum (ER)-associated degradation. The molecular nature of the ER quality control system for ClC-2 protein remains elusive. In mouse testicular tissues and Leydig cells, we demonstrated that endogenous ClC-2 co-existed in the same protein complex with the molecular chaperones heat shock protein 90ß (Hsp90ß) and heat shock cognate protein (Hsc70), as well as the associated co-chaperones Hsp70/Hsp90 organizing protein (HOP), activator of Hsp90 ATPase homolog 1 (Aha1), and FK506-binding protein 8 (FKBP8). Further biochemical analyses revealed that the Hsp90ß-Hsc70 chaperone/co-chaperone system promoted mouse and human ClC-2 protein biogenesis. FKBP8 additionally facilitated membrane trafficking of ClC-2 channels. Interestingly, treatment with the Hsp90-targeting small molecule 17-allylamino-17-demethoxygeldanamycin (17-AAG) substantially boosted ClC-2 protein expression. Also, 17-AAG effectively increased both total and cell surface protein levels of leukodystrophy-causing loss-of-function ClC-2 mutant channels. Our findings highlight the therapeutic potential of 17-AAG in correcting anomalous ClC-2 proteostasis associated with leukodystrophy.


Assuntos
Encéfalo/metabolismo , Canais de Cloreto/genética , Células Intersticiais do Testículo/metabolismo , Neurônios/metabolismo , Doença de Pelizaeus-Merzbacher/genética , Proteostase/genética , Animais , Benzoquinonas/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Células CHO , Canais de Cloro CLC-2 , Canais de Cloreto/deficiência , Cricetulus , Modelos Animais de Doenças , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Regulação da Expressão Gênica , Células HEK293 , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Lactamas Macrocíclicas/farmacologia , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Doença de Pelizaeus-Merzbacher/tratamento farmacológico , Doença de Pelizaeus-Merzbacher/metabolismo , Doença de Pelizaeus-Merzbacher/patologia , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Transdução de Sinais , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
5.
J Hum Genet ; 66(10): 1035-1037, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33785861

RESUMO

Monoallelic mutations on TMEM63A have been recently reported as cause of a previously unrecognized disorder named "infantile-onset transient hypomyelination". Clinical and neuroradiological presentation is described as highly similar to Pelizaeus-Merzbacher Disease but evolution over time was surprisingly benign with a progressive spontaneous improving course. We report on a new TMEM63A-mutated girl. The clinical picture was similar to the one already described except for the presence of recurrent episodes of unilateral eyelid twitching, and for the evidence of spinal cord involvement on MRI. These are interesting findings helping in distinguishing this condition from classic PMD since early disease stages. However, additional observations are needed to confirm if these are common features of this condition.


Assuntos
Predisposição Genética para Doença , Proteínas de Membrana/genética , Proteína Proteolipídica de Mielina/genética , Doença de Pelizaeus-Merzbacher/genética , Medula Espinal/diagnóstico por imagem , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Mutação/genética , Doença de Pelizaeus-Merzbacher/diagnóstico por imagem , Doença de Pelizaeus-Merzbacher/metabolismo , Doença de Pelizaeus-Merzbacher/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia
6.
Nature ; 585(7825): 397-403, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32610343

RESUMO

Mutations in PLP1, the gene that encodes proteolipid protein (PLP), result in failure of myelination and neurological dysfunction in the X-chromosome-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD)1,2. Most PLP1 mutations, including point mutations and supernumerary copy variants, lead to severe and fatal disease. Patients who lack PLP1 expression, and Plp1-null mice, can display comparatively mild phenotypes, suggesting that PLP1 suppression might provide a general therapeutic strategy for PMD1,3-5. Here we show, using CRISPR-Cas9 to suppress Plp1 expression in the jimpy (Plp1jp) point-mutation mouse model of severe PMD, increased myelination and restored nerve conduction velocity, motor function and lifespan of the mice to wild-type levels. To evaluate the translational potential of this strategy, we identified antisense oligonucleotides that stably decrease the levels of Plp1 mRNA and PLP protein throughout the neuraxis in vivo. Administration of a single dose of Plp1-targeting antisense oligonucleotides in postnatal jimpy mice fully restored oligodendrocyte numbers, increased myelination, improved motor performance, normalized respiratory function and extended lifespan up to an eight-month end point. These results suggest that PLP1 suppression could be developed as a treatment for PMD in humans. More broadly, we demonstrate that oligonucleotide-based therapeutic agents can be delivered to oligodendrocytes in vivo to modulate neurological function and lifespan, establishing a new pharmaceutical modality for myelin disorders.


