Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 610
Filtrar
1.
J Vector Borne Dis ; 61(2): 259-266, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38922661

RESUMO

BACKGROUND OBJECTIVES: Vector-borne haemoprotozoan diseases comprise diverse group of single celled organism transmitted by haematophagus invertebrates. The current study was aimed at the identification of major haemoprotozoan (Babesia, Theileria and Trypanosoma) in dromedary camel of North Gujarat region in India using microscopy and Polymerase Chain Reaction (PCR). METHODS: A total of 234 blood samples were screened by the microscopic and molecular detection assays. Molecular prevalence studies of Theileria, Trypanosoma spp and Babesia was undertaken using 18s ribosomal DNA, RoTat 1.2 and SS rRNA gene respectively. The data relating to microscopic and molecular prevalence along with associated risk factors were analysed by statistical methods. RESULTS: The overall prevalence of hamoprotozoan disease based on microscopic and molecular investigation was 23.50%. The sensitivity and specificity (95% Confidence Interval) of PCR assay was 100% in comparison to microscopy (45.45 % sensitive and 100 % specific). The kappa coefficient between PCR and microscopy indicated good level of agreement with a value of 0.704 and SE of 0.159. INTERPRETATION CONCLUSION: Despite holding much significance to the animal sector, little work has been undertaken in regional parts of India regarding camel parasites. The present study offers first preliminary research data investigating haemoprotozoan disease using parasitological and molecular methods in camels in the region.


Assuntos
Babesia , Camelus , Microscopia , Reação em Cadeia da Polimerase , RNA Ribossômico 18S , Theileria , Theileriose , Trypanosoma , Animais , Camelus/parasitologia , Índia/epidemiologia , Trypanosoma/genética , Trypanosoma/isolamento & purificação , Trypanosoma/classificação , Theileria/genética , Theileria/isolamento & purificação , Theileria/classificação , Babesia/genética , Babesia/isolamento & purificação , Babesia/classificação , Theileriose/epidemiologia , Theileriose/parasitologia , RNA Ribossômico 18S/genética , DNA de Protozoário/genética , Babesiose/epidemiologia , Babesiose/parasitologia , Prevalência , Masculino , Sensibilidade e Especificidade , Tripanossomíase/veterinária , Tripanossomíase/epidemiologia , Tripanossomíase/parasitologia , Feminino , Doenças Transmitidas por Vetores/epidemiologia , Doenças Transmitidas por Vetores/parasitologia , DNA Ribossômico/genética
2.
Trends Parasitol ; 40(7): 619-632, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38824066

RESUMO

Vector-borne diseases (VBDs) impose devastating effects on human health and a heavy financial burden. Malaria, Lyme disease, and dengue fever are just a few examples of VBDs that cause severe illnesses. The current strategies to control VBDs consist mainly of environmental modification and chemical use, and to a small extent, genetic approaches. The genetic approaches, including transgenesis/genome modification and gene-drive technologies, provide the basis for developing new tools for VBD prevention by suppressing vector populations or reducing their capacity to transmit pathogens. The regulatory elements such as promoters are required for a robust sex-, tissue-, and stage-specific transgene expression. As discussed in this review, information on the regulatory elements is available for mosquito vectors but is scant for other vectors.


Assuntos
Regiões Promotoras Genéticas , Doenças Transmitidas por Vetores , Animais , Doenças Transmitidas por Vetores/prevenção & controle , Doenças Transmitidas por Vetores/transmissão , Humanos , Vetores Artrópodes/genética
3.
Trends Parasitol ; 40(7): 591-603, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38853076

RESUMO

Mosquitoes are important vectors for human diseases, transmitting pathogens that cause a range of parasitic and viral infections. Mosquito blood-feeding is heterogeneous, meaning that some human hosts are at higher risk of receiving bites than others, and this heterogeneity is multifactorial. Mosquitoes integrate specific cues to locate their hosts, and mosquito attraction differs considerably between individual human hosts. Heterogeneous mosquito biting results from variations in both host attractiveness and availability and can impact transmission of vector-borne diseases. However, the extent and drivers of this heterogeneity and its importance for pathogen transmission remain incompletely understood. Here, we review methods and recent data describing human characteristics that affect host-seeking behavior and host preferences of mosquito disease vectors, and the implications for vector-borne disease transmission.


