Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
J Bacteriol ; 204(1): e0044721, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34633871

RESUMO

Haloferax volcanii AglD is currently the only archaeal dolichol phosphate (DolP)-mannose synthase shown to participate in N-glycosylation. However, the relation between AglD and Pyrococcus furiosus PF0058, the only archaeal DolP-mannose synthase for which structural information is presently available, was unclear. In this report, similarities between the PF0058 and AglD catalytic domains were revealed. At the same time, AglD includes a transmembrane domain far longer than that of PF0058 or other DolP-mannose synthases. To determine whether this extension affords AglD functions in addition to generating mannose-charged DolP, a series of Hfx. volcanii strains expressing truncated versions of AglD was generated. Mass spectrometry revealed that a version of AglD comprising the catalytic domain and only two of the six to nine predicted membrane-spanning domains could mediate mannose addition to DolP. However, in cells expressing this or other truncated versions of AglD, mannose was not transferred from the lipid to the protein-bound tetrasaccharide precursor of the N-linked pentasaccharide normally decorating Hfx. volcanii glycoproteins. These results thus point to AglD as contributing to additional aspects of Hfx. volcanii N-glycosylation beyond charging DolP with mannose. Accordingly, the possibility that AglD, possibly in coordination with AglR, translocates DolP-mannose across the plasma membrane is discussed.


Assuntos
Proteínas Arqueais/metabolismo , Dolicol Monofosfato Manose/metabolismo , Haloferax volcanii/enzimologia , Manosiltransferases/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , Domínio Catalítico , Dolicol Monofosfato Manose/química , Etilenodiaminas , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Manosiltransferases/genética , Fenóis , Conformação Proteica , Domínios Proteicos
2.
Nature ; 579(7799): 443-447, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32103179

RESUMO

In eukaryotic protein N-glycosylation, a series of glycosyltransferases catalyse the biosynthesis of a dolichylpyrophosphate-linked oligosaccharide before its transfer onto acceptor proteins1. The final seven steps occur in the lumen of the endoplasmic reticulum (ER) and require dolichylphosphate-activated mannose and glucose as donor substrates2. The responsible enzymes-ALG3, ALG9, ALG12, ALG6, ALG8 and ALG10-are glycosyltransferases of the C-superfamily (GT-Cs), which are loosely defined as containing membrane-spanning helices and processing an isoprenoid-linked carbohydrate donor substrate3,4. Here we present the cryo-electron microscopy structure of yeast ALG6 at 3.0 Å resolution, which reveals a previously undescribed transmembrane protein fold. Comparison with reported GT-C structures suggests that GT-C enzymes contain a modular architecture with a conserved module and a variable module, each with distinct functional roles. We used synthetic analogues of dolichylphosphate-linked and dolichylpyrophosphate-linked sugars and enzymatic glycan extension to generate donor and acceptor substrates using purified enzymes of the ALG pathway to recapitulate the activity of ALG6 in vitro. A second cryo-electron microscopy structure of ALG6 bound to an analogue of dolichylphosphate-glucose at 3.9 Å resolution revealed the active site of the enzyme. Functional analysis of ALG6 variants identified a catalytic aspartate residue that probably acts as a general base. This residue is conserved in the GT-C superfamily. Our results define the architecture of ER-luminal GT-C enzymes and provide a structural basis for understanding their catalytic mechanisms.


Assuntos
Microscopia Crioeletrônica , Retículo Endoplasmático/enzimologia , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Biocatálise , Domínio Catalítico , Sequência Conservada , Dolicol Monofosfato Manose/metabolismo , Fosfatos de Dolicol/metabolismo , Glucose/análogos & derivados , Glucose/metabolismo , Glicosiltransferases/deficiência , Técnicas In Vitro , Lipídeos , Proteínas de Membrana/deficiência , Modelos Moleculares , Mutação , Monossacarídeos de Poli-Isoprenil Fosfato/química , Monossacarídeos de Poli-Isoprenil Fosfato/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Especificidade por Substrato
3.
J Biochem ; 154(3): 257-64, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23694781

