Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.647
Filtrar
1.
Nat Commun ; 15(1): 5064, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871766

RESUMO

Mental disorders are leading causes of disability and premature death worldwide, partly due to high comorbidity with cardiometabolic disorders. Reasons for this comorbidity are still poorly understood. We leverage nation-wide health records and near-complete genealogies of Denmark and Sweden (n = 17 million) to reveal the genetic and environmental contributions underlying the observed comorbidity between six mental disorders and 15 cardiometabolic disorders. Genetic factors contributed about 50% to the comorbidity of schizophrenia, affective disorders, and autism spectrum disorder with cardiometabolic disorders, whereas the comorbidity of attention-deficit/hyperactivity disorder and anorexia with cardiometabolic disorders was mainly or fully driven by environmental factors. In this work we provide causal insight to guide clinical and scientific initiatives directed at achieving mechanistic understanding as well as preventing and alleviating the consequences of these disorders.


Assuntos
Doenças Cardiovasculares , Comorbidade , Transtornos Mentais , Humanos , Transtornos Mentais/genética , Transtornos Mentais/epidemiologia , Masculino , Dinamarca/epidemiologia , Suécia/epidemiologia , Feminino , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/epidemiologia , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/epidemiologia , Doenças Metabólicas/genética , Doenças Metabólicas/epidemiologia , Adulto , Interação Gene-Ambiente , Esquizofrenia/genética , Esquizofrenia/epidemiologia , Pessoa de Meia-Idade , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Populações Escandinavas e Nórdicas
2.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891865

RESUMO

The prevalence of metabolic diseases, including type 2 diabetes and metabolic dysfunction-associated steatotic liver disease (MASLD), is steadily increasing. Although many risk factors, such as obesity, insulin resistance, or hyperlipidemia, as well as several metabolic gene programs that contribute to the development of metabolic diseases are known, the underlying molecular mechanisms of these processes are still not fully understood. In recent years, it has become evident that not only protein-coding genes, but also noncoding genes, including a class of noncoding transcripts referred to as long noncoding RNAs (lncRNAs), play key roles in diet-induced metabolic disorders. Here, we provide an overview of selected lncRNA genes whose direct involvement in the development of diet-induced metabolic dysfunctions has been experimentally demonstrated in suitable in vivo mouse models. We further summarize and discuss the associated molecular modes of action for each lncRNA in the respective metabolic disease context. This overview provides examples of lncRNAs with well-established functions in diet-induced metabolic diseases, highlighting the need for appropriate in vivo models and rigorous molecular analyses to assign clear biological functions to lncRNAs.


Assuntos
Doenças Metabólicas , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Doenças Metabólicas/etiologia , Dieta/efeitos adversos , Modelos Animais de Doenças , Regulação da Expressão Gênica
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167247, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38762059

RESUMO

Cardiometabolic diseases (CMDs) denote a cadre of chronic and devastating cardiovascular anomalies routed from metabolic derangements including obesity, type 2 diabetes mellitus, and hypertension. Recent studies have demonstrated the association between histone lactylation, a unique form of post-translational modification, and pathogenesis of CMDs, apparently through epigenetic mechanisms. Lactylation has been indicated to regulate key aspects of metabolism, inflammation, and cardiovascular function in the realm of CMDs in a cellular and tissue-specific manner. A better understanding of the molecular, cellular and physiological domains of lactylation in the etiology of CMDs is expected to offer new insights into etiopathogenesis, hazardous factor control and therapeutic development for these challenging ailments.


Assuntos
Doenças Cardiovasculares , Epigênese Genética , Processamento de Proteína Pós-Traducional , Humanos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Animais , Ácido Láctico/metabolismo , Histonas/metabolismo , Histonas/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/genética , Obesidade/metabolismo , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia
4.
Trends Endocrinol Metab ; 35(6): 549-557, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744606

RESUMO

Digital twin technology is emerging as a transformative paradigm for personalized medicine in the management of chronic conditions. In this article, we explore the concept and key characteristics of a digital twin and its applications in chronic non-communicable metabolic disease management, with a focus on diabetes case studies. We cover various types of digital twin models, including mechanistic models based on ODEs, data-driven ML algorithms, and hybrid modeling strategies that combine the strengths of both approaches. We present successful case studies demonstrating the potential of digital twins in improving glucose outcomes for individuals with T1D and T2D, and discuss the benefits and challenges of translating digital twin research applications to clinical practice.


