Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.572
Filtrar
1.
Sci Rep ; 14(1): 15466, 2024 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965336

RESUMO

This study aimed to evaluate the efficacy of Lactiplantibacillus argentoratensis AGMB00912 (LA) in reducing Salmonella Typhimurium infection in weaned piglets. The investigation focused on the influence of LA on the gut microbiota composition, growth performance, and Salmonella fecal shedding. The results indicated that LA supplementation significantly improved average daily gain and reduced the prevalence and severity of diarrhea. Fecal analysis revealed reduced Salmonella shedding in the LA-supplemented group. Furthermore, LA notably altered the composition of the gut microbiota, increasing the levels of beneficial Bacillus and decreasing those of harmful Proteobacteria and Spirochaetes. Histopathological examination showed less intestinal damage in LA-treated piglets than in the controls. The study also observed that LA affected metabolic functions related to carbohydrate, amino acid, and fatty acid metabolism, thereby enhancing gut health and resilience against infection. Short-chain fatty acid concentrations in the feces were higher in the LA group, suggesting improved gut microbial activity. LA supplementation enriched the population of beneficial bacteria, including Streptococcus, Clostridium, and Bifidobacterium, while reducing the number of harmful bacteria, such as Escherichia and Campylobacter. These findings indicate the potential of LA as a probiotic alternative for swine nutrition, offering protective effects to the gut microbiota against Salmonella infection.


Assuntos
Fezes , Microbioma Gastrointestinal , Probióticos , Desmame , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Suínos , Projetos Piloto , Probióticos/administração & dosagem , Fezes/microbiologia , Salmonelose Animal/microbiologia , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle , Lactobacillaceae , Salmonella typhimurium/efeitos dos fármacos
2.
Can Vet J ; 65(7): 707-711, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38952762

RESUMO

A swine production system had 3 sections located a few kilometers apart. Sections A and C contained several thousand sows and nursery and finishing pigs. Section B, located between the other 2 sections, was the smallest and had 6 finishing sites and 2 sow sites. The entire system was infected with porcine reproductive and respiratory syndrome virus, Mycoplasma hyopneumoniae, and Actinobacillus pleuropneumoniae. Section B was depopulated, cleaned, disinfected, and repopulated with negative gilts. Despite extreme measures, recontamination occurred for each pathogen, with aerosol considered the most plausible contamination source.


Transmission suspectée d'agents pathogènes porcins par aérosol : un cas de terrainUn système de production porcine comportait 3 sections situées à quelques kilomètres l'une de l'autre. Les sections A et C contenaient plusieurs milliers de truies et de porcs en maternité et en finition. La section B, située entre les 2 autres sections, était la plus petite et comptait 6 sites de finition et 2 sites de truies. L'ensemble du système était infecté par le virus du syndrome reproducteur et respiratoire porcin, Mycoplasma hyopneumoniae et Actinobacillus pleuropneumoniae. La section B a été dépeuplée, nettoyée, désinfectée et repeuplée de cochettes négatives. Malgré des mesures extrêmes, une recontamination s'est produite pour chaque agent pathogène, les aérosols étant considérés comme la source de contamination la plus plausible.(Traduit par Dr Serge Messier).


Assuntos
Actinobacillus pleuropneumoniae , Aerossóis , Mycoplasma hyopneumoniae , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , Suínos , Doenças dos Suínos/transmissão , Doenças dos Suínos/microbiologia , Doenças dos Suínos/virologia , Mycoplasma hyopneumoniae/isolamento & purificação , Actinobacillus pleuropneumoniae/isolamento & purificação , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/transmissão , Infecções por Actinobacillus/microbiologia , Pneumonia Suína Micoplasmática/transmissão , Feminino , Síndrome Respiratória e Reprodutiva Suína/transmissão , Criação de Animais Domésticos
3.
Nat Commun ; 15(1): 5811, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987310

RESUMO

Extraintestinal Pathogenic Escherichia coli (ExPEC) pose a significant threat to human and animal health. However, the diversity and antibiotic resistance of animal ExPEC, and their connection to human infections, remain largely unexplored. The study performs large-scale genome sequencing and antibiotic resistance testing of 499 swine-derived ExPEC isolates from China. Results show swine ExPEC are phylogenetically diverse, with over 80% belonging to phylogroups B1 and A. Importantly, 15 swine ExPEC isolates exhibit genetic relatedness to human-origin E. coli strains. Additionally, 49 strains harbor toxins typical of enteric E. coli pathotypes, implying hybrid pathotypes. Notably, 97% of the total strains are multidrug resistant, including resistance to critical human drugs like third- and fourth-generation cephalosporins. Correspondingly, genomic analysis unveils prevalent antibiotic resistance genes (ARGs), often associated with co-transfer mechanisms. Furthermore, analysis of 20 complete genomes illuminates the transmission pathways of ARGs within swine ExPEC and to human pathogens. For example, the transmission of plasmids co-harboring fosA3, blaCTX-M-14, and mcr-1 genes between swine ExPEC and human-origin Salmonella enterica is observed. These findings underscore the importance of monitoring and controlling ExPEC infections in animals, as they can serve as a reservoir of ARGs with the potential to affect human health or even be the origin of pathogens infecting humans.