Assuntos
Culicidae , Comportamento Alimentar , Mosquitos Vetores , Animais , Humanos , Comportamento Alimentar/fisiologia , Culicidae/fisiologia , Culicidae/parasitologia , Mosquitos Vetores/fisiologia , Mosquitos Vetores/parasitologia , Doenças Transmitidas por Vetores/transmissão , Doenças Transmitidas por Vetores/prevenção & controle
5.
J Environ Manage ; 363: 121398, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852404

RESUMO

Scaling irrigated agriculture is a global strategy to mitigate food insecurity concerns. While expanding irrigated agriculture is critical to meeting food production demands, it is important to consider how these land use and land cover changes (LULCC) may alter the water resources of landscapes and impact the spatiotemporal epidemiology of disease. Here, a generalizable method is presented to inform irrigation development decision-making aimed at increasing crop production through irrigation while simultaneously mitigating malaria risk to surrounding communities. Changes to the spatiotemporal patterns of malaria vector (Anopheles gambiae s.s.) suitability, driven by irrigated agricultural expansion, are presented for Malawi's rainy and dry seasons. The methods presented may be applied to other geographical areas where sufficient irrigation and malaria prevalence data are available. Results show that approximately 8.60% and 1.78% of Malawi is maximally suitable for An. gambiae s.s. breeding in the rainy and dry seasons, respectively. However, the proposed LULCC from irrigated agriculture increases the maximally suitable land area in both seasons: 15.16% (rainy) and 2.17% (dry). Proposed irrigation development sites are analyzed and ranked according to their likelihood of increasing malaria risk for those closest to the schemes. Results illustrate how geospatial information on the anticipated change to the malaria landscape driven by increasing irrigated agricultural extent can assist in altering development plans, amending policies, or reassessing water resource management strategies to mitigate expected changes in malaria risk.


Assuntos
Irrigação Agrícola , Malária , Recursos Hídricos , Malária/prevenção & controle , Malaui , Doenças Transmitidas por Vetores/prevenção & controle , Animais , Estações do Ano , Agricultura/métodos , Anopheles
6.
J Math Biol ; 89(2): 16, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890206

RESUMO

In this paper, a multi-patch and multi-group vector-borne disease model is proposed to study the effects of host commuting (Lagrangian approach) and/or vector migration (Eulerian approach) on disease spread. We first define the basic reproduction number of the model, R 0 , which completely determines the global dynamics of the model system. Namely, if R 0 ≤ 1 , then the disease-free equilibrium is globally asymptotically stable, and if R 0 > 1 , then there exists a unique endemic equilibrium which is globally asymptotically stable. Then, we show that the basic reproduction number has lower and upper bounds which are independent of the host residence times matrix and the vector migration matrix. In particular, nonhomogeneous mixing of hosts and vectors in a homogeneous environment generally increases disease persistence and the basic reproduction number of the model attains its minimum when the distributions of hosts and vectors are proportional. Moreover, R 0 can also be estimated by the basic reproduction numbers of disconnected patches if the environment is homogeneous. The optimal vector control strategy is obtained for a special scenario. In the two-patch and two-group case, we numerically analyze the dependence of the basic reproduction number and the total number of infected people on the host residence times matrix and illustrate the optimal vector control strategy in homogeneous and heterogeneous environments.


Assuntos
Número Básico de Reprodução , Simulação por Computador , Conceitos Matemáticos , Modelos Biológicos , Doenças Transmitidas por Vetores , Número Básico de Reprodução/estatística & dados numéricos , Doenças Transmitidas por Vetores/transmissão , Doenças Transmitidas por Vetores/epidemiologia , Doenças Transmitidas por Vetores/prevenção & controle , Humanos , Animais , Vetores de Doenças , Modelos Epidemiológicos
7.
Curr Opin Insect Sci ; 63: 101203, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38705385

RESUMO

Vector-borne diseases are globally prevalent and represent a major socioeconomic problem worldwide. Blood-sucking arthropods transmit most pathogenic agents that cause these human infections. The pathogens transmission to their vertebrate hosts depends on how efficiently they infect their vector, which is particularly impacted by the microbiota residing in the intestinal lumen, as well as its cells or internal organs such as ovaries. The balance between costs and benefits provided by these interactions ultimately determines the outcome of the relationship. Here, we will explore aspects concerning the nature of microbe-vector interactions, including the adaptive traits required for their establishment, the varied outcomes of symbiotic interactions, as well as the factors influencing the transition of these relationships across a continuum from parasitism to mutualism.