Assuntos
Inteligência Artificial , Doenças Metabólicas , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Medicina de Precisão/métodos , Gêmeos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38733902

RESUMO

Nutritional metabolic diseases in fish frequently arise in the setting of intensive aquaculture. The etiology and pathogenesis of these conditions involve energy metabolic disorders influenced by both internal genetic factors and external environmental conditions. The exploration of genes associated with nutritional and metabolic disorder has sparked considerable interest within both the aquaculture scientific community and the industry. High-throughput sequencing technology offers researchers extensive genetic information. Effectively mining, analyzing, and securely storing this data is crucial, especially for advancing disease prevention and treatment strategies. Presently, the exploration and application of gene databases concerning nutritional and metabolic disorders in fish are at a nascent stag. Therefore, this study focused on the model organism zebrafish and five primary economic fish species as the subjects of investigation. Using information from KEGG, OMIM, and existing literature, a novel gene database associated with nutritional metabolic diseases in fish was meticulously constructed. This database encompassed 4583 genes for Danio rerio, 6287 for Cyprinus carpio, 3289 for Takifugu rubripes, 3548 for Larimichthys crocea, 3816 for Oreochromis niloticus, and 5708 for Oncorhynchus mykiss. Through a comparative systems biology approach, we discerned a relatively high conservation of genes linked to nutritional metabolic diseases across these fish species, with over 54.9 % of genes being conserved throughout all six species. Additionally, the analysis pinpointed the existence of 13 species-specific genes within the genomes of large yellow croaker, tilapia, and rainbow trout. These genes exhibit the potential to serve as novel candidate targets for addressing nutritional metabolic diseases.


Assuntos
Bases de Dados Genéticas , Peixes , Genômica , Doenças Metabólicas , Animais , Doenças Metabólicas/genética , Peixes/genética , Doenças dos Peixes/genética , Peixe-Zebra/genética
6.
Eur J Med Res ; 29(1): 277, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725045

RESUMO

BACKGROUND: Metabolic disorders (MetDs) have been demonstrated to be closely linked to numerous diseases. However, the precise association between MetDs and pulmonary tuberculosis (PTB) remains poorly understood. METHOD: Summary statistics for exposure and outcomes from genome-wide association studies (GWASs) for exposures and outcomes were obtained from the BioBank Japan Project (BBJ) Gene-exposure dataset. The 14 clinical factors were categorized into three groups: metabolic laboratory markers, blood pressure, and the MetS diagnostic factors. The causal relationship between metabolic factors and PTB were analyzed using two-sample Mendelian Randomization (MR). Additionally, the direct effects on the risk of PTB were investigated through multivariable MR. The primary method employed was the inverse variance-weighted (IVW) model. The sensitivity of this MR analysis was evaluated using MR-Egger regression and the MR-PRESSO global test. RESULTS: According to the two-sample MR, HDL-C, HbA1c, TP, and DM were positively correlated with the incidence of active TB. According to the multivariable MR, HDL-C (IVW: OR 2.798, 95% CI 1.484-5.274, P = 0.001), LDL (IVW: OR 4.027, 95% CI 1.140-14.219, P = 0.03) and TG (IVW: OR 2.548, 95% CI 1.269-5.115, P = 0.009) were positively correlated with the occurrence of PTB. TC (OR 0.131, 95% CI 0.028-0.607, P = 0.009) was negatively correlated with the occurrence of PTB. We selected BMI, DM, HDL-C, SBP, and TG as the diagnostic factors for metabolic syndrome. DM (IVW, OR 1.219, 95% CI 1.040-1.429 P = 0.014) and HDL-C (IVW, OR 1.380, 95% CI 1.035-1.841, P = 0.028) were directly correlated with the occurrence of PTB. CONCLUSIONS: This MR study demonstrated that metabolic disorders, mainly hyperglycemia, and dyslipidemia, are associated with the incidence of active pulmonary tuberculosis.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Doenças Metabólicas , Tuberculose Pulmonar , Humanos , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/sangue , Doenças Metabólicas/genética , Doenças Metabólicas/epidemiologia , Fatores de Risco
7.
Genet Sel Evol ; 56(1): 31, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684971