Assuntos
Antibacterianos , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Extraintestinal Patogênica , Filogenia , Doenças dos Suínos , Animais , Suínos , China/epidemiologia , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/efeitos dos fármacos , Escherichia coli Extraintestinal Patogênica/isolamento & purificação , Escherichia coli Extraintestinal Patogênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Doenças dos Suínos/microbiologia , Proteínas de Escherichia coli/genética , Antibacterianos/farmacologia , Humanos , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Genoma Bacteriano/genética , Sequenciamento Completo do Genoma , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética , beta-Lactamases/genética
4.
Front Immunol ; 15: 1369278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021575

RESUMO

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has recently gained prominence for its ability to provide molecular and spatial information in tissue sections. This technology has the potential to uncover novel insights into proteins and other molecules in biological and immunological pathways activated along diseases with a complex host-pathogen interaction, such as animal tuberculosis. Thus, the present study conducted a data analysis of protein signature in granulomas of cattle and pigs naturally infected with the Mycobacterium tuberculosis complex (MTC), identifying biological and immunological signaling pathways activated throughout the disease. Lymph nodes from four pigs and four cattle, positive for the MTC by bacteriological culture and/or real-time PCR, were processed for histopathological examination and MALDI-MSI. Protein identities were assigned using the MaTisse database, and protein-protein interaction networks were visualized using the STRING database. Gene Ontology (GO) analysis was carried out to determine biological and immunological signaling pathways in which these proteins could participate together with Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Distinct proteomic profiles between cattle and pig granulomas were displayed. Noteworthy, the GO analysis revealed also common pathways among both species, such as "Complement activation, alternative pathway" and "Tricarboxylic acid cycle", which highlight pathways that are conserved among different species infected by the MTC. In addition, species-specific terms were identified in the current study, such as "Natural killer cell degranulation" in cattle or those related to platelet and neutrophil recruitment and activation in pigs. Overall, this study provides insights into the immunopathogenesis of tuberculosis in cattle and pigs, opening new areas of research and highlighting the importance, among others, of the complement activation pathway and the regulation of natural killer cell- and neutrophil-mediated immunity in this disease.


Assuntos
Granuloma , Mycobacterium tuberculosis , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tuberculose , Animais , Suínos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/veterinária , Bovinos , Proteômica/métodos , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/veterinária , Tuberculose/microbiologia , Tuberculose/metabolismo , Granuloma/imunologia , Granuloma/microbiologia , Granuloma/metabolismo , Granuloma/veterinária , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Mapas de Interação de Proteínas , Interações Hospedeiro-Patógeno/imunologia , Proteoma , Transdução de Sinais
5.
Microb Biotechnol ; 17(7): e14518, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953907

RESUMO

Porcine epidemic diarrhoea virus (PEDV) infects pigs of all ages by invading small intestine, causing acute diarrhoea, vomiting, and dehydration with high morbidity and mortality among newborn piglets. However, current PEDV vaccines are not effective to protect the pigs from field epidemic strains because of poor mucosal immune response and strain variation. Therefore, it is indispensable to develop a novel oral vaccine based on epidemic strains. Bacillus subtilis spores are attractive delivery vehicles for oral vaccination on account of the safety, high stability, and low cost. In this study, a chimeric gene CotC-Linker-COE (CLE), comprising of the B. subtilis spore coat gene cotC fused to the core neutralizing epitope CO-26 K equivalent (COE) of the epidemic strain PEDV-AJ1102 spike protein gene, was constructed. Then recombinant B. subtilis displaying the CLE on the spore surface was developed by homologous recombination. Mice were immunized by oral route with B. subtilis 168-CLE, B. subtilis 168, or phosphate-buffered saline (PBS) as control. Results showed that the IgG antibodies and cytokine (IL-4, IFN-γ) levels in the B. subtilis 168-CLE group were significantly higher than the control groups. This study demonstrates that B. subtilis 168-CLE can generate specific systemic immune and mucosal immune responses and is a potential vaccine candidate against PEDV infection.