Assuntos
Modelos Animais de Doenças , Proteína Proteolipídica de Mielina/deficiência , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/terapia , Animais , Sistemas CRISPR-Cas , Feminino , Edição de Genes , Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Atividade Motora/genética , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Doença de Pelizaeus-Merzbacher/metabolismo , Mutação Puntual , Testes de Função Respiratória , Análise de Sobrevida
7.
Acta Neurol Scand ; 139(2): 135-142, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30192380

RESUMO

OBJECTIVE: LMNB1-related autosomal dominant leukodystrophy is caused by an overexpression of the protein lamin B1, usually due to a duplication of the LMNB1 gene. Symptoms start in 5th to 6th decade. This slowly progressive disease terminates with death. We studied brain glucose metabolism in this disease using 18 F-fluorodeoxyglucose positron emission tomography (PET). METHODS: We examined 8 patients, aged 48-64 years, in varying stages of clinical symptomatology. Two patients were investigated with quantitative PET on clinical indications after which six more patients were recruited. Absolute glucose metabolism was analyzed with the PVElab software in 6 patients and 18 healthy controls. A semiquantitative analysis using the CortexID software was performed in seven investigations, relating local metabolism levels to global glucose metabolism. RESULTS: The clinical quantitative PET revealed low global glucose metabolism, with the most marked reduction in the cerebellum. In the PVElab analysis, patients presented low mean glucose metabolism in the cerebellum, brainstem and global grey matter. In the semiquantitative analysis, 2 patients showed a decreased metabolism in the cerebellum and 4 patients a relatively higher metabolism in parts of the temporal lobes. Since none of the patients showed an increased metabolism in the quantitative analysis, we interpret these increases as "pseudo-increases" related to a globally reduced metabolism. CONCLUSIONS: Global reduction of grey matter glucose metabolism in this white matter disease most likely depends on a combination of cortical afferent dysfunction and, in later stages, neuronal loss. The lowest metabolism in the cerebellum is consistent with histopathological findings and prominent cerebellar symptoms.


Assuntos
Cerebelo/diagnóstico por imagem , Lamina Tipo B/genética , Doença de Pelizaeus-Merzbacher/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Cerebelo/metabolismo , Cerebelo/patologia , Feminino , Fluordesoxiglucose F18 , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Pelizaeus-Merzbacher/metabolismo , Doença de Pelizaeus-Merzbacher/patologia , Compostos Radiofarmacêuticos
8.
Stem Cell Reports ; 11(3): 711-726, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30146490

RESUMO

Pelizaeus-Merzbacher disease (PMD) is a fatal X-linked disorder caused by loss of myelinating oligodendrocytes and consequent hypomyelination. The underlying cellular and molecular dysfunctions are not fully defined, but therapeutic enhancement of oligodendrocyte survival could restore functional myelination in patients. Here we generated pure, scalable quantities of induced pluripotent stem cell-derived oligodendrocyte progenitor cells (OPCs) from a severe mouse model of PMD, Plp1jimpy. Temporal phenotypic and transcriptomic studies defined an early pathological window characterized by endoplasmic reticulum (ER) stress and cell death as OPCs exit their progenitor state. High-throughput phenotypic screening identified a compound, Ro 25-6981, which modulates the ER stress response and rescues mutant oligodendrocyte survival in jimpy, in vitro and in vivo, and in human PMD oligocortical spheroids. Surprisingly, increasing oligodendrocyte survival did not restore subsequent myelination, revealing a second pathological phase. Collectively, our work shows that PMD oligodendrocyte loss can be rescued pharmacologically and defines a need for multifactorial intervention to restore myelination.


Assuntos
Células Precursoras de Oligodendrócitos/patologia , Doença de Pelizaeus-Merzbacher/patologia , Animais , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos , Mutação , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/metabolismo , Transcriptoma
9.
Neurosci Lett ; 678: 90-98, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29729355