Assuntos
Vetores Artrópodes , Simbiose , Animais , Vetores Artrópodes/microbiologia , Vetores Artrópodes/parasitologia , Insetos Vetores/microbiologia , Insetos Vetores/fisiologia , Doenças Transmitidas por Vetores/transmissão
8.
Washington, D.C.; OPS; 2024-05-22. (OPS/CDE/VT/23-0012).
Não convencional em Espanhol | PAHO-IRIS | ID: phr-59825

RESUMO

Esta nota técnica busca guiar a los programas nacionales de malaria y a las organizaciones implicadas en el apoyo de los esfuerzos para la eliminación de la malaria en la Región de las Américas, a fin de que intensifiquen las acciones políticas/estratégicas e implementen los cambios operativos necesarios para acelerar la eliminación de P. falciparum como parte de las estrategias nacionales para la eliminación de la malaria. Con tal finalidad, orienta las acciones que deben llevarse a cabo para acelerar la eliminación de P. falciparum en zonas próximas a su eliminación, sin comprometer los esfuerzos unificados de eliminación del paludismo (P. vivax - P. falciparum) y contribuyendo al objetivo final del país de eliminar el paludismo en su conjunto. La aceleración de la eliminación de P. falciparum procura mitigar el riesgo de aparición y propagación de la resistencia a la artemisinina y de la resistencia a los fármacos asociados; acelerar la reducción del número total de casos de paludismo en zonas con una proporción importante de P falciparum; acelerar la eliminación de la malaria (P. vivax y P. falciparum) teniendo en cuenta que P. falciparum es uno de los desencadenantes de las recaídas de P. vivax; desarrollar capacidades en intervenciones para acelerar la eliminación de la malaria a partir de la experiencia de eliminación de P. falciparum, reduciendo el tiempo para alcanzar la eliminación de la malaria; y empoderar a diferentes actores, autoridades de alto nivel, donantes, municipios y otras entidades para la eliminación de la malaria con inspiración en los logros de la eliminación del P. falciparum.


Assuntos
Malária , Doenças Transmissíveis , Programas Nacionais de Saúde , Doenças Transmitidas por Vetores
9.
Trends Parasitol ; 40(6): 500-510, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744542

RESUMO

The prevention of canine vector-borne diseases (CVBDs) is pivotal for the health and welfare of dogs as well as for reducing their zoonotic risk to humans. Scientific knowledge gained in recent years contributed to the development of new strategies for the control of these diseases in different social and cultural contexts. Here, we discuss recent advances in the prevention of vector-borne pathogens (VBPs) affecting dogs with a focus on those of zoonotic relevance.


Assuntos
Doenças do Cão , Doenças Transmitidas por Vetores , Zoonoses , Animais , Cães , Doenças do Cão/prevenção & controle , Doenças do Cão/parasitologia , Doenças do Cão/transmissão , Doenças Transmitidas por Vetores/prevenção & controle , Zoonoses/prevenção & controle , Zoonoses/transmissão , Humanos , Vetores de Doenças
10.
ACS Infect Dis ; 10(6): 1856-1870, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38724015

