Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.578
Filtrar
1.
Front Immunol ; 15: 1424385, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868764

RESUMO

The nuclear-encoded mitochondrial protein Tu translation elongation factor, mitochondrial (TUFM) is well-known for its role in mitochondrial protein translation. Originally discovered in yeast, TUFM demonstrates significant evolutionary conservation from prokaryotes to eukaryotes. Dysregulation of TUFM has been associated with mitochondrial disorders. Although early hypothesis suggests that TUFM is localized within mitochondria, recent studies identify its presence in the cytoplasm, with this subcellular distribution being linked to distinct functions of TUFM. Significantly, in addition to its established function in mitochondrial protein quality control, recent research indicates a broader involvement of TUFM in the regulation of programmed cell death processes (e.g., autophagy, apoptosis, necroptosis, and pyroptosis) and its diverse roles in viral infection, cancer, and other disease conditions. This review seeks to offer a current summary of TUFM's biological functions and its complex regulatory mechanisms in human health and disease. Insight into these intricate pathways controlled by TUFM may lead to the potential development of targeted therapies for a range of human diseases.


Assuntos
Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Animais , Fator Tu de Elongação de Peptídeos/metabolismo , Proteínas Mitocondriais/metabolismo , Neoplasias/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Doenças Mitocondriais/metabolismo , Apoptose , Autofagia
2.
Int J Biol Sci ; 20(8): 2860-2880, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904024

RESUMO

Mitochondrial diseases are associated with neuronal death and mtDNA depletion. Astrocytes respond to injury or stimuli and damage to the central nervous system. Neurodegeneration can cause astrocytes to activate and acquire toxic functions that induce neuronal death. However, astrocyte activation and its impact on neuronal homeostasis in mitochondrial disease remain to be explored. Using patient cells carrying POLG mutations, we generated iPSCs and then differentiated these into astrocytes. POLG astrocytes exhibited mitochondrial dysfunction including loss of mitochondrial membrane potential, energy failure, loss of complex I and IV, disturbed NAD+/NADH metabolism, and mtDNA depletion. Further, POLG derived astrocytes presented an A1-like reactive phenotype with increased proliferation, invasion, upregulation of pathways involved in response to stimulus, immune system process, cell proliferation and cell killing. Under direct and indirect co-culture with neurons, POLG astrocytes manifested a toxic effect leading to the death of neurons. We demonstrate that mitochondrial dysfunction caused by POLG mutations leads not only to intrinsic defects in energy metabolism affecting both neurons and astrocytes, but also to neurotoxic damage driven by astrocytes. These findings reveal a novel role for dysfunctional astrocytes that contribute to the pathogenesis of POLG diseases.


Assuntos
Astrócitos , DNA Polimerase gama , DNA Polimerase Dirigida por DNA , Mitocôndrias , Mutação , Astrócitos/metabolismo , DNA Polimerase gama/genética , DNA Polimerase gama/metabolismo , Humanos , Mitocôndrias/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Neurônios/metabolismo , Potencial da Membrana Mitocondrial , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Cultivadas , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Técnicas de Cocultura
3.
Cell Death Dis ; 15(6): 405, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858390

RESUMO

Genetic mutations causing primary mitochondrial disease (i.e those compromising oxidative phosphorylation [OxPhos]) resulting in reduced bioenergetic output display great variability in their clinical features, but the reason for this is unknown. We hypothesized that disruption of the communication between endoplasmic reticulum (ER) and mitochondria at mitochondria-associated ER membranes (MAM) might play a role in this variability. To test this, we assayed MAM function and ER-mitochondrial communication in OxPhos-deficient cells, including cybrids from patients with selected pathogenic mtDNA mutations. Our results show that each of the various mutations studied indeed altered MAM functions, but notably, each disorder presented with a different MAM "signature". We also found that mitochondrial membrane potential is a key driver of ER-mitochondrial connectivity. Moreover, our findings demonstrate that disruption in ER-mitochondrial communication has consequences for cell survivability that go well beyond that of reduced ATP output. The findings of a "MAM-OxPhos" axis, the role of mitochondrial membrane potential in controlling this process, and the contribution of MAM dysfunction to cell death, reveal a new relationship between mitochondria and the rest of the cell, as well as providing new insights into the diagnosis and treatment of these devastating disorders.