RESUMO

BACKGROUND: Metabolic disturbances adversely impact productive and reproductive performance of dairy cattle due to changes in endocrine status and immune function, which increase the risk of disease. This may occur in the post-partum phase, but also throughout lactation, with sub-clinical symptoms. Recently, increased attention has been directed towards improved health and resilience in dairy cattle, and genomic selection (GS) could be a helpful tool for selecting animals that are more resilient to metabolic disturbances throughout lactation. Hence, we evaluated the genomic prediction of serum biomarkers levels for metabolic distress in 1353 Holsteins genotyped with the 100K single nucleotide polymorphism (SNP) chip assay. The GS was evaluated using parametric models best linear unbiased prediction (GBLUP), Bayesian B (BayesB), elastic net (ENET), and nonparametric models, gradient boosting machine (GBM) and stacking ensemble (Stack), which combines ENET and GBM approaches. RESULTS: The results show that the Stack approach outperformed other methods with a relative difference (RD), calculated as an increment in prediction accuracy, of approximately 18.0% compared to GBLUP, 12.6% compared to BayesB, 8.7% compared to ENET, and 4.4% compared to GBM. The highest RD in prediction accuracy between other models with respect to GBLUP was observed for haptoglobin (hapto) from 17.7% for BayesB to 41.2% for Stack; for Zn from 9.8% (BayesB) to 29.3% (Stack); for ceruloplasmin (CuCp) from 9.3% (BayesB) to 27.9% (Stack); for ferric reducing antioxidant power (FRAP) from 8.0% (BayesB) to 40.0% (Stack); and for total protein (PROTt) from 5.7% (BayesB) to 22.9% (Stack). Using a subset of top SNPs (1.5k) selected from the GBM approach improved the accuracy for GBLUP from 1.8 to 76.5%. However, for the other models reductions in prediction accuracy of 4.8% for ENET (average of 10 traits), 5.9% for GBM (average of 21 traits), and 6.6% for Stack (average of 16 traits) were observed. CONCLUSIONS: Our results indicate that the Stack approach was more accurate in predicting metabolic disturbances than GBLUP, BayesB, ENET, and GBM and seemed to be competitive for predicting complex phenotypes with various degrees of mode of inheritance, i.e. additive and non-additive effects. Selecting markers based on GBM improved accuracy of GBLUP.


Assuntos
Biomarcadores , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/genética , Biomarcadores/sangue , Doenças dos Bovinos/genética , Doenças dos Bovinos/sangue , Teorema de Bayes , Feminino , Doenças Metabólicas/genética , Doenças Metabólicas/veterinária , Doenças Metabólicas/sangue , Genômica/métodos
8.
Eur J Clin Invest ; 54(7): e14223, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38623918

RESUMO

BACKGROUND: Personalized medicine represents a novel and integrative approach that focuses on an individual's genetics and epigenetics, precision medicine, lifestyle and exposures as key players of health status and disease phenotypes. METHODS: In this narrative review, we aim to carefully discuss the current knowledge on gender disparities in cardiometabolic diseases, and we consider the sex- specific expression of miRNAs and their role as promising tool in precision medicine. RESULTS: Personalised medicine overcomes the restricted care of patient based on a binomial sex approach, by enriching itself with a holistic and dynamic gender integration. Recognized as a major worldwide health emergency, cardiometabolic disorders continue to rise, impacting on health systems and requiring more effective and targeted strategies. Several sex and gender drivers might affect the onset and progression of cardiometabolic disorders in males and females at multiple levels. In this respect, distinct contribution of genetic and epigenetic mechanisms, molecular and physiological pathways, sex hormones, visceral fat and subcutaneous fat and lifestyle lead to differences in disease burden and outcomes in males and females. CONCLUSIONS: Sex and gender play a pivotal role in precision medicine because the influence the physiology of each individual and the way they interact with environment from intrauterine life.