RESUMO

Although the genes involved in the biosynthesis of glycosylphosphatidylinositol (GPI) are well characterized, the regulation of GPI biosynthesis remains unclear. We isolated and characterized a mutant cell line showing decreased surface expression of CD59 and the accumulation of GPI intermediates. The mutant cell line was partially defective in MPDU1, which encodes a protein required for the utilization of dolichol-phosphate mannose. Overexpression of PIGV, which encodes GPI mannosyltransferase II, restored the surface expression of CD59 and normalized the accumulation of GPI intermediates in the mutant cells. Among all known genes involved in GPI biosynthetic pathway, only PIGV had such suppressive activity. PIGV, however, did not restore the abnormality of N-glycosylation caused by MPDU1 mutation. Our results suggest that GPI mannosyltransferase II is the rate-limiting enzyme in GPI biosynthesis under limited dolichol-phosphate mannose availability.


Assuntos
Dolicol Monofosfato Manose/metabolismo , Regulação da Expressão Gênica , Glicosilfosfatidilinositóis/biossíntese , Manosiltransferases/genética , Animais , Antígenos CD55/genética , Antígenos CD55/metabolismo , Antígenos CD59/genética , Antígenos CD59/metabolismo , Células CHO , Sequência de Carboidratos , Linhagem Celular , Cricetulus , Glicosilação , Humanos , Manosiltransferases/metabolismo , Dados de Sequência Molecular , Mutação , Transdução de Sinais
4.
J Bacteriol ; 194(24): 6909-16, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23086206

RESUMO

In Haloferax volcanii, a series of Agl proteins mediates protein N-glycosylation. The genes encoding all but one of the Agl proteins are sequestered into a single gene island. The same region of the genome includes sequences also suspected but not yet verified as serving N-glycosylation roles, such as HVO_1526. In the following, HVO_1526, renamed AglS, is shown to be necessary for the addition of the final mannose subunit of the pentasaccharide N-linked to the surface (S)-layer glycoprotein, a convenient reporter of N-glycosylation in Hfx. volcanii. Relying on bioinformatics, topological analysis, gene deletion, mass spectrometry, and biochemical assays, AglS was shown to act as a dolichol phosphate-mannose mannosyltransferase, mediating the transfer of mannose from dolichol phosphate to the tetrasaccharide corresponding to the first four subunits of the pentasaccharide N-linked to the S-layer glycoprotein.


Assuntos
Dolicol Monofosfato Manose/metabolismo , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Manosiltransferases/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Deleção de Genes , Glicosilação , Manosiltransferases/metabolismo
5.
Plant Cell ; 23(5): 1985-2005, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21558543

RESUMO

The most abundant posttranslational modification in nature is the attachment of preassembled high-mannose-type glycans, which determines the fate and localization of the modified protein and modulates the biological functions of glycosylphosphatidylinositol-anchored and N-glycosylated proteins. In eukaryotes, all mannose residues attached to glycoproteins from the luminal side of the endoplasmic reticulum (ER) derive from the polyprenyl monosaccharide carrier, dolichol P-mannose (Dol-P-Man), which is flipped across the ER membrane to the lumen. We show that in plants, Dol-P-Man is synthesized when Dol-P-Man synthase1 (DPMS1), the catalytic core, interacts with two binding proteins, DPMS2 and DPMS3, that may serve as membrane anchors for DPMS1 or provide catalytic assistance. This configuration is reminiscent of that observed in mammals but is distinct from the single DPMS protein catalyzing Dol-P-Man biosynthesis in bakers' yeast and protozoan parasites. Overexpression of DPMS1 in Arabidopsis thaliana results in disorganized stem morphology and vascular bundle arrangements, wrinkled seed coat, and constitutive ER stress response. Loss-of-function mutations and RNA interference-mediated reduction of DPMS1 expression in Arabidopsis also caused a wrinkled seed coat phenotype and most remarkably enhanced hypersensitivity to ammonium that was manifested by extensive chlorosis and a strong reduction of root growth. Collectively, these data reveal a previously unsuspected role of the prenyl-linked carrier pathway for plant development and physiology that may help integrate several aspects of candidate susceptibility genes to ammonium stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Dolicol Monofosfato Manose/metabolismo , Manosiltransferases/metabolismo , Polissacarídeos/metabolismo , Compostos de Amônio Quaternário/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácido Ascórbico/análise , Ácido Ascórbico/metabolismo , Retículo Endoplasmático/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicosilação , Manosiltransferases/genética , Mutagênese Insercional , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Caules de Planta/efeitos dos fármacos , Caules de Planta/enzimologia , Caules de Planta/genética , Caules de Planta/fisiologia , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/fisiologia , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Sementes/efeitos dos fármacos , Sementes/enzimologia , Sementes/genética , Sementes/fisiologia , Estresse Fisiológico
6.
Am J Hum Genet ; 85(1): 76-86, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19576565