Assuntos
Anticorpos Antivirais , Bacillus subtilis , Vírus da Diarreia Epidêmica Suína , Esporos Bacterianos , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/imunologia , Animais , Bacillus subtilis/genética , Bacillus subtilis/imunologia , Esporos Bacterianos/genética , Esporos Bacterianos/imunologia , Camundongos , Anticorpos Antivirais/sangue , Suínos , Vacinas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/administração & dosagem , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/prevenção & controle , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Doenças dos Suínos/microbiologia , Doenças dos Suínos/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Administração Oral , Citocinas/metabolismo , Imunoglobulina G/sangue , Camundongos Endogâmicos BALB C , Feminino , Técnicas de Visualização da Superfície Celular , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
6.
Vet Microbiol ; 295: 110160, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964034

RESUMO

Infection with Glaesserella parasuis, the primary pathogen behind Glässer's disease, is often associated with diverse clinical symptoms, including serofibrinous polyserositis, arthritis, and meningitis. Autophagy plays a dual role in bacterial infections, exerting either antagonistic or synergistic effects depending on the nature of the pathogen. Our previous studies have demonstrated that autophagy serves as a defense mechanism, combating inflammation and invasion caused by infection of highly virulent G. parasuis. However, the precise mechanisms remain to be elucidated. Pathogens exhibit distinct interactions with inflammasomes and autophagy processes. Herein, we explored the effect of autophagy on inflammasomes during G. parasuis infection. We found that G. parasuis infection triggers NLRP3-dependent pro-CASP-1-IL-18/IL-1ß processing and maturation pathway, resulting in increased release of IL-1ß and IL-18. Inhibition of autophagy enhances NLRP3 inflammasome activity, whereas stimulation of autophagy restricts it during G. parasuis infection. Furthermore, assembled NLRP3 inflammasomes undergo ubiquitination and recruit the autophagic adaptor, p62, facilitating their sequestration into autophagosomes during G. parasuis infection. These results suggest that the induction of autophagy mitigates inflammation by eliminating overactive NLRP3 inflammasomes during G. parasuis infection. Our research uncovers a mechanism whereby G. parasuis infection initiates inflammatory responses by promoting the assembly of the NLRP3 inflammasomes and activating NLRP3-CASP-1, both of which processes are downregulated by autophagy. This suggests that pharmacological manipulation of autophagy could be a promising approach to modulate G. parasuis-induced inflammatory responses.


Assuntos
Autofagia , Caspase 1 , Infecções por Haemophilus , Haemophilus parasuis , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Inflamassomos/imunologia , Inflamassomos/metabolismo , Haemophilus parasuis/imunologia , Haemophilus parasuis/patogenicidade , Haemophilus parasuis/genética , Caspase 1/metabolismo , Caspase 1/genética , Infecções por Haemophilus/veterinária , Infecções por Haemophilus/imunologia , Infecções por Haemophilus/microbiologia , Suínos , Interleucina-18/metabolismo , Interleucina-18/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Doenças dos Suínos/microbiologia , Doenças dos Suínos/imunologia , Camundongos
7.
Vet Microbiol ; 295: 110168, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964035

RESUMO

Glaesserella parasuis is an important porcine pathogen that commonly colonizes the upper respiratory tract of pigs and is prone to causing Glässer's disease under complex conditions. As yet, the disease has led to serious economic losses to the swine industry worldwide. Studies so far have found that several virulence factors are associated with the pathogenicity of G. parasuis, but the pathogenic mechanism is still not fully understood. Cytolethal distending toxin (CDT), a potential virulence factor in G. parasuis, is involved in cytotoxicity, serum resistance, adherence to and invasion of host cells in vitro. Here, to further investigate the pathogenic role of CDT during G. parasuis infection in vitro and in vivo, a double cdt1 and cdt2 deletion mutant (Δcdt1Δcdt2) without selectable marker was first generated in G. parasuis JS0135 strain by continuous natural transformations and replica plating. Morphological observation and lactate dehydrogenase assay showed that the Δcdt1Δcdt2 mutant was defective in cytotoxicity. Additionally, the Δcdt1Δcdt2 mutant was more susceptible to phagocytosis caused by 3D4/2 macrophages compared to the wild-type JS0135 strain. Moreover, by focusing on clinical signs, necropsy, bacterial recovery and pathological observation, we found that the deletion of cdt1 and cdt2 genes led to a significant attenuation of virulence in G. parasuis. Taken together, these findings suggest that as an important virulence factor, CDT can significantly affect the pathogenicity of G. parasuis.


Assuntos
Toxinas Bacterianas , Haemophilus parasuis , Fagocitose , Doenças dos Suínos , Animais , Suínos , Haemophilus parasuis/patogenicidade , Haemophilus parasuis/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Toxinas Bacterianas/metabolismo , Doenças dos Suínos/microbiologia , Virulência , Infecções por Haemophilus/veterinária , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/imunologia , Fatores de Virulência/genética , Macrófagos/microbiologia , Linhagem Celular
8.
Acta Vet Scand ; 66(1): 34, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020377