Assuntos
Retículo Endoplasmático , Potencial da Membrana Mitocondrial , Mitocôndrias , Doenças Mitocondriais , Fosforilação Oxidativa , Humanos , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Mutação/genética , DNA Mitocondrial/metabolismo , DNA Mitocondrial/genética
5.
Sci Rep ; 14(1): 13789, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877095

RESUMO

Mitochondrial function is critical to continued cellular vitality and is an important contributor to a growing number of human diseases. Mitochondrial dysfunction is typically heterogeneous, mediated through the clonal expansion of mitochondrial DNA (mtDNA) variants in a subset of cells in a given tissue. To date, our understanding of the dynamics of clonal expansion of mtDNA variants has been technically limited to the single cell-level. Here, we report the use of nanobiopsy for subcellular sampling from human tissues, combined with next-generation sequencing to assess subcellular mtDNA mutation load in human tissue from mitochondrial disease patients. The ability to map mitochondrial mutation loads within individual cells of diseased tissue samples will further our understanding of mitochondrial genetic diseases.


Assuntos
DNA Mitocondrial , Heteroplasmia , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Humanos , DNA Mitocondrial/genética , Heteroplasmia/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Doenças Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia
6.
Ann Clin Transl Neurol ; 11(6): 1478-1491, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703036

RESUMO

OBJECTIVE: The objective of this study was to evaluate the implementation of NGS within the French mitochondrial network, MitoDiag, from targeted gene panels to whole exome sequencing (WES) or whole genome sequencing (WGS) focusing on mitochondrial nuclear-encoded genes. METHODS: Over 2000 patients suspected of Primary Mitochondrial Diseases (PMD) were sequenced by either targeted gene panels, WES or WGS within MitoDiag. We described the clinical, biochemical, and molecular data of 397 genetically confirmed patients, comprising 294 children and 103 adults, carrying pathogenic or likely pathogenic variants in nuclear-encoded genes. RESULTS: The cohort exhibited a large genetic heterogeneity, with the identification of 172 distinct genes and 253 novel variants. Among children, a notable prevalence of pathogenic variants in genes associated with oxidative phosphorylation (OXPHOS) functions and mitochondrial translation was observed. In adults, pathogenic variants were primarily identified in genes linked to mtDNA maintenance. Additionally, a substantial proportion of patients (54% (42/78) and 48% (13/27) in children and adults, respectively), undergoing WES or WGS testing displayed PMD mimics, representing pathologies that clinically resemble mitochondrial diseases. INTERPRETATION: We reported the largest French cohort of patients suspected of PMD with pathogenic variants in nuclear genes. We have emphasized the clinical complexity of PMD and the challenges associated with recognizing and distinguishing them from other pathologies, particularly neuromuscular disorders. We confirmed that WES/WGS, instead of panel approach, was more valuable to identify the genetic basis in patients with "possible" PMD and we provided a genetic testing flowchart to guide physicians in their diagnostic strategy.


Assuntos
Doenças Mitocondriais , Humanos , Doenças Mitocondriais/genética , Doenças Mitocondriais/diagnóstico , França , Criança , Adulto , Masculino , Feminino , Adolescente , Pessoa de Meia-Idade , Pré-Escolar , Estudos de Coortes , Adulto Jovem , Lactente , Sequenciamento do Exoma , Idoso , Sequenciamento Completo do Genoma , DNA Mitocondrial/genética , Diagnóstico Diferencial
7.
Genes (Basel) ; 15(5)2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38790244

RESUMO

BACKGROUND: Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation is an inherited disease caused by pathogenic biallelic variants in the gene DARS2, which encodes mitochondrial aspartyl-tRNA synthetase. This disease is characterized by slowly progressive spastic gait, cerebellar symptoms, and leukoencephalopathy with brainstem and spinal cord involvement. CASE PRESENTATION: Peripheral blood samples were collected from four patients from four unrelated families to extract genomic DNA. All patients underwent partial exon analysis of the DARS2 gene using Sanger sequencing, which detected the c.228-21_228-20delinsC variant in a heterozygous state. Further DNA from three patients was analyzed using a next-generation sequencing-based custom AmpliSeq™ panel for 59 genes associated with leukodystrophies, and one of the patients underwent whole genome sequencing. We identified a novel pathogenic variant c.1675-1256_*115delinsGCAACATTTCGGCAACATTCCAACC in the DARS2 gene. Three patients (patients 1, 2, and 4) had slowly progressive cerebellar ataxia, and two patients (patients 1 and 2) had spasticity. In addition, two patients (patients 2 and 4) showed signs of axonal neuropathy, such as decreased tendon reflexes and loss of distal sensitivity. Three patients (patients 1, 2, and 3) also had learning difficulties. It should be noted the persistent presence of characteristic changes in brain MRI in all patients, which emphasizes its importance as the main diagnostic tool for suspicion and subsequent confirmation of LBSL. Conclusions: We found a novel indel variant in the DARS2 gene in four patients with LBSL and described their clinical and genetic characteristics. These results expand the mutational spectrum of LBSL and aim to improve the laboratory diagnosis of this form of leukodystrophy.