RESUMO

Antiparasitic drug development stands as a critical endeavor in combating infectious diseases which, by affecting the well-being of humans, animals, and the environment, pose significant global health challenges. In a scenario where conventional pharmacological interventions have proven inadequate, the One Health approach, which emphasizes interdisciplinary collaboration and holistic solutions, emerges as a vital strategy. By advocating for the integration of One Health principles into the R&D pharmaceutical pipeline, this Perspective promotes green chemistry methodologies to foster the development of environmentally friendly antiparasitic drugs for both human and animal health. Moreover, it highlights the urgent need to address vector-borne parasitic diseases (VBPDs) within the context of One Health-driven sustainable development, underscoring the pivotal role of medicinal chemists in driving transformative change. Aligned with the Sustainable Development Goals (SDGs) and the European Green Deal, this Perspective explores the application of the 12 Principles of Green Chemistry as a systematic framework to guide drug discovery and production efforts in the context of VBPD. Through interdisciplinary collaboration and a constant commitment to sustainability, the field can overcome the challenges posed by VBPD while promoting global and environmental responsibility. Serving as a call to action, scientists are urged to integrate One Health concepts and green chemistry principles into routine drug development practices, thereby paving the way for a more sustainable R&D pharmaceutical pipeline for antiparasitic drugs.


Assuntos
Antiparasitários , Química Verde , Saúde Única , Antiparasitários/química , Antiparasitários/farmacologia , Humanos , Animais , Descoberta de Drogas , Doenças Parasitárias/tratamento farmacológico , Desenvolvimento de Medicamentos , Doenças Transmitidas por Vetores , Desenvolvimento Sustentável
11.
PLoS Comput Biol ; 20(5): e1012133, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805562

RESUMO

Novel mosquito genetic control tools, such as CRISPR-based gene drives, hold great promise in reducing the global burden of vector-borne diseases. As these technologies advance through the research and development pipeline, there is a growing need for modeling frameworks incorporating increasing levels of entomological and epidemiological detail in order to address questions regarding logistics and biosafety. Epidemiological predictions are becoming increasingly relevant to the development of target product profiles and the design of field trials and interventions, while entomological surveillance is becoming increasingly important to regulation and biosafety. We present MGDrivE 3 (Mosquito Gene Drive Explorer 3), a new version of a previously-developed framework, MGDrivE 2, that investigates the spatial population dynamics of mosquito genetic control systems and their epidemiological implications. The new framework incorporates three major developments: i) a decoupled sampling algorithm allowing the vector portion of the MGDrivE framework to be paired with a more detailed epidemiological framework, ii) a version of the Imperial College London malaria transmission model, which incorporates age structure, various forms of immunity, and human and vector interventions, and iii) a surveillance module that tracks mosquitoes captured by traps throughout the simulation. Example MGDrivE 3 simulations are presented demonstrating the application of the framework to a CRISPR-based homing gene drive linked to dual disease-refractory genes and their potential to interrupt local malaria transmission. Simulations are also presented demonstrating surveillance of such a system by a network of mosquito traps. MGDrivE 3 is freely available as an open-source R package on CRAN (https://cran.r-project.org/package=MGDrivE2) (version 2.1.0), and extensive examples and vignettes are provided. We intend the software to aid in understanding of human health impacts and biosafety of mosquito genetic control tools, and continue to iterate per feedback from the genetic control community.


Assuntos
Simulação por Computador , Tecnologia de Impulso Genético , Malária , Controle de Mosquitos , Mosquitos Vetores , Animais , Humanos , Mosquitos Vetores/genética , Controle de Mosquitos/métodos , Malária/epidemiologia , Malária/transmissão , Malária/prevenção & controle , Tecnologia de Impulso Genético/métodos , Biologia Computacional/métodos , Culicidae/genética , Algoritmos , Doenças Transmitidas por Vetores/transmissão , Doenças Transmitidas por Vetores/epidemiologia , Doenças Transmitidas por Vetores/prevenção & controle , Dinâmica Populacional
13.
Sci Total Environ ; 933: 173054, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729373

RESUMO

Invasive Aedes aegypti and Aedes albopictus mosquitoes transmit viruses such as dengue, chikungunya and Zika, posing a huge public health burden as well as having a less well understood economic impact. We present a comprehensive, global-scale synthesis of studies reporting these economic costs, spanning 166 countries and territories over 45 years. The minimum cumulative reported cost estimate expressed in 2022 US$ was 94.7 billion, although this figure reflects considerable underreporting and underestimation. The analysis suggests a 14-fold increase in costs, with an average annual expenditure of US$ 3.1 billion, and a maximum of US$ 20.3 billion in 2013. Damage and losses were an order of magnitude higher than investment in management, with only a modest portion allocated to prevention. Effective control measures are urgently needed to safeguard global health and well-being, and to reduce the economic burden on human societies. This study fills a critical gap by addressing the increasing economic costs of Aedes and Aedes-borne diseases and offers insights to inform evidence-based policy.