RESUMO

Monitoring the use of antimicrobials and the emergence of resistance in animals and people is important for the control of antimicrobial resistance, and for establishing sustainable and effective disease management practices. In this study, we used Enterococcus spp. and Escherichia coli as indicator species to investigate antimicrobial susceptibility patterns and how these change over time, on ten Swedish pig farms. Indoor environmental sock sampling was performed once a month during the entire production cycle of one batch of pigs on each farm, resulting in 60 samples collected in total. Selective culture for E. coli and Enterococcus spp. resulted in 122 isolates of E. coli, 74 isolates of E. faecium, but no isolates of E. faecalis. Microdilution was used to determine minimum inhibitory concentrations for twelve antimicrobial substances in E. coli and fifteen substances in E. faecium. The overall prevalence of resistance was low. Among the E. coli isolates, the proportions non-wild type (resistant, NWT) isolates were as follows: azithromycin and amikacin 1% (n = 1), trimethoprim and sulfamethoxazole 2% (n = 3), ampicillin 6% (n = 7) and tetracycline 9% (n = 11). Among the E. faecium isolates, the NWT proportions were: teicoplanin, linezolid and gentamicin 1% (n = 1), daptomycin 3% (n = 2), erythromycin 26% (n = 19), tetracycline 27% (n = 20), quinupristin/dalfopristin 58% (n = 42). The resistance patterns differed between the farms, likely due to different antimicrobial use, biosecurity measures and source of the animals. The NWT prevalence among E. coli decreased over time, whereas no similar trend could be observed in E. faecium. The results of the current study illustrate the complex factors affecting the antimicrobial resistance patterns observed on each farm, indicating that specific practices and risk factors have an impact on the prevalence and type of antimicrobial resistance. Further studies of the farm environments in combination with antimicrobial use and other risk factor data are needed to elucidate the multifaceted drivers of antimicrobial resistance development on livestock farms.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Enterococcus faecium , Escherichia coli , Testes de Sensibilidade Microbiana , Doenças dos Suínos , Animais , Enterococcus faecium/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Suínos , Antibacterianos/farmacologia , Suécia/epidemiologia , Testes de Sensibilidade Microbiana/veterinária , Doenças dos Suínos/microbiologia , Doenças dos Suínos/epidemiologia , Fazendas , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia , Infecções por Bactérias Gram-Positivas/veterinária , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/epidemiologia , Prevalência , Criação de Animais Domésticos/métodos
9.
Open Vet J ; 14(5): 1098-1102, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38938427

RESUMO

Background: Young farm animals are susceptible to opportunistic infections which may cause economic losses due to mortality and poor weight gain. The development of antimicrobial resistance and the desire to improve therapy efficacy and safety are the reasons to seek for new antibacterial drugs ensuring rapid recovery with minimum adverse events. Aim: To estimate the efficacy of DOKSI AVZ 500 in respiratory pathologies in young pigs. Methods: The study was conducted in 65-70-day-old Yorkshire piglets with signs of bacterial respiratory pathologies. The animals were treated with the test drug for 3 or 5 days. The reference group received TETRAMAX 500 which is similar to the test drug in terms of chemical structure, mechanism of action, and activity spectrum. The animal's status was assessed using clinical examination, clinical blood count, and bacteriological tests. Results: Both test and reference drugs were well tolerated and ensured the animal recovery within about 4 days. The recovery was accompanied by normalization of hematological parameters and flora composition. The bacterium associated with the disease development, Streptococcus suis, was virtually completely eliminated in all groups. No adverse events were noted. After the treatment, all the animals readily gained weight and live market quality. Conclusion: DOKSI AVZ 500 was a highly efficient therapy for respiratory pathologies caused by the resident opportunistic flora in piglets. It has also shown noninferiority vs. TETRAMAX 500 in terms of all the health-related parameters and thus can be recommended for introduction in veterinary practice in pig farms.


Assuntos
Antibacterianos , Doenças dos Suínos , Animais , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/microbiologia , Antibacterianos/uso terapêutico , Infecções Respiratórias/veterinária , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Feminino , Masculino , Tilosina/análogos & derivados
10.
Acta Vet Hung ; 72(2): 66-70, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38896488

RESUMO

Nowadays, the three strongly beta-haemolytic spirochaetes, Brachyspira hyodysenteriae, Brachyspira suanatina and Brachyspira hampsonii are thought to be causative agents of swine dysentery, an economically devastating disease of grow-finish pigs characterised by severe mucohaemorrhagic diarrhoea. B. hyodysenteriae has been reported in most leading swine-producing regions. B. suanatina and B. hampsonii have been successfully recovered from faecal samples collected in a few countries only. The present study was performed in March 2023 on faecal samples originating from nine Polish finisher farms with 6,000 to 18,000 animals in a location. Samples were obtained from 40 diarrhoeic finishers. Nucleic acid extracted from the samples was analysed using multiplex PCR for Brachyspira spp. From a total of nine sample populations examined in our study, the genetic material of B. hampsonii was identified in two. To the best of our knowledge, this is the first report on molecular detection of B. hampsonii on pig farms outside North America, Belgium and Germany. Our research highlights the need for increased focus directed on laboratory testing strategies, the lack of which may perplex swine practitioners and severely hinder a definite diagnosis.