RESUMO

Proteolipid protein (PLP), besides its adhesive role in myelin, has been postulated to have multiple cellular functions. One well-documented function of PLP is regulation of oligodendrocyte (Olg) apoptosis. In contrast, DM20, an alternatively spliced product of the PLP1/Plp1 gene, has been proposed to have functions that are unique from PLP but these functions have never been elucidated. Here, we compare metabolism of PLP and DM20, and show that oxidative phosphorylation (OxPhos) was significantly decreased in Plp1 but not DM20 or EGFP expressing cells. The reserve OxPhos capacity of Plp1 expressing cells was half of control cells, suggesting that they are very vulnerable to stress. ATP in media of Plp1 expressing cells is significantly increased more than two-fold compared to controls; markers of apoptosis are increased in cells over-expressing Plp1, indicating that abnormal metabolism of PLP is most likely the direct cause leading to Olg apoptosis. We hypothesize that abnormal metabolism, mediated by increased insertion of PLP into mitochondria, underlies demyelination in Pelizaeus-Merzbacher Disease (PMD) and in models of PMD. To understand why PLP and DM20 function differently, we mutated or deleted amino acids located in the PLP-specific region. All these mutations and deletions of the PLP-specific region prevented insertion of PLP into mitochondria. These findings demonstrate that the PLP-specific region is essential for PLP's import into mitochondria, and now offer an explanation for deciphering unique functions of PLP and DM20.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteína Proteolipídica de Mielina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Células COS , Respiração Celular , Chlorocebus aethiops , Ácido Láctico/metabolismo , Doença de Pelizaeus-Merzbacher/metabolismo
10.
Brain Pathol ; 28(5): 611-630, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29027761

RESUMO

Pelizaeus-Merzbacher disease (PMD) is a fatal hypomyelinating disorder characterized by early impairment of motor development, nystagmus, choreoathetotic movements, ataxia and progressive spasticity. PMD is caused by variations in the proteolipid protein gene PLP1, which encodes the two major myelin proteins of the central nervous system, PLP and its spliced isoform DM20, in oligodendrocytes. Large duplications including the entire PLP1 gene are the most frequent causative mutation leading to the classical form of PMD. The Plp1 overexpressing mouse model (PLP-tg66/66 ) develops a phenotype very similar to human PMD, with early and severe motor dysfunction and a dramatic decrease in lifespan. The sequence of cellular events that cause neurodegeneration and ultimately death is poorly understood. In this work, we analyzed patient-derived fibroblasts and spinal cords of the PLP-tg66/66 mouse model, and identified redox imbalance, with altered antioxidant defense and oxidative damage to several enzymes involved in ATP production, such as glycolytic enzymes, creatine kinase and mitochondrial proteins from the Krebs cycle and oxidative phosphorylation. We also evidenced malfunction of the mitochondria compartment with increased ROS production and depolarization in PMD patient's fibroblasts, which was prevented by the antioxidant N-acetyl-cysteine. Finally, we uncovered an impairment of mitochondrial dynamics in patient's fibroblasts which may help explain the ultrastructural abnormalities of mitochondria morphology detected in spinal cords from PLP-tg66/66 mice. Altogether, these results underscore the link between redox and metabolic homeostasis in myelin diseases, provide insight into the pathophysiology of PMD, and may bear implications for tailored pharmacological intervention.


Assuntos
Dinâmica Mitocondrial , Estresse Oxidativo , Doença de Pelizaeus-Merzbacher/metabolismo , Animais , Células Cultivadas , Criança , Pré-Escolar , DNA Mitocondrial , Fibroblastos/metabolismo , Fibroblastos/patologia , Ácido Glutâmico/metabolismo , Humanos , Lactente , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Doença de Pelizaeus-Merzbacher/patologia , RNA Mensageiro/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia
12.
Nucleus ; 7(6): 547-553, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27854160

RESUMO

Autosomal Dominant Leukodystrophy (ADLD), a fatal adult onset demyelinating disorder, is the only human disease that has been linked to mutations of the nuclear lamina protein, lamin B1, and is primarily caused by duplications of the LMNB1 gene. Why CNS myelin is specifically targeted and the mechanisms underlying ADLD are unclear. Recent work from our group has demonstrated that over expression of lamin B1 in oligodendrocytes, the myelin producing cells in the CNS, resulted in age dependent epigenetic modifications, transcriptional down-regulation of lipogenic gene expression and significant reductions of myelin-enriched lipids. Given the high lipid content of meylin, we hypothesize that lipid loss is one of the primary drivers of the demyelination phenotype. These results can, at least partially, explain the age dependence and cell type specificity in ADLD and are discussed in the context of the existing literature, in an attempt to delineate potential pathways underlying the disease phenotype.