Assuntos
Aedes , Mosquitos Vetores , Animais , Dengue , Humanos , Febre de Chikungunya/transmissão , Saúde Global , Doenças Transmitidas por Vetores/prevenção & controle , Espécies Introduzidas , Controle de Mosquitos/economia , Controle de Mosquitos/métodos , Doenças Transmitidas por Mosquitos
14.
Adv Parasitol ; 124: 57-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38754927

RESUMO

For over a century, vector ecology has been a mainstay of vector-borne disease control. Much of this research has focused on the sensory ecology of blood-feeding arthropods (black flies, mosquitoes, ticks, etc.) with terrestrial vertebrate hosts. Of particular interest are the cues and sensory systems that drive host seeking and host feeding behaviours as they are critical for a vector to locate and feed from a host. An important yet overlooked component of arthropod vector ecology are the phenotypic changes observed in infected vectors that increase disease transmission. While our fundamental understanding of sensory mechanisms in disease vectors has drastically increased due to recent advances in genome engineering, for example, the advent of CRISPR-Cas9, and high-throughput "big data" approaches (genomics, proteomics, transcriptomics, etc.), we still do not know if and how parasites manipulate vector behaviour. Here, we review the latest research on arthropod vector sensory systems and propose key mechanisms that disease agents may alter to increase transmission.


Assuntos
Vetores Artrópodes , Animais , Vetores Artrópodes/fisiologia , Humanos , Artrópodes/fisiologia , Doenças Transmitidas por Vetores/transmissão , Doenças Transmitidas por Vetores/prevenção & controle , Interações Hospedeiro-Parasita
15.
Parasit Vectors ; 17(1): 227, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755646

RESUMO

Volatile organic compounds (VOCs) are chemicals emitted as products of cell metabolism, which reflects the physiological and pathological conditions of any living organisms. These compounds play a key role as olfactory cues for arthropod vectors such as mosquitoes, sand flies, and ticks, which act in the transmission of pathogens to many animal species, including humans. Some VOCs may influence arthropod behaviour, e.g., host preference and oviposition site selection for gravid females. Furthermore, deadly vector-borne pathogens such as Plasmodium falciparum and Leishmania infantum are suggested to manipulate the VOCs profile of the host to make them more attractive to mosquitoes and sand fly vectors, respectively. Under the above circumstances, studies on these compounds have demonstrated their potential usefulness for investigating the behavioural response of mosquitoes, sand flies, and ticks toward their vertebrate hosts, as well as potential tools for diagnosis of vector-borne diseases (VBDs). Herein, we provide an account for scientific data available on VOCs to study the host seeking behaviour of arthropod vectors, and their usefulness as attractants, repellents, or tools for an early diagnosis of VBDs.


Assuntos
Culicidae , Psychodidae , Carrapatos , Compostos Orgânicos Voláteis , Animais , Compostos Orgânicos Voláteis/metabolismo , Psychodidae/fisiologia , Psychodidae/parasitologia , Carrapatos/fisiologia , Humanos , Culicidae/fisiologia , Comportamento Animal , Doenças Transmitidas por Vetores/transmissão , Feminino , Mosquitos Vetores/fisiologia , Mosquitos Vetores/parasitologia , Plasmodium falciparum/fisiologia
16.
Front Cell Infect Microbiol ; 14: 1365221, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711929

RESUMO

Bunyaviruses are a large group of important viral pathogens that cause significant diseases in humans and animals worldwide. Bunyaviruses are enveloped, single-stranded, negative-sense RNA viruses that infect a wide range of hosts. Upon entry into host cells, the components of viruses are recognized by host innate immune system, leading to the activation of downstream signaling cascades to induce interferons (IFNs) and other proinflammatory cytokines. IFNs bind to their receptors and upregulate the expression of hundreds of interferon-stimulated genes (ISGs). Many ISGs have antiviral activities and confer an antiviral state to host cells. For efficient replication and spread, viruses have evolved different strategies to antagonize IFN-mediated restriction. Here, we discuss recent advances in our understanding of the interactions between bunyaviruses and host innate immune response.