Assuntos
Doenças Cardiovasculares , MicroRNAs , Medicina de Precisão , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Masculino , Feminino , Doenças Cardiovasculares/genética , Fatores Sexuais , Doenças Metabólicas/genética , Epigênese Genética , Estilo de Vida
9.
Trends Mol Med ; 30(6): 541-551, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677980

RESUMO

Population differences in cardiometabolic disease remain unexplained. Misleading assumptions over genetic explanations are partly due to terminology used to distinguish populations, specifically ancestry, race, and ethnicity. These terms differentially implicate environmental and biological causal pathways, which should inform their use. Genetic variation alone accounts for a limited fraction of population differences in cardiometabolic disease. Research effort should focus on societally driven, lifelong environmental determinants of population differences in disease. Rather than pursuing population stratifiers to personalize medicine, we advocate removing socioeconomic barriers to receipt of and adherence to healthcare interventions, which will have markedly greater impact on improving cardiometabolic outcomes. This requires multidisciplinary collaboration and public and policymaker engagement to address inequalities driven by society rather than biology per se.


Assuntos
Doenças Cardiovasculares , Etnicidade , Grupos Raciais , Humanos , Doenças Cardiovasculares/epidemiologia , Doenças Metabólicas/epidemiologia , Doenças Metabólicas/genética , Predisposição Genética para Doença , Fatores Socioeconômicos , Disparidades em Assistência à Saúde/etnologia
10.
Trends Endocrinol Metab ; 35(6): 462-465, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575442

RESUMO

En masse phenotyping technology, using massively mosaic donor-derived cells and organoids, can offer enriched insights for cellotype-phenotype association in a cell-type-specific regulatory context. This emerging approach will help to discover biomarkers, inform genetic-epigenetic interactions and identify personalized therapeutic targets, offering hope for precision medicine against highly heterogeneous metabolic diseases.


Assuntos
Organoides , Fenótipo , Humanos , Organoides/metabolismo , Medicina de Precisão/métodos , Animais , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo
11.
Metabolism ; 155: 155911, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38609037

RESUMO

BACKGROUND: The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing year by year and has become one of the leading causes of end-stage liver disease worldwide. Triggering Receptor Expressed on Myeloid Cells 2 (Trem2) has been confirmed to play an essential role in the progression of MASLD, but its specific mechanism still needs to be clarified. This study aims to explore the role and mechanism of Trem2 in MASLD. METHODS: Human liver tissues were obtained from patients with MASLD and controls. Myeloid-specific knockout mice (Trem2mKO) and myeloid-specific overexpression mice (Trem2TdT) were fed a high-fat diet, either AMLN or CDAHFD, to establish the MASLD model. Relevant signaling molecules were assessed through lipidomics and RNA-seq analyses after that. RESULTS: Trem2 is upregulated in human MASLD/MASH-associated macrophages and is associated with hepatic steatosis and inflammation progression. Hepatic steatosis and inflammatory responses are exacerbated with the knockout of myeloid Trem2 in MASLD mice, while mice overexpressing Trem2 exhibit the opposite phenomenon. Mechanistically, Trem2mKO can aggravate macrophage pyroptosis through the PI3K/AKT signaling pathway and amplify the resulting inflammatory response. At the same time, Trem2 promotes the inflammation resolution phenotype transformation of macrophages through TGFß1, thereby promoting tissue repair. CONCLUSIONS: Myeloid Trem2 ameliorates the progression of Metabolic dysfunction-associated steatotic liver disease by regulating macrophage pyroptosis and inflammation resolution. We believe targeting myeloid Trem2 could represent a potential avenue for treating MASLD.