Assuntos
Lamina Tipo B/metabolismo , Metabolismo dos Lipídeos , Doença de Pelizaeus-Merzbacher/metabolismo , Animais , Epigênese Genética , Humanos , Lamina Tipo B/genética , Mutação , Doença de Pelizaeus-Merzbacher/genética , Transcrição Gênica
13.
Clin Genet ; 90(4): 293-304, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27234264

RESUMO

Hypomyelinating leukodystrophies (HLDs) are a group of neurodevelopmental disorders that affect proper formation of the myelin sheath in the central nervous system. They are characterized by developmental delay, hypotonia, spasticity, and variable intellectual disability. In the past various classification systems for HLDs have been used, based on imaging findings, clinical manifestation, and organelle-specific disorders. Here we present a molecular insight into HLDs based on a defect in specific gene engaged in myelination. We discuss recent findings on pathogenesis, clinical presentation, and imaging related to these disorders. We focus on HLDs that are in use in differential diagnostics of Pelizaeus-Merzbacher disease (PMD), with a special emphasis on Allan-Herndon-Dudley syndrome (AHDS), an X-linked condition with delayed myelination due to thyroid transport disturbances. On the background of previously published patients we describe a proband initially considered as presenting with a severe PMD, whose diagnosis of AHDS due to a novel nonsense SLC16A2 mutation unraveled two previously undiagnosed generations of affected males who died in infancy from unexplained reasons. Since AHDS is found to be a relatively frequent cause of X-linked intellectual disability, we emphasize the need for determining the whole thyroid profile especially in hypotonic males with a delay of psychomotor development.


Assuntos
Leucoencefalopatias/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Hipotonia Muscular/genética , Atrofia Muscular/genética , Doença de Pelizaeus-Merzbacher/genética , Criança , Pré-Escolar , Diagnóstico Diferencial , Genes Ligados ao Cromossomo X , Humanos , Leucoencefalopatias/diagnóstico , Leucoencefalopatias/metabolismo , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/metabolismo , Atrofia Muscular/diagnóstico , Atrofia Muscular/metabolismo , Mutação , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Linhagem , Doença de Pelizaeus-Merzbacher/diagnóstico , Doença de Pelizaeus-Merzbacher/metabolismo
14.
Brain Dev ; 38(6): 581-4, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26725305

RESUMO

A patient with an unusually mild form of Pelizaeus-Merzbacher disease was studied. Clinically, mild developmental delay with acquisition of assisted walking at 16months and mild spastic tetraplegia were evident, but no nystagmus, cerebellar, or extra-pyramidal signs were present. PLP1 mutation analysis revealed a nucleotide substitution adjacent to the acceptor site of intron 3, NM_000533.4:c.454-9T>G. Expression analysis using the patient's leukocytes demonstrated an additional abnormal transcript including the last 118bp of intron 3. In silico prediction analysis suggested the reduction of wild-type acceptor activity, which presumably evokes the cryptic splicing variant. Putative cryptic transcript results in premature termination, which may explain the mild clinical phenotype observed in this patient.


Assuntos
Mutação , Proteína Proteolipídica de Mielina/genética , Doença de Pelizaeus-Merzbacher/genética , Encéfalo/diagnóstico por imagem , Criança , Análise Mutacional de DNA , Humanos , Íntrons , Leucócitos/metabolismo , Imageamento por Ressonância Magnética , Masculino , Proteína Proteolipídica de Mielina/metabolismo , Doença de Pelizaeus-Merzbacher/diagnóstico por imagem , Doença de Pelizaeus-Merzbacher/metabolismo , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Índice de Gravidade de Doença
15.
Biochim Biophys Acta ; 1851(8): 1083-94, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25724171

RESUMO

The largest pool of free cholesterol in mammals resides in myelin membranes. Myelin facilitates rapid saltatory impulse propagation by electrical insulation of axons. This function is achieved by ensheathing axons with a tightly compacted stack of membranes. Cholesterol influences myelination at many steps, from the differentiation of myelinating glial cells, over the process of myelin membrane biogenesis, to the functionality of mature myelin. Cholesterol emerged as the only integral myelin component that is essential and rate-limiting for the development of myelin in the central and peripheral nervous system. Moreover, disorders that interfere with sterol synthesis or intracellular trafficking of cholesterol and other lipids cause hypomyelination and neurodegeneration. This review summarizes recent results on the roles of cholesterol in CNS myelin biogenesis in normal development and under different pathological conditions. This article is part of a Special Issue entitled Brain Lipids.