Assuntos
Infecções por Bunyaviridae , Imunidade Inata , Orthobunyavirus , Infecções por Bunyaviridae/imunologia , Infecções por Bunyaviridae/virologia , Humanos , Animais , Orthobunyavirus/imunologia , Interações Hospedeiro-Patógeno/imunologia , Interferons/imunologia , Interferons/metabolismo , Transdução de Sinais , Citocinas/metabolismo , Citocinas/imunologia , Doenças Transmitidas por Vetores/imunologia , Doenças Transmitidas por Vetores/virologia , Doenças Transmitidas por Vetores/prevenção & controle , Replicação Viral
17.
PLoS Negl Trop Dis ; 18(5): e0012159, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739673

RESUMO

BACKGROUND: Rodents are recognized as the hosts of many vector-borne bacteria and protozoan parasites and play an important role in their transmission and maintenance. Intensive studies have focused on their infections in vectors, especially in ticks, however, vector-borne bacterial and protozoan infections in rodents are poorly understood although human cases presenting with fever may due to their infection have been found. METHODS: From May to October 2019, 192 wild rodents were trapped in wild environment of Guangxi Province, and the spleen samples were collected to reveal the presence of vector-borne bacterial and protozoan infections in them. The microorganisms in rodents were identified by detecting their DNA using (semi-)nested PCR. All the PCR products of the expected size were subjected to sequencing, and then analyzed by BLASTn. Furthermore, all the recovered sequences were subjected to nucleotide identity and phylogenetic analyses. RESULTS: As a result, 192 rodents representing seven species were captured, and Bandicota indica were the dominant species, followed by Rattus andamanensis. Based on the (semi-)nested PCR, our results suggested that Anaplasma bovis, Anaplasma capra, Anaplasma ovis, Anaplasma phagocytophilum, "Candidatus Neoehrlichia mikurensis", "Candidatus E. hainanensis", "Candidatus E. zunyiensis", three uncultured Ehrlichia spp., Bartonella coopersplainsensis, Bartonella tribocorum, Bartonella rattimassiliensis, Bartonella silvatica, two uncultured Bartonella spp., Babesia microti and diverse Hepatozoon were identified in six rodent species. More importantly, six species (including two Anaplasma, two Bartonella, "Ca. N. mikurensis" and Bab. microti) are zoonotic pathogens except Anaplasma bovis and Anaplasma ovis with zoonotic potential. Furthermore, dual infection was observed between different microorganisms, and the most common type of co-infection is between "Ca. N. mikurensis" and other microorganisms. Additionally, potential novel Bartonella species and Hepatozoon species demonstrated the presence of more diverse rodent-associated Bartonella and Hepatozoon. CONCLUSIONS: The results in this work indicated great genetic diversity of vector-borne infections in wild rodents, and highlighted the potential risk of human pathogens transmitted from rodents to humans through vectors.


Assuntos
Variação Genética , Roedores , Animais , China/epidemiologia , Roedores/microbiologia , Roedores/parasitologia , Filogenia , Animais Selvagens/parasitologia , Animais Selvagens/microbiologia , Anaplasma/genética , Anaplasma/isolamento & purificação , Anaplasma/classificação , Doenças Transmitidas por Vetores/transmissão , Doenças Transmitidas por Vetores/microbiologia , Doenças Transmitidas por Vetores/parasitologia , Doenças Transmitidas por Vetores/epidemiologia , Bartonella/genética , Bartonella/isolamento & purificação , Bartonella/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Ratos
18.
Lancet Planet Health ; 8(5): e334-e341, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38729673

RESUMO

The impacts of climate change on vector-borne diseases are uneven across human populations. This pattern reflects the effect of changing environments on the biology of transmission, which is also modulated by social and other inequities. These disparities are also linked to research outcomes that could be translated into tools for transmission reduction, but are not necessarily actionable in the communities where transmission occurs. The transmission of vector-borne diseases could be averted by developing research that is both hypothesis-driven and community-serving for populations affected by climate change, where local communities interact as equal partners with scientists, developing and implementing research projects with the aim of improving community health. In this Personal View, we share five principles that have guided our research practice to serve the needs of communities affected by vector-borne diseases.