RESUMO

Alpha-dystroglycanopathies such as Walker Warburg syndrome represent an important subgroup of the muscular dystrophies that have been related to defective O-mannosylation of alpha-dystroglycan. In many patients, the underlying genetic etiology remains unsolved. Isolated muscular dystrophy has not been described in the congenital disorders of glycosylation (CDG) caused by N-linked protein glycosylation defects. Here, we present a genetic N-glycosylation disorder with muscular dystrophy in the group of CDG type I. Extensive biochemical investigations revealed a strongly reduced dolichol-phosphate-mannose (Dol-P-Man) synthase activity. Sequencing of the three DPM subunits and complementation of DPM3-deficient CHO2.38 cells showed a pathogenic p.L85S missense mutation in the strongly conserved coiled-coil domain of DPM3 that tethers catalytic DPM1 to the ER membrane. Cotransfection experiments in CHO cells showed a reduced binding capacity of DPM3(L85S) for DPM1. Investigation of the four Dol-P-Man-dependent glycosylation pathways in the ER revealed strongly reduced O-mannosylation of alpha-dystroglycan in a muscle biopsy, thereby explaining the clinical phenotype of muscular dystrophy. This mild Dol-P-Man biosynthesis defect due to DPM3 mutations is a cause for alpha-dystroglycanopathy, thereby bridging the congenital disorders of glycosylation with the dystroglycanopathies.


Assuntos
Dolicol Monofosfato Manose/metabolismo , Manosiltransferases/genética , Proteínas de Membrana/genética , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distroglicanas/metabolismo , Feminino , Glicosilação , Humanos
7.
J Biol Chem ; 284(30): 19835-42, 2009 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-19494107

RESUMO

To further evaluate the role of Rft1 in the transbilayer movement of Man(5)GlcNAc(2)-P-P-dolichol (M5-DLO), a series of experiments was conducted with intact cells and sealed microsomal vesicles. First, an unexpectedly large accumulation (37-fold) of M5-DLO was observed in Rft1-depleted cells (YG1137) relative to Glc(3)Man(9)GlcNAc(2)-P-P-Dol in wild type (SS328) cells when glycolipid levels were compared by fluorophore-assisted carbohydrate electrophoresis analysis. When sealed microsomes from wild type cells and cells depleted of Rft1 were incubated with GDP-[(3)H]mannose or UDP-[(3)H]GlcNAc in the presence of unlabeled GDP-Man, no difference was observed in the rate of synthesis of [(3)H]Man(9)GlcNAc(2)-P-P-dolichol or Man(9)[(3)H]GlcNAc(2)-P-P-dolichol, respectively. In addition, no difference was seen in the level of M5-DLO flippase activity in sealed wild type and Rft1-depleted microsomal vesicles when the activity was assessed by the transport of GlcNAc(2)-P-P-Dol(15), a water-soluble analogue. The entry of the analogue into the lumenal compartment was confirmed by demonstrating that [(3)H]chitobiosyl units were transferred to endogenous peptide acceptors via the yeast oligosaccharyltransferase when sealed vesicles were incubated with [(3)H]GlcNAc(2)-P-P-Dol(15) in the presence of an exogenously supplied acceptor peptide. In addition, several enzymes involved in Dol-P and lipid intermediate biosynthesis were found to be up-regulated in Rft1-depleted cells. All of these results indicate that although Rft1 may play a critical role in vivo, depletion of this protein does not impair the transbilayer movement of M5-DLO in sealed microsomal fractions prepared from disrupted cells.


