Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1365221, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711929

RESUMO

Bunyaviruses are a large group of important viral pathogens that cause significant diseases in humans and animals worldwide. Bunyaviruses are enveloped, single-stranded, negative-sense RNA viruses that infect a wide range of hosts. Upon entry into host cells, the components of viruses are recognized by host innate immune system, leading to the activation of downstream signaling cascades to induce interferons (IFNs) and other proinflammatory cytokines. IFNs bind to their receptors and upregulate the expression of hundreds of interferon-stimulated genes (ISGs). Many ISGs have antiviral activities and confer an antiviral state to host cells. For efficient replication and spread, viruses have evolved different strategies to antagonize IFN-mediated restriction. Here, we discuss recent advances in our understanding of the interactions between bunyaviruses and host innate immune response.


Assuntos
Infecções por Bunyaviridae , Imunidade Inata , Orthobunyavirus , Infecções por Bunyaviridae/imunologia , Infecções por Bunyaviridae/virologia , Humanos , Animais , Orthobunyavirus/imunologia , Interações Hospedeiro-Patógeno/imunologia , Interferons/imunologia , Interferons/metabolismo , Transdução de Sinais , Citocinas/metabolismo , Citocinas/imunologia , Doenças Transmitidas por Vetores/imunologia , Doenças Transmitidas por Vetores/virologia , Doenças Transmitidas por Vetores/prevenção & controle , Replicação Viral
2.
Expert Rev Proteomics ; 21(4): 205-216, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584506

RESUMO

INTRODUCTION: Protein microarray is a promising immunomic approach for identifying biomarkers. Based on our previous study that reviewed parasite antigens and recent parasitic omics research, this article expands to include information on vector-borne parasitic diseases (VBPDs), namely, malaria, schistosomiasis, leishmaniasis, babesiosis, trypanosomiasis, lymphatic filariasis, and onchocerciasis. AREAS COVERED: We revisit and systematically summarize antigen markers of vector-borne parasites identified by the immunomic approach and discuss the latest advances in identifying antigens for the rational development of diagnostics and vaccines. The applications and challenges of this approach for VBPD control are also discussed. EXPERT OPINION: The immunomic approach has enabled the identification and/or validation of antigen markers for vaccine development, diagnosis, disease surveillance, and treatment. However, this approach presents several challenges, including limited sample size, variability in antigen expression, false-positive results, complexity of omics data, validation and reproducibility, and heterogeneity of diseases. In addition, antigen involvement in host immune evasion and antigen sensitivity/specificity are major issues in its application. Despite these limitations, this approach remains promising for controlling VBPD. Advances in technology and data analysis methods should continue to improve candidate antigen identification, as well as the use of a multiantigen approach in diagnostic and vaccine development for VBPD control.


Assuntos
Biomarcadores , Doenças Parasitárias , Animais , Humanos , Biomarcadores/sangue , Doenças Parasitárias/imunologia , Doenças Parasitárias/diagnóstico , Análise Serial de Proteínas/métodos , Proteômica/métodos , Doenças Transmitidas por Vetores/prevenção & controle , Doenças Transmitidas por Vetores/imunologia
3.
Biomolecules ; 12(2)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35204727

RESUMO

The complement system (CS) is part of the human immune system, consisting of more than 30 proteins that play a vital role in the protection against various pathogens and diseases, including viral diseases. Activated via three pathways, the classical pathway (CP), the lectin pathway (LP), and the alternative pathway (AP), the complement system leads to the formation of a membrane attack complex (MAC) that disrupts the membrane of target cells, leading to cell lysis and death. Due to the increasing number of reports on its role in viral diseases, which may have implications for research on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this review aims to highlight significant progress in understanding and defining the role of the complement system in four groups of diseases of viral etiology: (1) respiratory diseases; (2) acute liver failure (ALF); (3) disseminated intravascular coagulation (DIC); and (4) vector-borne diseases (VBDs). Some of these diseases already present a serious global health problem, while others are a matter of concern and require the collaboration of relevant national services and scientists with the World Health Organization (WHO) to avoid their spread.