Assuntos
Mudança Climática , Doenças Transmitidas por Vetores , Doenças Transmitidas por Vetores/prevenção & controle , Doenças Transmitidas por Vetores/epidemiologia , Humanos
19.
BMJ Open ; 14(5): e079963, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740505

RESUMO

INTRODUCTION: Vector borne diseases (VBDs) present significant public health challenges in Southeast Asia (SEA), and the increasing number of cases threatens vulnerable communities. Inadequate vector control and management have been linked to the spread of VBDs. To address these issues, community participation has been proposed as a promising approach to enhance health programmes and control of VBDs. This article outlines a protocol for a scoping review of the published literature on community-participation approaches to control VBDs in the SEA region. The primary research question is 'How does community participation complement the control of VBDs in SEA?' This review aims to provide an overview of various approaches and identify barriers and facilitators to effective implementation. METHODS AND ANALYSIS: The research questions will guide the scoping review. In stage 1, peer-reviewed publications from PubMed, Web of Science and Scopus will be searched using predefined search terms related to community-based approaches and VBDs in the SEA region, English, Indonesian and Malay published between 2012 and 2022. In stage 2, the references from relevant articles will be screened for eligibility. In stage 3, eligible articles will be charted in Microsoft Excel to facilitate the review process, and studies will be characterised based on the investigated diseases; this review will also highlight the methodological context of these studies. In stage 4, a thematic analysis will be conducted to derive meaningful findings from the dataset relevant to the research inquiry, followed by writing the results in stage 5. This scoping review aims to be the first to explore community participation in VBD control in the SEA population, providing valuable insights for future research and stakeholders involved in disease control. ETHICS AND DISSEMINATION: This scoping review does not require ethical approval because the methodology synthesises information from available articles. This review is planned for dissemination in academic journals, conference presentations and shared with stakeholders as part of knowledge sharing among those involved in VBD control.


Assuntos
Participação da Comunidade , Doenças Transmitidas por Vetores , Humanos , Participação da Comunidade/métodos , Sudeste Asiático/epidemiologia , Doenças Transmitidas por Vetores/prevenção & controle , Projetos de Pesquisa , Literatura de Revisão como Assunto , Animais
20.
Expert Rev Proteomics ; 21(4): 205-216, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584506

RESUMO

INTRODUCTION: Protein microarray is a promising immunomic approach for identifying biomarkers. Based on our previous study that reviewed parasite antigens and recent parasitic omics research, this article expands to include information on vector-borne parasitic diseases (VBPDs), namely, malaria, schistosomiasis, leishmaniasis, babesiosis, trypanosomiasis, lymphatic filariasis, and onchocerciasis. AREAS COVERED: We revisit and systematically summarize antigen markers of vector-borne parasites identified by the immunomic approach and discuss the latest advances in identifying antigens for the rational development of diagnostics and vaccines. The applications and challenges of this approach for VBPD control are also discussed. EXPERT OPINION: The immunomic approach has enabled the identification and/or validation of antigen markers for vaccine development, diagnosis, disease surveillance, and treatment. However, this approach presents several challenges, including limited sample size, variability in antigen expression, false-positive results, complexity of omics data, validation and reproducibility, and heterogeneity of diseases. In addition, antigen involvement in host immune evasion and antigen sensitivity/specificity are major issues in its application. Despite these limitations, this approach remains promising for controlling VBPD. Advances in technology and data analysis methods should continue to improve candidate antigen identification, as well as the use of a multiantigen approach in diagnostic and vaccine development for VBPD control.


Assuntos
Biomarcadores , Doenças Parasitárias , Animais , Humanos , Biomarcadores/sangue , Doenças Parasitárias/imunologia , Doenças Parasitárias/diagnóstico , Análise Serial de Proteínas/métodos , Proteômica/métodos , Doenças Transmitidas por Vetores/prevenção & controle , Doenças Transmitidas por Vetores/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...