Assuntos
Colesterol/metabolismo , Bainha de Mielina/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Pelizaeus-Merzbacher/metabolismo , Síndrome de Smith-Lemli-Opitz/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Homeostase , Humanos , Bainha de Mielina/química , Bainha de Mielina/ultraestrutura , Neurônios/citologia , Neurônios/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Doença de Pelizaeus-Merzbacher/patologia , Sistema Nervoso Periférico/citologia , Sistema Nervoso Periférico/metabolismo , Síndrome de Smith-Lemli-Opitz/patologia , Transmissão Sináptica
16.
Hum Mol Genet ; 24(10): 2746-56, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25637521

RESUMO

Adult-onset autosomal dominant leukodystrophy (ADLD) is a slowly progressive neurological disorder characterized by autonomic dysfunction, followed by cerebellar and pyramidal features. ADLD is caused by duplication of the lamin B1 gene (LMNB1), which leads to its increased expression. The molecular pathways involved in the disease are still poorly understood. Hence, we analyzed global gene expression in fibroblasts and whole blood of LMNB1 duplication carriers and used Gene Set Enrichment Analysis to explore their gene signatures. We found that LMNB1 duplication is associated with dysregulation of genes involved in the immune system, neuronal and skeletal development. Genes with an altered transcriptional profile clustered in specific genomic regions. Among the dysregulated genes, we further studied the role of RAVER2, which we found to be overexpressed at mRNA and protein level. RAVER2 encodes a putative trans regulator of the splicing repressor polypyrimidine tract binding protein (PTB) and is likely implicated in alternative splicing regulation. Functional studies demonstrated an abnormal splicing pattern of several PTB-target genes and of the myelin protein gene PLP1, previously demonstrated to be involved in ADLD. Mutant mice with different lamin B1 expression levels confirmed that Raver2 expression is dependent on lamin B1 in neural tissue and determines an altered splicing pattern of PTB-target genes and Plp1. Overall our results demonstrate that deregulation of lamin B1 expression induces modified splicing of several genes, likely driven by raver-2 overexpression, and suggest that an alteration of mRNA processing could be a pathogenic mechanism in ADLD.


Assuntos
Processamento Alternativo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Lamina Tipo B/genética , Doença de Pelizaeus-Merzbacher/genética , Animais , Fibroblastos/metabolismo , Duplicação Gênica , Perfilação da Expressão Gênica , Humanos , Leucócitos/metabolismo , Camundongos , Camundongos Knockout , Doença de Pelizaeus-Merzbacher/metabolismo , Regulação para Cima
17.
Brain Dev ; 37(8): 797-802, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25491635

RESUMO

PURPOSE: Pelizaeus-Merzbacher disease (PMD) is a rare X-linked recessive hypomyelination disorder characterized by nystagmus, ataxia, impaired motor development, and progressive spasticity. Identification of proteolipid protein 1 (PLP1) mutations in Chinese patients with Pelizaeus-Merzbacher disease (PMD) and confirmation of the biological impacts of the identified mutations are the aims of this study. METHODS: An analysis of clinical materials and a follow-up study were conducted for the patients with PMD. Sequencing and immunofluorescence were applied for molecular analysis of the causative gene PLP1. RESULTS: We identified PLP1 mutations in seven male patients with PMD. Three novel missense mutations (c.353C>G, p.T118R; c.623G>T, p.G208V; c.709T>G, p.F237V) and three reported missense mutations (c.467C>T, p.T156I; c.517C>T, p.P173S; c.646C>T, p.P216S) of PLP1 were identified from seven Chinese PMD patients. The three mutations (F237V in patient 2, P216S in patient 5 and T156I in patient 6) were de novo. Mutant proteins were trapped in the lumen of endoplasmic reticulum. CONCLUSION: We have identified six pathogenic mutations, enriching the specific spectrum of missense mutations in the patients with PMD. The six PLP1 mutations are probably pathogenic. By reviewing the known PLP1 mutations, we have preliminarily revealed the position of missense mutation may be associated with the severity of PMD.


Assuntos
Povo Asiático/genética , Mutação de Sentido Incorreto , Proteína Proteolipídica de Mielina/genética , Doença de Pelizaeus-Merzbacher/genética , Criança , Pré-Escolar , China , Estudos de Associação Genética , Humanos , Lactente , Masculino , Proteína Proteolipídica de Mielina/metabolismo , Doença de Pelizaeus-Merzbacher/metabolismo , Doença de Pelizaeus-Merzbacher/patologia
18.
FASEB J ; 28(9): 3906-18, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24858279