Assuntos
Brachyspira , Infecções por Bactérias Gram-Negativas , Doenças dos Suínos , Animais , Polônia/epidemiologia , Doenças dos Suínos/microbiologia , Doenças dos Suínos/epidemiologia , Suínos , Brachyspira/isolamento & purificação , Brachyspira/genética , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/epidemiologia , Fezes/microbiologia
11.
Prev Vet Med ; 229: 106228, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38850871

RESUMO

To prevent foodborne infections from pigs and cattle, the whole food chain must act to minimize the contamination of products, including biosecurity measures which prevent infections via feed and the environment in production farms. Rodents and other small mammals can be reservoirs of and key vectors for transmitting zoonotic bacteria and viruses to farm animals, through direct contact but more often through environmental contamination. In line with One Health concept, we integrated results from a sampling study of small mammals in farm environments and data from a capture-recapture experiment into a probabilistic model which quantifies the degree of environmental exposure of zoonotic bacteria by small mammals to farm premises. We investigated more than 1200 small mammals trapped in and around 38 swine and cattle farm premises in Finland in 2017/2018. Regardless of the farm type, the most common species caught were the yellow-necked mouse (Apodemus flavicollis), bank vole (Clethrionomys glareolus), and house mouse (Mus musculus). Of 554 intestine samples (each pooled from 1 to 10 individuals), 33% were positive for Campylobacter jejuni. Yersinia enterocolitica was detected in 8% of the pooled samples, on 21/38 farm premises. Findings of Salmonella and the Shiga-toxin producing Escherichia coli (STEC) were rare: the pathogens were detected in only single samples from four and six farm premises, respectively. The prevalence of Campylobacter, Salmonella, Yersinia and STEC in small mammal populations was estimated as 26%/13%, 1%/0%, 2%/3%, 1%/1%, respectively, in 2017/2018. The exposure probability within the experimental period of four weeks on farms was 17-60% for Campylobacter and 0-3% for Salmonella. The quantitative model is readily applicable to similar integrative studies. Our results indicate that small mammals increase the risk of exposure to zoonotic bacteria in animal production farms, thus increasing risks also for livestock and human health.


Assuntos
Doenças dos Bovinos , Doenças dos Suínos , Animais , Bovinos , Suínos , Prevalência , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/transmissão , Finlândia/epidemiologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/transmissão , Roedores/microbiologia , Zoonoses Bacterianas/epidemiologia , Zoonoses Bacterianas/microbiologia , Zoonoses/epidemiologia , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/microbiologia , Medição de Risco , Fazendas
12.
Vet Microbiol ; 295: 110157, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917664

RESUMO

Actinobacillus pleuropneumoniae (APP) causes significant economic losses to the swine industry. Antibiotic treatment can be challenging due to its clinical urgency and the turnover of antimicrobial susceptibility results from the diagnostic laboratory. The aim of this study was to evaluate the vertical transmission of APP within integrated systems as a criterion for optimising antimicrobial treatment in the field, using whole genome sequencing (WGS). Additionally, the genetic variability of Spanish APP isolates has been assessed to decipher antimicrobial resistance (AMR) determinants, toxin presence, serotype, and phenotype/genotype concordance of AMR. A total of 169 isolates from clinical cases of porcine pleuropneumonia with known antimicrobial susceptibility profiles were sequenced. Additionally, 48 NCBI assemblies were included to perform a phylogenetic analysis. Phylogenetic analysis revealed high association between phylogenetic clusters, serotypes, and presence of toxins that are associated within vertically integrated systems by its epidemiological link. Concordance between presence of AMR determinants (genotype) vs in-vitro antimicrobial susceptibility pattern (phenotype) was acceptable for amoxicillin, florfenicol, oxytetracycline, and enrofloxacin using epidemiological cut-off values (ECOFFs), but low concordance was observed for doxycycline and trimethoprim-sulfamethoxazole (T/S). On the other hand, using CLSI clinical breakpoints (CBPs), concordance was acceptable for florfenicol and enrofloxacin and not evaluated for doxycycline, oxytetracycline, trimethoprim-sulfamethoxazole (T/S), and amoxicillin because no CBP are available for them. Finally, WGS has demonstrated the clonality between isolates that shared a common origin (grandmother's farm) and resistance phenotype, suggesting vertical transmission of this pathogen and supporting the use of the epidemiological approach as a good criterion to optimise the antimicrobial use.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Antibacterianos , Testes de Sensibilidade Microbiana , Filogenia , Doenças dos Suínos , Sequenciamento Completo do Genoma , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/efeitos dos fármacos , Actinobacillus pleuropneumoniae/classificação , Actinobacillus pleuropneumoniae/isolamento & purificação , Suínos , Animais , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/transmissão , Doenças dos Suínos/microbiologia , Doenças dos Suínos/transmissão , Antibacterianos/farmacologia , Pleuropneumonia/microbiologia , Pleuropneumonia/veterinária , Genótipo , Genoma Bacteriano , Farmacorresistência Bacteriana/genética , Espanha/epidemiologia
13.
Int J Food Microbiol ; 421: 110790, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38878707