Assuntos
Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Microssomos/metabolismo , Oligossacarídeos de Poli-Isoprenil Fosfato/análise , Oligossacarídeos de Poli-Isoprenil Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Alquil e Aril Transferases/metabolismo , Transporte Biológico , Dolicol Monofosfato Manose/metabolismo , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Hexosiltransferases/metabolismo , Manose/metabolismo , Proteínas de Membrana/metabolismo , Microssomos/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Monossacarídeos de Poli-Isoprenil Fosfato/metabolismo , Saccharomyces cerevisiae/genética
8.
J Bacteriol ; 191(13): 4465-72, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19395496

RESUMO

In this study, utilizing a Corynebacterium glutamicum DeltapimB' DeltamgtA double deletion mutant, we unequivocally assign the in vivo functions of Rv2188c as an Ac(1)PIM(1):mannosyltransferase (originally termed PimB'(Mt) [Mycobacterium tuberculosis PimB']) and Rv0557 as a GlcAGroAc(2):mannosyltransferase (originally termed PimB(Mt)), which we have reassigned as PimB(Mt) and MgtA(Mt), respectively, in Mycobacterium tuberculosis.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/enzimologia , Glicolipídeos/biossíntese , Manosiltransferases/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Dolicol Monofosfato Manose/metabolismo , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Glicolipídeos/metabolismo , Lipopolissacarídeos/metabolismo , Manosiltransferases/genética , Proteínas de Membrana Transportadoras/genética , Modelos Biológicos , Deleção de Sequência/genética
9.
Eukaryot Cell ; 7(8): 1344-51, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18552282

RESUMO

Trichomonas vaginalis, the protist that causes vaginal itching, has a huge genome with numerous gene duplications. Recently we found that Trichomonas has numerous genes encoding putative dolichyl-phosphate-glucose (Dol-P-Glc) synthases (encoded by ALG5 genes) despite the fact that Trichomonas lacks the glycosyltransferases (encoded by ALG6, ALG8, and ALG10 genes) that use Dol-P-Glc to glucosylate dolichyl-PP-linked glycans. In addition, Trichomonas does not have a canonical DPM1 gene, encoding a dolichyl-P-mannose (Dol-P-Man) synthase. Here we show Trichomonas membranes have roughly 300 times the Dol-P-Glc synthase activity of Saccharomyces cerevisiae membranes and about one-fifth the Dol-P-Man synthase activity of Saccharomyces membranes. Endogenous Dol-P-hexoses of Trichomonas are relatively abundant and contain 16 isoprene units. Five paralogous Trichomonas ALG5 gene products have Dol-P-Glc synthase activity when expressed as recombinant proteins, and these Trichomonas Alg5s correct a carboxypeptidase N glycosylation defect in a Saccharomyces alg5 mutant in vivo. A recombinant Trichomonas Dpm1, which is deeply divergent in its sequence, has Dol-P-Man synthase activity. When radiolabeled Dol-P-Glc is incubated with Trichomonas membranes, Glc is incorporated into reducing and nonreducing sugars of O-glycans of endogenous glycoproteins. To our knowledge, this is the first demonstration of Dol-P-Glc as a sugar donor for O-glycans on glycoproteins.