RESUMO

The architecture and structural mechanics of the cell nucleus are defined by the nuclear lamina, which is formed by A- and B-type lamins. Recently, gene duplication and protein overexpression of lamin B1 (LB1) have been reported in pedigrees with autosomal dominant leukodystrophy (ADLD). However, how the overexpression of LB1 affects nuclear mechanics and function and how it may result in pathology remain unexplored. Here, we report that in primary human skin fibroblasts derived from ADLD patients, LB1, but not other lamins, is overexpressed at the nuclear lamina and specifically enhances nuclear stiffness. Transient transfection of LB1 in HEK293 and neuronal N2a cells mimics the mechanical phenotype of ADLD nuclei. Notably, in ADLD fibroblasts, reducing LB1 protein levels by shRNA knockdown restores elasticity values to those indistinguishable from control fibroblasts. Moreover, isolated nuclei from ADLD fibroblasts display a reduced nuclear ion channel open probability on voltage-step application, suggesting that biophysical changes induced by LB1 overexpression may alter nuclear signaling cascades in somatic cells. Overall, the overexpression of LB1 in ADLD cells alters nuclear mechanics and is linked to changes in nuclear signaling, which could help explain the pathogenesis of this disease.


Assuntos
Núcleo Celular/patologia , Embrião de Mamíferos/citologia , Fibroblastos/patologia , Lamina Tipo B/metabolismo , Doença de Pelizaeus-Merzbacher/patologia , Pele/citologia , Adulto , Animais , Western Blotting , Estudos de Casos e Controles , Permeabilidade da Membrana Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferação de Células , Células Cultivadas , Embrião de Mamíferos/metabolismo , Feminino , Fibroblastos/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Lamina Tipo B/antagonistas & inibidores , Lamina Tipo B/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Técnicas de Patch-Clamp , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/metabolismo , Fenótipo , RNA Interferente Pequeno/genética , Pele/metabolismo
19.
J Child Neurol ; 29(2): 283-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24056155

RESUMO

A boy with Pelizaeus-Merzbacher disease underwent repeated evaluations by 3-Tesla (1)H-magnetic resonance spectroscopy (MRS). The patient showed overlap of the PLP1. Individuals selected as normal controls for (1)H-magnetic resonance spectroscopy consisted of healthy age-matched children. For (1)H-magnetic resonance spectroscopy, the center of a voxel was positioned in the right parietal lobe. (1)H-magnetic resonance spectroscopy was performed when the patient was 2, 6, 14, and 25 months old. γ-Aminobutyric acid concentration in early childhood was increased compared with that in normal controls. However, the γ-aminobutyric acid concentration in the Pelizaeus-Merzbacher disease patient was normalized at 14 and 25 months. No remarkable changes were observed in choline-containing compounds concentration at any time. These results suggest that the changes in metabolite concentrations during growth can reflect the pathological condition of Pelizaeus-Merzbacher disease. Furthermore, the lack of change in the choline-containing compounds concentration can be useful for differentiating Pelizaeus-Merzbacher disease from other white matter disorders.


Assuntos
Lobo Parietal/crescimento & desenvolvimento , Lobo Parietal/metabolismo , Doença de Pelizaeus-Merzbacher/metabolismo , Envelhecimento , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Estudos de Casos e Controles , Pré-Escolar , Creatina/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Lactente , Inositol/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Ácido gama-Aminobutírico/metabolismo
20.
Biol Chem ; 394(12): 1571-81, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23959664

RESUMO

Myelinating cells wrap axons with multi-layered myelin sheaths for rapid impulse propagation. Dysfunctions of oligodendrocytes or Schwann cells are often associated with neuroinflammation, as observed in animal models of leukodystrophies and peripheral neuropathies, respectively. The neuroinflammatory response modulates the pathological changes, including demyelination and axonal injury, but also remyelination and repair. Here we discuss different immune mechanisms as well as factors released or exposed by myelinating glia in disease conditions. The spectrum of inflammatory mediators varies with different myelin disorders and has a major impact on the beneficial or detrimental role of immune cells in keeping nervous system integrity.


Assuntos
Doenças Desmielinizantes/imunologia , Doenças Neurodegenerativas/imunologia , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/imunologia , Doença de Charcot-Marie-Tooth/metabolismo , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Inflamação/imunologia , Inflamação/metabolismo , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/imunologia , Leucodistrofia Metacromática/metabolismo , Camundongos , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Neurônios/imunologia , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/imunologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/imunologia , Doença de Pelizaeus-Merzbacher/metabolismo , Transtornos Peroxissômicos/genética , Transtornos Peroxissômicos/imunologia , Transtornos Peroxissômicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...