Assuntos
Progressão da Doença , Fígado Gorduroso , Inflamação , Macrófagos , Glicoproteínas de Membrana , Piroptose , Receptores Imunológicos , Animais , Humanos , Masculino , Camundongos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/genética , Inflamação/metabolismo , Inflamação/patologia , Fígado/metabolismo , Fígado/patologia , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Doenças Metabólicas/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piroptose/fisiologia , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética
12.
Nutrients ; 16(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674815

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD), described as the most prominent cause of chronic liver disease worldwide, has emerged as a significant public health issue, posing a considerable challenge for most countries. Endocrine-disrupting chemicals (EDCs), commonly found in daily use items and foods, are able to interfere with nuclear receptors (NRs) and disturb hormonal signaling and mitochondrial function, leading, among other metabolic disorders, to MASLD. EDCs have also been proposed to cause transgenerationally inherited alterations leading to increased disease susceptibility. In this review, we are focusing on the most prominent linking pathways between EDCs and MASLD, their role in the induction of epigenetic transgenerational inheritance of the disease as well as up-to-date practices aimed at reducing their impact.


Assuntos
Disruptores Endócrinos , Humanos , Disruptores Endócrinos/efeitos adversos , Epigenoma , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Epigênese Genética , Hepatopatia Gordurosa não Alcoólica/genética , Doenças Metabólicas/genética , Doenças Metabólicas/induzido quimicamente , Animais
13.
Arterioscler Thromb Vasc Biol ; 44(5): 1021-1030, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38572647

RESUMO

AGT (angiotensinogen) is the unique precursor for the generation of all the peptides of the renin-angiotensin system, but it has received relatively scant attention compared to many other renin-angiotensin system components. Focus on AGT has increased recently, particularly with the evolution of drugs to target the synthesis of the protein. AGT is a noninhibitory serpin that has several conserved domains in addition to the angiotensin II sequences at the N terminus. Increased study is needed on the structure-function relationship to resolve many unknowns regarding AGT metabolism. Constitutive whole-body genetic deletion of Agt in mice leads to multiple developmental defects creating a challenge to use these mice for mechanistic studies. This has been overcome by creating Agt-floxed mice to enable the development of cell-specific deficiencies that have provided considerable insight into a range of cardiovascular and associated diseases. This has been augmented by the recent development of pharmacological approaches targeting hepatocytes in humans to promote protracted inhibition of AGT synthesis. Genetic deletion or pharmacological inhibition of Agt has been demonstrated to be beneficial in a spectrum of diseases experimentally, including hypertension, atherosclerosis, aortic and superior mesenteric artery aneurysms, myocardial dysfunction, and hepatic steatosis. This review summarizes the findings of recent studies utilizing AGT manipulation as a therapeutic approach.


Assuntos
Angiotensinogênio , Doenças Cardiovasculares , Doenças Metabólicas , Animais , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/genética , Angiotensinogênio/metabolismo , Angiotensinogênio/genética , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Doenças Metabólicas/genética , Sistema Renina-Angiotensina/efeitos dos fármacos , Terapia de Alvo Molecular
14.
Clin Chim Acta ; 558: 117893, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582244

RESUMO

BACKGROUND: Compare the differences between normal newborns and high-risk children with inherited metabolic diseases. The disease profile includes amino acidemias, fatty acid oxidation disorders, and organic acidemias. METHODS: Data was collected on newborns and children from high-risk populations in Shanghai from December 2010 to December 2020. RESULTS: 232,561 newborns were screened for disorders of organic, amino acid, and fatty acid metabolism. The initial positive rate was 0.66 % (1,526/232,561) and the positive recall rate was 77.85 %. The positive predictive value is 4.71 %. Among them, 56 cases were diagnosed as metabolic abnormalities. The total incidence rate is 1:4153. Hyperphenylalaninemia and short-chain acyl-CoA dehydrogenase are the most common diseases in newborns. In addition, in 56 children, 39 (69.42 %) were diagnosed by genetic sequencing. Some hotspot mutations in 14 IEMs have been observed, including PAH gene c.728G > A, c.611A > G, and ACADS gene c. 1031A > G, c.164C > T. A total of 49,860 symptomatic patients were screened, of which 185 were diagnosed with IEM, with a detection rate of 0.37 %. The most commonly diagnosed diseases in high-risk infants aremethylmalonic acidemia and hyperphenylalaninemia. CONCLUSION: There are more clinical cases of congenital metabolic errors diagnosed by tandem mass spectrometry than newborn screening. The spectrum of diseases, prevalence, and genetic characteristics of normal newborns and high-risk children are quite different.