Assuntos
Glicoproteínas/metabolismo , Monossacarídeos de Poli-Isoprenil Fosfato/metabolismo , Polissacarídeos/metabolismo , Trichomonas vaginalis/metabolismo , Animais , Dolicol Monofosfato Manose/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Membranas Intracelulares/metabolismo , Manosiltransferases/metabolismo , Trichomonas vaginalis/genética
10.
Biochim Biophys Acta ; 1780(6): 861-8, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18387370

RESUMO

Glycosylation is the major modification of proteins, and alters their structures, functions and localizations. Glycosylation of secretory and surface proteins takes place in the endoplasmic reticulum and Golgi apparatus in eukaryotic cells and is classified into four modification pathways, namely N- and O-linked glycosylations, glycosylphosphatidylinositol (GPI)-anchor and C-mannosylation. These modifications are accomplished by sequential addition of single monosaccharides (O-linked glycosylation and C-mannosylation) or en bloc transfer of lipid-linked oligosaccharides (N-linked glycosylation and GPI) onto the proteins. The glycosyltransferases involved in these glycosylations are categorized into two classes based on the type of sugar donor, namely nucleotide-sugars and dolichol-phosphate-sugars, in which the sugar moiety is mannose or glucose. The sugar transfer from dolichol-phosphate-sugars occurs exclusively on the luminal side of the endoplasmic reticulum and is utilized in all four glycosylation pathways. In this review, we focus on the biosynthesis of dolichol-phosphate-mannose, and particularly on the mammalian enzyme complex involved in the reaction.


Assuntos
Dolicol Monofosfato Manose/metabolismo , Retículo Endoplasmático/enzimologia , Complexo de Golgi/enzimologia , Manosiltransferases/química , Manosiltransferases/metabolismo , Modificação Traducional de Proteínas/fisiologia , Animais , Retículo Endoplasmático/genética , Glucose/genética , Glucose/metabolismo , Glicosilação , Complexo de Golgi/genética , Humanos , Manose/genética , Manose/metabolismo , Manosiltransferases/genética
11.
Glycobiology ; 16(7): 666-78, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16549409

RESUMO

Dolichyl-phosphate-mannose (Dol-P-Man) synthase catalyzes the reversible formation of a key intermediate that is involved as a mannosyl donor in at least three different pathways for the synthesis of glycoconjugates important for eukaryotic development and viability. The enzyme is found associated with membranes of the endoplasmic reticulum (ER), where it transfers mannose from the water soluble cytoplasmic donor, guanosine 5'-diphosphate (GDP)-Man, to the membrane-bound, extremely hydrophobic, and long-chain polyisoprenoid acceptor, dolichyl-phosphate (Dol-P). The enzyme from Saccharomyces cerevisiae has been utilized to investigate the structure and activity of the protein and interactions of the enzyme with Dol-P and synthetic Dol-P analogs containing fluorescent probes. These interactions have been explored utilizing fluorescence resonance energy transfer (FRET) to establish intramolecular distances within the protein molecule as well as intermolecular distances to determine the localization of the active site and the hydrophobic substrate on the enzyme's surface. A three-dimensional (3D) model of the enzyme was produced with bound substrates, Dol-P, GDP-Man, and divalent cations to delineate the binding sites for these substrates as well as the catalytic site. The FRET analysis was used to characterize the functional properties of the enzyme and to evaluate its modeled structure. The data allowed for proposing a molecular mechanism of catalysis as an inverting mechanism of mannosyl residue transfer.


Assuntos
Fosfatos de Dolicol/metabolismo , Manosiltransferases/química , Oligossacarídeos/biossíntese , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Dolicol Monofosfato Manose/metabolismo , Retículo Endoplasmático/enzimologia , Corantes Fluorescentes/química , Membranas Intracelulares/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Especificidade por Substrato
12.
Antonie Van Leeuwenhoek ; 88(3-4): 221-30, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16284928