Assuntos
Proteínas do Sistema Complemento , Viroses/etiologia , Animais , Coagulação Intravascular Disseminada/imunologia , Coagulação Intravascular Disseminada/virologia , Humanos , Falência Hepática Aguda/imunologia , Falência Hepática Aguda/virologia , Doenças Respiratórias/imunologia , Doenças Respiratórias/virologia , Doenças Transmitidas por Vetores/imunologia , Doenças Transmitidas por Vetores/virologia
4.
Future Microbiol ; 16: 657-670, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34100305

RESUMO

Drawing of host blood is a natural phenomenon during the bite of blood-probing insect vectors. Along with the blood meal, the vectors introduce salivary components and a trail of microbiota. In the case of infected vectors, the related pathogen accompanies the aforementioned biological components. In addition to Anopheles gambiae or Anopheles stephensi, the bites of other nonmalarial vectors cannot be ignored in malaria-endemic regions. Similarly, the bite incidence of Phlebotomus papatasi cannot be ignored in visceral leishmaniasis-endemic regions. Even the chances of getting bitten by uninfected vectors are higher than the infected vectors. We have discussed the probability or possibility of uninfected, infected, and/or nonvector's saliva and gut microbiota as a therapeutic option leading to the initial deterrent to pathogen establishment.


Assuntos
Microbioma Gastrointestinal/imunologia , Insetos Vetores , Saliva/imunologia , Animais , Culicidae/imunologia , Humanos , Imunomodulação , Mordeduras e Picadas de Insetos/imunologia , Mordeduras e Picadas de Insetos/prevenção & controle , Insetos Vetores/imunologia , Psychodidae/imunologia , Doenças Transmitidas por Vetores/imunologia , Doenças Transmitidas por Vetores/prevenção & controle
5.
Am J Trop Med Hyg ; 104(2): 593-603, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33350367

RESUMO

Sera from white-tailed deer (WTD, Odocoileus virginianus) hunter-harvested throughout New York State (NYS), 2007-2015, were tested by plaque reduction neutralization for antibodies against nine mosquito-borne viruses from the families Peribunyaviridae, Flaviviridae, and Togaviridae. Overall, 76.1% (373/490) of sampled WTD were seropositive against at least one virus, and 38.8% were exposed to multiple viruses. The seropositivity rate in adult WTD (78.0%) was significantly greater (P < 0.0001) than that in fawns (47.7%). Neutralizing antibodies against California serogroup viruses were most common in WTD sampled across all regions (67.1%), followed by the Bunyamwera serogroup (BUN) (37.6%). Jamestown Canyon and Cache Valley orthobunyaviruses were responsible for most California and BUN infections, respectively. Seroprevalence rates to West Nile virus were higher in samples originating from Long Island (LI) (19.0%) than in those originating from the central (7.3%), western (5.0%), and Hudson Valley (4.4%) regions of NYS. Antibodies to Eastern equine encephalitis virus were seen primarily in WTD from central NYS (5.1%), where annual enzootic activity occurs, but low rates were documented in western NYS (1.4%) and LI (1.7%). Low rates of Potosi and LaCrosse orthobunyavirus, and Highlands J virus antibodies were detected over the course of this investigation. St. Louis encephalitis virus (or a closely related virus) antibodies were detected in samples collected from central and western NYS, suggesting local virus transmission despite a lack of evidence from routine mosquito surveillance. Serologic results demonstrate the value of WTD in NYS as an indicator of arbovirus distribution and recent transmission on a relatively fine spatial scale.


Assuntos
Anticorpos Antivirais/sangue , Culicidae/virologia , Cervos/virologia , Caça/estatística & dados numéricos , Doenças Transmitidas por Vetores/virologia , Vírus/imunologia , Animais , Cervos/imunologia , Feminino , Masculino , Testes de Neutralização , New York/epidemiologia , Estudos Soroepidemiológicos , Doenças Transmitidas por Vetores/epidemiologia , Doenças Transmitidas por Vetores/imunologia , Vírus/classificação , Vírus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...