RESUMO

The objective of this study was to evaluate the occurrence of E. coli in hunted wild boars in Sardinia (Italy) and to further characterize the isolates with Whole Genome Sequencing to assess the genetic relatedness and the presence of virulence and antimicrobial resistance (AMR) genes. Samples were taken from 66 wild boars between 2020 and 2022 slaughtered in five hunting houses. A total of 181 samples were tested, including 66 samples from mesenteric lymph nodes, 66 samples from colon content and 49 samples from carcass surface. Isolates referable to Escherichia species were detected in all of the wild boars sampled. On a selection of 61 isolates, sequencing was conducted and antimicrobial susceptibility was tested. Among these, three isolates were confirmed to be two Escherichia marmotae (cryptic clade V) and one Escherichia ruysiae (cryptic clade III). E. coli pathotypes identified were UPEC (13 %), ExPEC-UPEC (5.6 %) and ETEC (3.7 %). Moreover, 3/6 E. marmotae isolates had typical ExPEC genes. Genetic similarity was observed in isolates collected from animals slaughtered in the same hunting house; this suggests epidemiological links deriving from the presence of animals infected with closely related strains or the result of cross-contamination. Antimicrobial resistance genes were detected in three non-pathogenic E. coli isolates: one isolate had sul2, tet(B), aph(6)-ld and aph(3″)-lb resistance genes and two had the fosA7 gene. This study confirmed that wild boars can act as reservoirs and spreaders of pathogenic Escherichia species and it provides information for future comparative genomic analysis in wildlife. Although isolates showed a limited resistome, the detection of resistance in non-pathogenic isolates underlines the need to monitor antimicrobial resistance in the wild boar population. To the best of our knowledge, this is the first detection of E. mamotae and E. ruysiae isolates in wild boars in Italy and the presence of this pathogen in wildlife and livestock need to be investigated further.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Escherichia coli , Sus scrofa , Animais , Itália , Sus scrofa/microbiologia , Suínos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Antibacterianos/farmacologia , Escherichia/genética , Escherichia/isolamento & purificação , Escherichia/efeitos dos fármacos , Escherichia/patogenicidade , Doenças dos Suínos/microbiologia , Doenças dos Suínos/epidemiologia , Testes de Sensibilidade Microbiana , Virulência/genética , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia , Sequenciamento Completo do Genoma
14.
Sci Rep ; 14(1): 14586, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918457

RESUMO

Natural killer (NK) cells play a key role in defense against Salmonella infections during the early phase of infection. Our previous work showed that the excretory/secretory products of Ascaris suum repressed NK activity in vitro. Here, we asked if NK cell functionality was influenced in domestic pigs during coinfection with Ascaris and Salmonella enterica serotype Typhimurium. Ascaris coinfection completely abolished the IL-12 and IL-18 driven elevation of IFN-γ production seen in CD16 + CD8α + perforin + NK cells of Salmonella single-infected pigs. Furthermore, Ascaris coinfection prohibited the Salmonella-driven rise in NK perforin levels and CD107a surface expression. In line with impaired effector functions, NK cells from Ascaris-single and coinfected pigs displayed elevated expression of the inhibitory KLRA1 and NKG2A receptors genes, contrasting with the higher expression of the activating NKp46 and NKp30 receptors in NK cells during Salmonella single infection. These differences were accompanied by the highly significant upregulation of T-bet protein expression in NK cells from Ascaris-single and Ascaris/Salmonella coinfected pigs. Together, our data strongly indicate a profound repression of NK functionality by an Ascaris infection which may hinder infected individuals from adequately responding to a concurrent bacterial infection.


Assuntos
Ascaríase , Coinfecção , Células Matadoras Naturais , Doenças dos Suínos , Animais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ascaríase/imunologia , Ascaríase/veterinária , Ascaríase/parasitologia , Coinfecção/imunologia , Coinfecção/microbiologia , Coinfecção/parasitologia , Suínos , Doenças dos Suínos/parasitologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Salmonelose Animal/imunologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Ascaris suum/imunologia , Interferon gama/metabolismo , Perforina/metabolismo , Interleucina-12/metabolismo , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Interleucina-18/metabolismo
15.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38863369