Assuntos
Aspartato-tRNA Ligase , Mutação INDEL , Leucoencefalopatias , Humanos , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/deficiência , Masculino , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Feminino , Tronco Encefálico/patologia , Tronco Encefálico/diagnóstico por imagem , Criança , Ácido Láctico/sangue , Federação Russa , Adulto , Medula Espinal/patologia , Medula Espinal/diagnóstico por imagem , Adolescente , Doenças Mitocondriais
8.
Prog Retin Eye Res ; 101: 101264, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703886

RESUMO

Advancements in ocular imaging have significantly broadened our comprehension of mitochondrial retinopathies and optic neuropathies by examining the structural and pathological aspects of the retina and optic nerve in these conditions. This article aims to review the prominent imaging characteristics associated with mitochondrial retinopathies and optic neuropathies, aiming to deepen our insight into their pathogenesis and clinical features. Preceding this exploration, the article provides a detailed overview of the crucial genetic and clinical features, which is essential for the proper interpretation of in vivo imaging. More importantly, we will provide a critical analysis on how these imaging modalities could serve as biomarkers for characterization and monitoring, as well as in guiding treatment decisions. However, these imaging methods have limitations, which will be discussed along with potential strategies to mitigate them. Lastly, the article will emphasize the potential advantages and future integration of imaging techniques in evaluating patients with mitochondrial eye disorders, considering the prospects of emerging gene therapies.


Assuntos
Doenças Mitocondriais , Doenças do Nervo Óptico , Doenças Retinianas , Humanos , Doenças Mitocondriais/terapia , Doenças Mitocondriais/diagnóstico por imagem , Doenças do Nervo Óptico/diagnóstico por imagem , Doenças do Nervo Óptico/diagnóstico , Doenças Retinianas/terapia , Doenças Retinianas/diagnóstico por imagem , Doenças Retinianas/diagnóstico , Tomografia de Coerência Óptica/métodos , Retina/diagnóstico por imagem
9.
Pediatr Neurol ; 156: 178-181, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788280

RESUMO

BACKGROUND: Exome sequencing (ES) is a useful tool in diagnosing suspected mitochondrial disease but can miss pathogenic variants for several reasons. Additional testing, such as muscle biopsy or biochemical testing, can be helpful in exome-negative cases. METHODS: We report a patient who presented with repeated episodes of lactic acidosis and failure to thrive. RESULTS: ES and mitochondrial sequencing were initially negative but clinical suspicion for mitochondrial disease remained high. After muscle biopsy showed evidence of mitochondrial dysfunction, the ES was reanalyzed and revealed novel variants in AARS2. CONCLUSION: This case demonstrates the importance of muscle biopsy and biochemical testing in evaluating patients with a high suspicion of mitochondrial disease, even in the genomics era. Closed-loop communication between molecular genetics laboratories and clinical geneticists is an important step to help establish diagnosis in unsolved cases.


Assuntos
Doenças Mitocondriais , Músculo Esquelético , Fenótipo , Humanos , Doenças Mitocondriais/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/patologia , Músculo Esquelético/patologia , Biópsia , Sequenciamento do Exoma , Masculino , Exoma , Lactente , Feminino , Alanina-tRNA Ligase
10.
Int J Pharm ; 658: 124194, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38703929

RESUMO

As a vital energy source for cellular metabolism and tissue survival, the mitochondrion can undergo morphological or positional change and even shuttle between cells in response to various stimuli and energy demands. Multiple human diseases are originated from mitochondrial dysfunction, but the curative succusses by traditional treatments are limited. Mitochondrial transplantation therapy (MTT) is an innovative therapeutic approach that is to deliver the healthy mitochondria either derived from normal cells or reassembled through synthetic biology into the cells and tissues suffering from mitochondrial damages and finally replace their defective mitochondria and restore their function. MTT has already been under investigation in clinical trials for cardiac ischemia-reperfusion injury and given an encouraging performance in animal models of numerous fatal critical diseases including central nervous system disorders, cardiovascular diseases, inflammatory conditions, cancer, renal injury, and pulmonary damage. This review article summarizes the mechanisms and strategies of mitochondrial transfer and the MTT application for types of mitochondrial diseases, and discusses the potential challenge in MTT clinical application, aiming to exhibit the good therapeutic prospects of MTTs in clinics.