RESUMO

A membrane fraction obtained from the filamentous form of Sporothrix schenckii was able to transfer mannose from GDP-Mannose into dolichol phosphate mannose and from this inTermediate into mannoproteins in coupled reactions catalyzed by dolichol phosphate mannose synthase and protein mannosyl transferase(s), respectively. Although the transfer reaction depended on exogenous dolichol monophosphate, membranes failed to use exogenous dolichol phosphate mannose for protein mannosylation to a substantial extent. Over 95% of the sugar was transferred to proteins via dolichol phosphate mannose and the reaction was stimulated several fold by Mg2+ and Mn2+. Incubation of membranes with detergents such as Brij 35 and Lubrol PX released soluble fractions that transferred the sugar from GDP-Mannose mostly into mannoproteins, which were separated by affinity chromatography on Concanavilin A-Sepharose 4B into lectin-reacting and non-reacting fractions. All proteins mannosylated in vitro eluted with the lectin-reacting proteins and analytical electrophoresis of this fraction revealed the presence of at least nine putative mannoproteins with molecular masses in the range of 26-112 kDa. The experimental approach described here can be used to identify and isolate specific glycoproteins mannosylated in vitro in studies of O-glycosylation.


Assuntos
Dolicol Monofosfato Manose/metabolismo , Proteínas Fúngicas/biossíntese , Glicoproteínas/biossíntese , Manosiltransferases/metabolismo , Glicoproteínas de Membrana/biossíntese , Proteínas de Membrana/metabolismo , Sporothrix/metabolismo , Coenzimas/farmacologia , Detergentes/farmacologia , Eletroforese em Gel de Poliacrilamida , Humanos , Magnésio/farmacologia , Manganês/farmacologia , Manosiltransferases/isolamento & purificação , Glicoproteínas de Membrana/isolamento & purificação , Peso Molecular , Polidocanol , Polietilenoglicóis/farmacologia
14.
Glycobiology ; 15(11): 1156-63, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15987956

RESUMO

N-linked protein glycosylation follows a conserved pathway in eukaryotic cells. The assembly of the lipid-linked core oligosaccharide Glc3Man9GlcNAc2, the substrate for the oligosaccharyltransferase (OST), is catalyzed by different glycosyltransferases located at the membrane of the endoplasmic reticulum (ER). The substrate specificity of the different glycosyltransferase guarantees the ordered assembly of the branched oligosaccharide and ensures that only completely assembled oligosaccharide is transferred to protein. The glycosyltransferases involved in this pathway are highly specific, catalyzing the addition of one single hexose unit to the lipid-linked oligosaccharide (LLO). Here, we show that the dolichylphosphomannose-dependent ALG9 mannosyltransferase is the exception from this rule and is required for the addition of two different alpha-1,2-linked mannose residues to the LLO. This report completes the list of lumen-oriented glycosyltransferases required for the assembly of the LLO.


Assuntos
Lipídeos/fisiologia , Manosiltransferases/metabolismo , Oligossacarídeos/biossíntese , Dolicol Monofosfato Manose/metabolismo , Retículo Endoplasmático/metabolismo , Manose/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/enzimologia
15.
Mol Biol Evol ; 19(9): 1451-63, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12200473

RESUMO

On the basis of the analysis of 64 glycosyltransferases from 14 species we propose that several successive duplications of a common ancestral gene, followed by divergent evolution, have generated the mannosyltransferases and the glucosyltransferases involved in asparagine-linked glycosylation (ALG) and phosphatidyl-inositol glycan anchor (PIG or GPI), which use lipid-related donor and acceptor substrates. Long and short conserved peptide motifs were found in all enzymes. Conserved and identical amino acid positions were found for the alpha 2/6- and the alpha 3/4-mannosyltransferases and for the alpha 2/3-glucosyltransferases, suggesting unique ancestors for these three superfamilies. The three members of the alpha 2-mannosyltransferase family (ALG9, PIG-B, and SMP3) and the two members of the alpha 3-glucosyltransferase family (ALG6 and ALG8) shared 11 and 30 identical amino acid positions, respectively, suggesting that these enzymes have also originated by duplication and divergent evolution. This model predicts a common genetic origin for ALG and PIG enzymes using dolichyl-phospho-monosaccharide (Dol-P-monosaccharide) donors, which might be related to similar spatial orientation of the hydroxyl acceptors. On the basis of the multiple sequence analysis and the prediction of transmembrane topology we propose that the endoplasmic reticulum glycosyltransferases using Dol-P-monosaccharides as donor substrate have a multispan transmembrane topology with a first large luminal conserved loop containing the long motif and a small cytosolic conserved loop containing the short motif, different from the classical type II glycosyltransferases, which are anchored in the Golgi by a single transmembrane domain.