RESUMO

This study was conducted to evaluate the effects of dietary organic acid blend on growth performance, antioxidant capacity, intestinal barrier function, and fecal microbiota in weaned piglets compared with antibiotic growth promoters (AGPs). A total of 90 weaned crossbred barrows (24 ±â€…1 d of age) with an initial body weight of 7.40 kg were allocated into three experimental treatments. Each treatment consisted of six replicate pens, with five piglets housed in each pen. The dietary treatments included the basal diet (NC), the basal diet supplemented with antibiotics (PC), and the basal diet supplemented with organic acid blend (OA). On day 42, one piglet per pen was randomly selected for plasma and small intestinal sample collection. The results showed that dietary AGP significantly improved growth performance and reduced diarrhea incidence compared to the NC group (P < 0.05). Dietary OA tended to increase body weight on day 42 (P = 0.07) and average daily gain from days 0 to 42 (P = 0.06) and reduce diarrhea incidence (P = 0.05). Dietary OA significantly increased plasma catalase (CAT) activity and decreased the plasma concentration of malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin (IL)-8, and IL-6, which were accompanied by upregulated the relative mRNA abundance of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPX1), and nuclear factor erythroid 2-related factor 2 (NRF2) in comparison to that in the NC group (P < 0.05). Moreover, pigs fed the OA diet significantly increased the ratio of villus height to crypt depth and upregulated the relative expression of zonula occludens-1 (ZO-1) and Claudin1 gene in the jejunum compared to the NC group (P < 0.05). Interestingly, dietary AGP or OA did not affect the fecal microbiota structure or volatile fatty acid content (P > 0.05). In conclusion, our results suggested that dietary OA supplementation could improve growth performance and antioxidant capacity and protect the intestinal barrier of weaned piglets, therefore, it has the potential to be considered as an alternative to AGP in the pig industry.


In the era of antibiotics prohibition, there is an urgent need to develop green and efficient alternatives to antibiotics in the current pig industry to mitigate the economic losses associated with antibiotic bans. Organic acids (OA) are a class of substances that have long been used as feed additives due to their bacteriostatic properties, the ability of reducing feed pH, increasing the activity of digestive enzymes, and other beneficial effects. This study was conducted to evaluate the effects of dietary OA on growth performance, antioxidant capacity, intestinal barrier function, and fecal microbiota structure in weaned piglets. The results showed that OA supplementation can effectively improve the growth performance and intestinal health of weaned piglets. This study provides a reference for the application of OA as an alternative to antibiotics in weaned piglets.


Assuntos
Ração Animal , Antibacterianos , Antioxidantes , Dieta , Fezes , Microbioma Gastrointestinal , Animais , Ração Animal/análise , Antioxidantes/metabolismo , Dieta/veterinária , Suínos , Masculino , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Fezes/microbiologia , Suplementos Nutricionais/análise , Desmame , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle , Função da Barreira Intestinal
16.
BMC Microbiol ; 24(1): 214, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886642

RESUMO

BACKGROUND: Bergeyella porcorum is a newly identified bacterium that has an ambiguous relationship with pneumonia in pigs. However, few studies have adequately characterized this species. RESULTS: In this study, we analyzed the morphological, physiological, and genomic characteristics of the newly identified B. porcorum sp. nov. strain QD2021 isolated from pigs. The complete genome sequence of the B. porcorum QD2021 strain consists of a single circular chromosome (2,271,736 bp, 38.51% G + C content), which encodes 2,578 genes. One plasmid with a size of 70,040 bp was detected. A total of 121 scattered repeat sequences, 319 tandem repeat sequences, 4 genomic islands, 5 prophages, 3 CRISPR sequences, and 51 ncRNAs were predicted. The coding genes of the B. porcorum genome were successfully annotated across eight databases (NR, GO, KEGG, COG, TCDB, Pfam, Swiss-Prot and CAZy) and four pathogenicity-related databases (PHI, CARD, VFDB and ARDB). In addition, a comparative genome analysis was performed to explore the evolutionary relationships of B. porcorum QD2021. CONCLUSIONS: To our knowledge, this is the first study to provide fundamental phenotypic and whole-genome sequences for B. porcorum. Our results extensively expand the current knowledge and could serve as a valuable genomic resource for future research on B. porcorum.


Assuntos
Composição de Bases , Genoma Bacteriano , Filogenia , Sequenciamento Completo do Genoma , Animais , China , Genoma Bacteriano/genética , Suínos , Flavobacteriaceae/genética , Flavobacteriaceae/isolamento & purificação , Flavobacteriaceae/classificação , Doenças dos Suínos/microbiologia , DNA Bacteriano/genética , Ilhas Genômicas , Plasmídeos/genética , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/veterinária , Análise de Sequência de DNA , Anotação de Sequência Molecular
17.
BMC Vet Res ; 20(1): 241, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831324