Assuntos
Mitocôndrias , Doenças Mitocondriais , Humanos , Animais , Doenças Mitocondriais/terapia , Mitocôndrias/metabolismo , Mitocôndrias/transplante , Terapia de Substituição Mitocondrial/métodos
13.
BMC Genomics ; 25(1): 538, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822239

RESUMO

BACKGROUND: Mitochondrial diseases (MDs) can be caused by single nucleotide variants (SNVs) and structural variants (SVs) in the mitochondrial genome (mtDNA). Presently, identifying deletions in small to medium-sized fragments and accurately detecting low-percentage variants remains challenging due to the limitations of next-generation sequencing (NGS). METHODS: In this study, we integrated targeted long-range polymerase chain reaction (LR-PCR) and PacBio HiFi sequencing to analyze 34 participants, including 28 patients and 6 controls. Of these, 17 samples were subjected to both targeted LR-PCR and to compare the mtDNA variant detection efficacy. RESULTS: Among the 28 patients tested by long-read sequencing (LRS), 2 patients were found positive for the m.3243 A > G hotspot variant, and 20 patients exhibited single or multiple deletion variants with a proportion exceeding 4%. Comparison between the results of LRS and NGS revealed that both methods exhibited similar efficacy in detecting SNVs exceeding 5%. However, LRS outperformed NGS in detecting SNVs with a ratio below 5%. As for SVs, LRS identified single or multiple deletions in 13 out of 17 cases, whereas NGS only detected single deletions in 8 cases. Furthermore, deletions identified by LRS were validated by Sanger sequencing and quantified in single muscle fibers using real-time PCR. Notably, LRS also effectively and accurately identified secondary mtDNA deletions in idiopathic inflammatory myopathies (IIMs). CONCLUSIONS: LRS outperforms NGS in detecting various types of SNVs and SVs in mtDNA, including those with low frequencies. Our research is a significant advancement in medical comprehension and will provide profound insights into genetics.


Assuntos
DNA Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala , Doenças Mitocondriais , Humanos , DNA Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doenças Mitocondriais/genética , Doenças Mitocondriais/diagnóstico , Feminino , Masculino , Análise de Sequência de DNA/métodos , Adulto , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase/métodos
15.
Medicine (Baltimore) ; 103(18): e37847, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701254

RESUMO

RATIONALE: Mitochondrial diseases are a group of disorders in which mutations in mitochondrial DNA or nuclear DNA lead to dysfunctional oxidative phosphorylation of cells, with mutations in mitochondrial DNA being the most common cause of mitochondrial disease, and mutations in nuclear genes being rarely reported. The echocardiographic findings of mitochondrial diseases with nuclear gene mutations in children's hearts are even rarer. Even more valuable is that we followed up the patient for 4 years and dynamically observed the cardiac echocardiographic manifestations of mitochondrial disease. Provide ideas for the clinical diagnosis and prognosis of mitochondrial diseases. PATIENT CONCERNS: The patient was seen in the pediatric outpatient clinic for poor strength and mental retardation. echocardiography: mild left ventricular (LV) enlargement and LV wall thickening. Nuclear genetic testing: uanosine triphosphate binding protein 3 (GTPBP3) gene mutation. Diagnosis of mitochondrial disease. DIAGNOSES: Mitochondrial disease with GTPBP3 gene mutations. OUTCOMES: After receiving drug treatment, the patient exhibited a reduction in lactate levels, an enhanced physical condition compared to prior assessments, and demonstrated average intellectual development. LESSONS SUBSECTIONS: For echocardiographic indications of LV wall thickening and LV enlargement, one needs to be alert to the possibility of hereditary cardiomyopathy, especially in children.


Assuntos
Ecocardiografia , Doenças Mitocondriais , Mutação , Feminino , Humanos , Ecocardiografia/métodos , Proteínas de Ligação ao GTP/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/diagnóstico por imagem , Doenças Mitocondriais/diagnóstico , Criança
16.
Biomolecules ; 14(5)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38786005