Assuntos
Triagem Neonatal , Humanos , Recém-Nascido , China/epidemiologia , Masculino , Feminino , Lactente , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/genética , Doenças Metabólicas/epidemiologia , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/epidemiologia , Erros Inatos do Metabolismo/genética , Criança , Pré-Escolar
15.
Am J Physiol Endocrinol Metab ; 326(6): E776-E790, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568153

RESUMO

Obesity has become a major risk of global public health. SMEK1 is also known as a regulatory subunit of protein phosphatase 4 (PP4). Both PP4 and SMEK1 have been clarified in many metabolic functions, including the regulation of hepatic gluconeogenesis and glucose transporter gene expression in yeast. Whether SMEK1 participates in obesity and the broader metabolic role in mammals is unknown. Thus, we investigated the function of SMEK1 in white adipose tissue and glucose uptake. GWAS/GEPIA/GEO database was used to analyze the correlation between SMEK1 and metabolic phenotypes/lipid metabolism-related genes/obesity. Smek1 KO mice were generated to identify the role of SMEK1 in obesity and glucose homeostasis. Cell culture and differentiation of stromal-vascular fractions (SVFs) and 3T3-L1 were used to determine the mechanism. 2-NBDG was used to measure the glucose uptake. Compound C was used to confirm the role of AMPK. We elucidated that SMEK1 was correlated with obesity and adipogenesis. Smek1 deletion enhanced adipogenesis in both SVFs and 3T3-L1. Smek1 KO protected mice from obesity and had protective effects on metabolic disorders, including insulin resistance and inflammation. Smek1 KO mice had lower levels of fasting serum glucose. We found that SMEK1 ablation promoted glucose uptake by increasing p-AMPKα(T172) and the transcription of Glut4 when the effect on AMPK-regulated glucose uptake was due to the PP4 catalytic subunits (PPP4C). Our findings reveal a novel role of SMEK1 in obesity and glucose homeostasis, providing a potential new therapeutic target for obesity and metabolic dysfunction.NEW & NOTEWORTHY Our study clarified the relationship between SMEK1 and obesity for the first time and validated the conclusion in multiple ways by combining available data from public databases, human samples, and animal models. In addition, we clarified the role of SMEK1 in glucose uptake, providing an in-depth interpretation for the study of its function in glucose metabolism.


Assuntos
Proteínas Quinases Ativadas por AMP , Adipogenia , Glucose , Camundongos Knockout , Obesidade , Transdução de Sinais , Animais , Masculino , Camundongos , Células 3T3-L1 , Adipogenia/genética , Tecido Adiposo Branco/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Glucose/metabolismo , Resistência à Insulina , Doenças Metabólicas/metabolismo , Doenças Metabólicas/genética , Doenças Metabólicas/etiologia , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/genética , Fosfoproteínas Fosfatases
16.
Obes Rev ; 25(6): e13740, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38571458

RESUMO

Exosomes are extracellular vesicles, measuring 40-160 nm in diameter, that are released by many cell types and tissues, including adipose tissue. Exosomes are critical mediators of intercellular communication and their contents are complex and diverse. In recent years, accumulating evidence has proved that multiple adipose tissue-derived exosomal noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), play pivotal roles in the pathogenesis of diverse metabolic diseases, such as obesity. In this narrative review, we focus on the adipose tissue-derived exosomal ncRNAs, especially exosomal miRNAs, and their dysregulation in multiple types of metabolic diseases. A deeper understanding of the role of adipose tissue-derived exosomal ncRNAs may help provide new diagnostic and treatment methods for metabolic diseases.