RESUMO

BACKGROUND: Actinobacillus pleuropneumoniae is a serious pathogen in pigs. The abundant application of antibiotics has resulted in the gradual emergence of drugresistant bacteria, which has seriously affected treatment of disease. To aid measures to prevent the emergence and spread of drug-resistant bacteria, herein, the kill rate and mutant selection window (MSW) of danofloxacin (DAN) against A. pleuropneumoniae were evaluated. METHODS: For the kill rate study, the minimum inhibitory concentration (MIC) was tested using the micro dilution broth method and time-killing curves of DAN against A. pleuropneumoniae grown in tryptic soy broth (TSB) at a series drug concentrations (from 0 to 64 MIC) were constructed. The relationships between the kill rate and drug concentrations were analyzed using a Sigmoid Emax model during different time periods. For the MSW study, the MIC99 (the lowest concentration that inhibited the growth of the bacteria by ≥ 99%) and mutant prevention concentration (MPC) of DAN against A. pleuropneumoniae were measured using the agar plate method. Then, a peristaltic pump infection model was established to simulate the dynamic changes of DAN concentrations in pig lungs. The changes in number and sensitivity of A. pleuropneumoniae were measured. The relationships between pharmacokinetic/pharmacodynamic parameters and the antibacterial effect were analyzed using the Sigmoid Emax model. RESULTS: In kill rate study, the MIC of DAN against A. pleuropneumoniae was 0.016 µg/mL. According to the kill rate, DAN exhibited concentration-dependent antibacterial activity against A. pleuropneumoniae. A bactericidal effect was observed when the DAN concentration reached 4-8 MIC. The kill rate increased constantly with the increase in DAN concentration, with a maximum value of 3.23 Log10 colony forming units (CFU)/mL/h during the 0-1 h period. When the drug concentration was in the middle part of the MSW, drugresistant bacteria might be induced. Therefore, the dosage should be avoided to produce a mean value of AUC24h/MIC99 (between 31.29 and 62.59 h. The values of AUC24h/MIC99 to achieve bacteriostatic, bactericidal, and eradication effects were 9.46, 25.14, and > 62.59 h, respectively. CONCLUSION: These kill rate and MSW results will provide valuable guidance for the use of DAN to treat A. pleuropneumoniae infections.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Antibacterianos , Fluoroquinolonas , Testes de Sensibilidade Microbiana , Actinobacillus pleuropneumoniae/efeitos dos fármacos , Actinobacillus pleuropneumoniae/genética , Antibacterianos/farmacologia , Fluoroquinolonas/farmacologia , Animais , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/tratamento farmacológico , Suínos , Farmacorresistência Bacteriana , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/microbiologia , Mutação
19.
J Vet Sci ; 25(3): e44, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38834513

RESUMO

IMPORTANCE: The emergence and rapid increase in the incidence of multidrug-resistant (MDR) bacteria in pig farms has become a serious concern and reduced the choice of effective antibiotics. OBJECTIVE: This study analyzed the phylogenetics and diversity of antibiotic resistance genes (ARGs) and molecularly identified the source of ARGs in antibiotic-resistant Escherichia coli isolated from pig farms in Banten Province, Indonesia. METHODS: Forty-four antibiotic-resistant E. coli isolates from fecal samples from 44 pig farms in Banten Province, Indonesia, were used as samples. The samples were categorized into 14 clusters. Sequencing was performed using the Oxford Nanopore Technologies MinION platform, with barcoding before sequencing with Nanopore Rapid sequencing gDNA-barcoding (SQK-RBK110.96) according to manufacturing procedures. ARG detection was conducted using ResFinder, and the plasmid replicon was determined using PlasmidFinder. RESULTS: Three phylogenetic leaves of E. coli were identified in the pig farming cluster in Banten Province. The E. coli isolates exhibited potential resistance to nine classes of antibiotics. Fifty-one ARGs were identified across all isolates, with each cluster carrying a minimum of 10 ARGs. The ant(3'')-Ia and qnrS1 genes were present in all isolates. ARGs in the E. coli pig farming cluster originated mainly from plasmids, accounting for an average of 89.4%. CONCLUSIONS AND RELEVANCE: The elevated potential for MDR events, coupled with the dominance of ARGs originating from plasmids, increases the risk of ARG spread among bacterial populations in animals, humans, and the environment.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Doenças dos Suínos , Sequenciamento Completo do Genoma , Animais , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Suínos , Indonésia/epidemiologia , Doenças dos Suínos/microbiologia , Doenças dos Suínos/epidemiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia , Sequenciamento Completo do Genoma/veterinária , Filogenia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla/genética
20.
Methods Mol Biol ; 2815: 93-113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884913

RESUMO

Massive sequencing of a fragment of 16S rRNA gene allows the characterization of bacterial communities in different body sites: the microbiota. Nasal microbiota can be analyzed by DNA extraction from nasal swabs, amplification of the specific fragment of interest, and posterior sequencing. The raw sequences obtained need to go through a computational process to check their quality and then assign the taxonomy. Here, we will describe the complete process from sampling to get the microbial diversity of nasal microbiota in health and disease.


Assuntos
Microbiota , RNA Ribossômico 16S , Animais , Microbiota/genética , Suínos/microbiologia , RNA Ribossômico 16S/genética , Nariz/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , DNA Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doenças dos Suínos/microbiologia , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...