RESUMO

Primary mitochondrial diseases result from mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) genes, encoding proteins crucial for mitochondrial structure or function. Given that few disease-specific therapies are available for mitochondrial diseases, novel treatments to reverse mitochondrial dysfunction are necessary. In this work, we explored new therapeutic options in mitochondrial diseases using fibroblasts and induced neurons derived from patients with mutations in the GFM1 gene. This gene encodes the essential mitochondrial translation elongation factor G1 involved in mitochondrial protein synthesis. Due to the severe mitochondrial defect, mutant GFM1 fibroblasts cannot survive in galactose medium, making them an ideal screening model to test the effectiveness of pharmacological compounds. We found that the combination of polydatin and nicotinamide enabled the survival of mutant GFM1 fibroblasts in stress medium. We also demonstrated that polydatin and nicotinamide upregulated the mitochondrial Unfolded Protein Response (mtUPR), especially the SIRT3 pathway. Activation of mtUPR partially restored mitochondrial protein synthesis and expression, as well as improved cellular bioenergetics. Furthermore, we confirmed the positive effect of the treatment in GFM1 mutant induced neurons obtained by direct reprogramming from patient fibroblasts. Overall, we provide compelling evidence that mtUPR activation is a promising therapeutic strategy for GFM1 mutations.


Assuntos
Fibroblastos , Glucosídeos , Mitocôndrias , Doenças Mitocondriais , Niacinamida , Estilbenos , Resposta a Proteínas não Dobradas , Humanos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Estilbenos/farmacologia , Glucosídeos/farmacologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Niacinamida/farmacologia , Mutação , Fenótipo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
18.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731822

RESUMO

Our understanding of rare disease genetics has been shaped by a monogenic disease model. While the traditional monogenic disease model has been successful in identifying numerous disease-associated genes and significantly enlarged our knowledge in the field of human genetics, it has limitations in explaining phenomena like phenotypic variability and reduced penetrance. Widening the perspective beyond Mendelian inheritance has the potential to enable a better understanding of disease complexity in rare disorders. Digenic inheritance is the simplest instance of a non-Mendelian disorder, characterized by the functional interplay of variants in two disease-contributing genes. Known digenic disease causes show a range of pathomechanisms underlying digenic interplay, including direct and indirect gene product interactions as well as epigenetic modifications. This review aims to systematically explore the background of digenic inheritance in rare disorders, the approaches and challenges when investigating digenic inheritance, and the current evidence for digenic inheritance in mitochondrial disorders.


Assuntos
Doenças Mitocondriais , Doenças Raras , Humanos , Doenças Mitocondriais/genética , Doenças Raras/genética , Predisposição Genética para Doença , Epigênese Genética , Herança Multifatorial/genética , Animais
19.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732076

RESUMO

Mitochondrial diseases (MDs) affect 4300 individuals, with different ages of presentation and manifestation in any organ. How defects in mitochondria can cause such a diverse range of human diseases remains poorly understood. In recent years, several published research articles regarding the metabolic and protein profiles of these neurogenetic disorders have helped shed light on the pathogenetic mechanisms. By investigating different pathways in MDs, often with the aim of identifying disease biomarkers, it is possible to identify molecular processes underlying the disease. In this perspective, omics technologies such as proteomics and metabolomics considered in this review, can support unresolved mitochondrial questions, helping to improve outcomes for patients.


Assuntos
Biomarcadores , Metabolômica , Mitocôndrias , Doenças Mitocondriais , Proteômica , Humanos , Metabolômica/métodos , Mitocôndrias/metabolismo , Proteômica/métodos , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/diagnóstico , Animais
20.
Signal Transduct Target Ther ; 9(1): 124, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744846

RESUMO

Mitochondria, with their intricate networks of functions and information processing, are pivotal in both health regulation and disease progression. Particularly, mitochondrial dysfunctions are identified in many common pathologies, including cardiovascular diseases, neurodegeneration, metabolic syndrome, and cancer. However, the multifaceted nature and elusive phenotypic threshold of mitochondrial dysfunction complicate our understanding of their contributions to diseases. Nonetheless, these complexities do not prevent mitochondria from being among the most important therapeutic targets. In recent years, strategies targeting mitochondrial dysfunction have continuously emerged and transitioned to clinical trials. Advanced intervention such as using healthy mitochondria to replenish or replace damaged mitochondria, has shown promise in preclinical trials of various diseases. Mitochondrial components, including mtDNA, mitochondria-located microRNA, and associated proteins can be potential therapeutic agents to augment mitochondrial function in immunometabolic diseases and tissue injuries. Here, we review current knowledge of mitochondrial pathophysiology in concrete examples of common diseases. We also summarize current strategies to treat mitochondrial dysfunction from the perspective of dietary supplements and targeted therapies, as well as the clinical translational situation of related pharmacology agents. Finally, this review discusses the innovations and potential applications of mitochondrial transplantation as an advanced and promising treatment.


Assuntos
Mitocôndrias , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/terapia , Doenças Mitocondriais/metabolismo , DNA Mitocondrial/genética , MicroRNAs/genética , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...