Assuntos
Dolicol Monofosfato Manose/metabolismo , Evolução Molecular , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Monossacarídeos de Poli-Isoprenil Fosfato/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência Conservada , Dolicol Monofosfato Manose/química , Glicosiltransferases/química , Humanos , Dados de Sequência Molecular , Filogenia , Monossacarídeos de Poli-Isoprenil Fosfato/química , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
16.
J Biol Chem ; 277(35): 31335-44, 2002 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-12068013

RESUMO

We examined the function of the pimA (Rv2610c) gene, located in the vicinity of the phosphatidylinositol synthase gene in the genomes of Mycobacterium tuberculosis and Mycobacterium smegmatis, which encodes a putative mannosyltransferase involved in the early steps of phosphatidylinositol mannoside synthesis. A cell-free assay was developed in which membranes from M. smegmatis overexpressing the pimA gene incorporate mannose from GDP-[(14)C]Man into di- and tri-acylated phosphatidylinositol mono-mannosides. Moreover, crude extracts from Escherichia coli producing a recombinant PimA protein synthesized diacylated phosphatidylinositol mono-mannoside from GDP-[(14)C]Man and bovine phosphatidylinositol. To determine whether PimA is an essential enzyme of mycobacteria, we constructed a pimA conditional mutant of M. smegmatis. The ability of this mutant to synthesize the PimA mannosyltransferase was dependent on the presence of a functional copy of the pimA gene carried on a temperature-sensitive rescue plasmid. We demonstrate here that the pimA mutant is unable to grow at the higher temperature at which the rescue plasmid is lost. Thus, the synthesis of phosphatidylinositol mono-mannosides and derived higher phosphatidylinositol mannosides in M. smegmatis appears to be dependent on PimA and essential for growth. This work provides the first direct evidence of the essentiality of phosphatidylinositol mannosides for the growth of mycobacteria.


Assuntos
Manose/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Fosfatidilinositóis/biossíntese , Sistema Livre de Células , Dolicol Monofosfato Manose/química , Dolicol Monofosfato Manose/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Essenciais , Genoma Bacteriano , Glicosilação , Cinética
17.
Glycobiology ; 12(2): 95-101, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11886842

RESUMO

The addition of N-linked glycans to a protein is catalyzed by oligosaccharyltransferase, an enzyme closely associated with the translocon. N-glycans are believed to be transferred as the protein is being synthesized and cotranslationally translocated in the lumen of the endoplasmic reticulum. We used a mannosylphosphoryldolichol-deficient Chinese hamster ovary mutant cell line (B3F7 cells) to study the temporal regulation of N-linked core glycosylation of hepatitis C virus envelope protein E1. In this cell line, truncated Glc(3)Man(5)GlcNAc(2) oligosaccharides are transferred onto nascent proteins. Pulse-chase analyses of E1 expressed in B3F7 cells show that the N-glycosylation sites of E1 are slowly occupied until up to 1 h after protein translation is completed. This posttranslational glycosylation of E1 indicates that the oligosaccharyltransferase has access to this protein in the lumen of the endoplasmic reticulum for at least 1 h after translation is completed. Comparisons with the N-glycosylation of other proteins expressed in B3F7 cells indicate that the posttranslational glycosylation of E1 is likely due to specific folding features of this acceptor protein.


Assuntos
Dolicol Monofosfato Manose/metabolismo , Retículo Endoplasmático/metabolismo , Antígenos da Hepatite C/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas do Envelope Viral/metabolismo , Animais , Células CHO/metabolismo , Cricetinae , Glicosilação , Cinética , Testes de Precipitina , Ligação Proteica , Dobramento de Proteína , Sindbis virus/metabolismo
18.
Biochem J ; 362(Pt 2): 491-8, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11853559