Assuntos
Tecido Adiposo , Exossomos , Doenças Metabólicas , RNA não Traduzido , Humanos , Exossomos/metabolismo , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Tecido Adiposo/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/fisiologia , Animais
17.
Trends Mol Med ; 30(6): 527-529, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521716

RESUMO

MORF4 (mortality factor on chromosome 4)-related gene 15 (MRG15) is a chromodomain protein that exists in various multiprotein complexes involved in transcription, DNA repair, and development. Here we summarize the recent advances involving MRG15 in modulating liver metabolism, both through its chromatin-binding capability and independently of it, highlighting MRG15 as a potential therapeutic target for liver metabolic diseases.


Assuntos
Hepatopatias , Humanos , Animais , Hepatopatias/metabolismo , Hepatopatias/genética , Hepatopatias/patologia , Fígado/metabolismo , Fígado/patologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/genética
18.
J Assist Reprod Genet ; 41(5): 1245-1259, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38470552

RESUMO

BACKGROUND: Preimplantation genetic testing for monogenic disorders (PGT-M) is now widely used as an effective strategy to prevent various monogenic or chromosomal diseases. MATERIAL AND METHODS: In this retrospective study, couples with a family history of hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes and/or carrying the pathogenic genes underwent PGT-M to prevent children from inheriting disease-causing gene mutations from their parents and developing known genetic diseases. After PGT-M, unaffected (i.e., normal) embryos after genetic detection were transferred into the uterus of their corresponding mothers. RESULTS: A total of 43 carrier couples with the following hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes underwent PGT-M: Duchenne muscular dystrophy (13 families); methylmalonic acidemia (7 families); spinal muscular atrophy (5 families); infantile neuroaxonal dystrophy and intellectual developmental disorder (3 families each); Cockayne syndrome (2 families); Menkes disease, spinocerebellar ataxia, glycine encephalopathy with epilepsy, Charcot-Marie-Tooth disease, mucopolysaccharidosis, Aicardi-Goutieres syndrome, adrenoleukodystrophy, phenylketonuria, amyotrophic lateral sclerosis, and Dravet syndrome (1 family each). After 53 PGT-M cycles, the final transferable embryo rate was 12.45%, the clinical pregnancy rate was 74.19%, and the live birth rate was 89.47%; a total of 18 unaffected (i.e., healthy) children were born to these families. CONCLUSIONS: This study highlights the importance of PGT-M in preventing children born with hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes.


Assuntos
Testes Genéticos , Doenças Metabólicas , Diagnóstico Pré-Implantação , Humanos , Diagnóstico Pré-Implantação/métodos , Feminino , Gravidez , Testes Genéticos/métodos , Doenças Metabólicas/genética , Doenças Metabólicas/patologia , Estudos Retrospectivos , Masculino , Doenças do Sistema Nervoso/genética , Fenótipo , Adulto , Criança , Transferência Embrionária , Mutação/genética
19.
Sci China Life Sci ; 67(6): 1170-1182, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38523235

RESUMO

Metabolically healthy obesity refers to obese individuals who do not develop metabolic disorders. These people store fat in subcutaneous adipose tissue (SAT) rather than in visceral adipose tissue (VAT). However, the molecules participating in this specific scenario remain elusive. Rab18, a lipid droplet (LD)-associated protein, mediates the contact between the endoplasmic reticulum (ER) and LDs to facilitate LD growth and maturation. In the present study, we show that the protein level of Rab18 is specifically upregulated in the SAT of obese people and mice. Rab18 adipocyte-specific knockout (Rab18 AKO) mice had a decreased volume ratio of SAT to VAT compared with wildtype mice. When subjected to high-fat diet (HFD), Rab18 AKO mice had increased ER stress and inflammation, reduced adiponectin, and decreased triacylglycerol (TAG) accumulation in SAT. In contrast, TAG accumulation in VAT, brown adipose tissue (BAT) or liver of Rab18 AKO mice had a moderate increase without ER stress stimulation. Rab18 AKO mice developed insulin resistance and systematic inflammation. Rab18 AKO mice maintained body temperature in response to acute and chronic cold induction with a thermogenic SAT, similar to the counterpart mice. Furthermore, Rab18-deficient 3T3-L1 adipocytes were more prone to palmitate-induced ER stress, indicating the involvement of Rab18 in alleviating lipid toxicity. Rab18 AKO mice provide a good animal model to investigate metabolic disorders such as impaired SAT. In conclusion, our studies reveal that Rab18 is a key and specific regulator that maintains the proper functions of SAT by alleviating lipid-induced ER stress.


Assuntos
Dieta Hiperlipídica , Estresse do Retículo Endoplasmático , Homeostase , Camundongos Knockout , Obesidade , Gordura Subcutânea , Proteínas rab de Ligação ao GTP , Animais , Obesidade/metabolismo , Obesidade/genética , Obesidade/etiologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Camundongos , Gordura Subcutânea/metabolismo , Humanos , Masculino , Dieta Hiperlipídica/efeitos adversos , Doenças Metabólicas/metabolismo , Doenças Metabólicas/etiologia , Doenças Metabólicas/prevenção & controle , Doenças Metabólicas/genética , Adipócitos/metabolismo , Resistência à Insulina , Células 3T3-L1 , Camundongos Endogâmicos C57BL , Triglicerídeos/metabolismo , Tecido Adiposo Marrom/metabolismo , Inflamação/metabolismo , Gotículas Lipídicas/metabolismo , Gordura Intra-Abdominal/metabolismo , Feminino
20.
J Nutr Biochem ; 129: 109627, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38555074

RESUMO

Obesity is strongly associated with disturbances of vitamin D (VD) metabolites in the animal models. However, the related epidemiological evidence is still controversial, especially the different degrees of obesity children. Hence, in this present representative case-control study, 106 obesity school-age children aged 7-12 years were included and divided into different subgroups as degree I (the age- and sex-specific BMI≥95th percentile, n=45), II (BMI ≥120% percentile, n=34) and III (BMI ≥140% percentile, n=27) obesity groups across the ranges of body mass index (BMI). While the age- and sex-matched subjects without obesity were as the control group. Notably, it was significantly different of body composition, anthropological and clinical characteristics among the above four subgroups with the dose-response relationships (P<.05). Moreover, comparing with the control group, the serum VD concentrations were higher, VD metabolites like 25(OH)D, 25(OH)D3 and 1,25(OH)2D, and related hydroxylases as CYP27A1, CYP2R1 and CYP27B1 were lower in the degree I, II, and III obesity subgroups (P<.05), which were more disorder with the anthropological and clinical characteristics as the obesity was worsen in a BMI-independent manner (P<.05). However, there was a significant increase of CYP27B1 in the degree III obesity group than those in the degree I and II obesity subgroups. Furthermore, the methylation patterns on the genome-wide (Methylation/Hydroxymethylation) and VD metabolism genes (CYP27A1, CYP2R1 and CYP27B1) were negatively correlated with the worse obesity and their related expressions (P<.05). In summary, these results indicated that obesity could affect the homeostasis of VD metabolism related genes such as CYP27A1, CYP2R1, CYP27B1 and etc through abnormal DNA methylation, resulting in the disorders of VD related metabolites to decrease VD bio-availability with the BMI-independent manner. In turn, the lower levels of VD metabolites would affect the liver function to exacerbate the progression of obesity, as the Degree II and III obesity subgroups.


Assuntos
Índice de Massa Corporal , Metilação de DNA , Obesidade Infantil , Vitamina D , Humanos , Criança , Masculino , Feminino , Vitamina D/sangue , Vitamina D/análogos & derivados , Estudos de Casos e Controles , Obesidade Infantil/genética , Obesidade Infantil/metabolismo , Obesidade Infantil/complicações , Colestanotriol 26-Mono-Oxigenase/genética , Colestanotriol 26-Mono-Oxigenase/metabolismo , Família 2 do Citocromo P450/genética , Família 2 do Citocromo P450/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Deficiência de Vitamina D/genética , Obesidade/genética , Obesidade/metabolismo , Doenças Metabólicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...