RESUMO

The CHO (Chinese hamster ovary) glycosylation mutant cell line, B3F7, transfers the truncated glycan Glc(3)Man(5)GlcNAc(2) on to nascent proteins. After deglucosylation, the resulting Man(5)GlcNAc(2) glycan is subjected to two reciprocal enzymic processes: the action of an endoplasmic-reticulum (ER) kifunensine-sensitive alpha1,2-mannosidase activity to yield a Man(4)GlcNAc(2) glycan, and the reglucosylation involved in the quality-control system which ensures that only correctly folded glycoproteins leave the ER. We show that the recombinant secreted alkaline phosphatase (SeAP) produced in stably transfected B3F7 cells, is co-immunoprecipitated with the GRP78 (glucose-regulated protein 78), a protein marker of the unfolded protein response (UPR). The level of GRP78 transcription has been evaluated by reverse transcription-PCR (RT-PCR) and we demonstrate that B3F7 cells present a constitutively higher level of UPR in the absence of inductors, compared with Pro(-5) cells. Interestingly, a decrease was observed in the UPR and an increase in SeAP secretion in the kifunensine-treated B3F7 cells. Altogether, these data highlight the relationships between the glycan structure, the quality control system and the UPR. Moreover, they support the idea that a specific demannosylation step is a key event of the glycoprotein quality control in B3F7 cells.


Assuntos
Dolicol Monofosfato Manose/metabolismo , Glicoproteínas/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Células CHO , Linhagem Celular , Cricetinae , Glicoproteínas/química , Cinética , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Transcrição Gênica
19.
Mol Cell Biol ; 21(23): 8168-83, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11689705

RESUMO

Leishmania parasites synthesize an abundance of mannose (Man)-containing glycoconjugates thought to be essential for virulence to the mammalian host and for viability. These glycoconjugates include lipophosphoglycan (LPG), proteophosphoglycans (PPGs), glycosylphosphatidylinositol (GPI)-anchored proteins, glycoinositolphospholipids (GIPLs), and N-glycans. A prerequisite for their biosynthesis is an ample supply of the Man donors GDP-Man and dolicholphosphate-Man. We have cloned from Leishmania mexicana the gene encoding the enzyme phosphomannomutase (PMM) and the previously described dolicholphosphate-Man synthase gene (DPMS) that are involved in Man activation. Surprisingly, gene deletion experiments resulted in viable parasite lines lacking the respective open reading frames (DeltaPMM and DeltaDPMS), a result against expectation and in contrast to the lethal phenotype observed in gene deletion experiments with fungi. L. mexicana DeltaDPMS exhibits a selective defect in LPG, protein GPI anchor, and GIPL biosynthesis, but despite the absence of these structures, which have been implicated in parasite virulence and viability, the mutant remains infectious to macrophages and mice. By contrast, L. mexicana DeltaPMM are largely devoid of all known Man-containing glycoconjugates and are unable to establish an infection in mouse macrophages or the living animal. Our results define Man activation leading to GDP-Man as a virulence pathway in Leishmania.


Assuntos
Leishmania mexicana/enzimologia , Leishmania mexicana/patogenicidade , Manosiltransferases/genética , Fosfotransferases (Fosfomutases)/genética , Virulência/genética , Sequência de Aminoácidos , Animais , Sequência de Carboidratos , Clonagem Molecular , Dolicol Monofosfato Manose/metabolismo , Regulação para Baixo , Citometria de Fluxo , Deleção de Genes , Marcação de Genes , Glicoconjugados/metabolismo , Glicosilação , Guanosina Difosfato Manose/metabolismo , Leishmania mexicana/genética , Macrófagos/parasitologia , Camundongos , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Fenótipo , Homologia de Sequência de Aminoácidos
20.
Biochimie ; 83(8): 801-9, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11530213

RESUMO

A set of glycosylinositol-phosphoceramides, belonging to a family of glycosylphosphatidyl-inositols (GPIs) synthesized in a cell-free system prepared from the free-living protozoan Paramecium primaurelia has been described. The final GPI precursor was identified and structurally characterized as: ethanolamine-phosphate-6Man alpha 1-2Man alpha 1-6(mannosylphosphate) Man alpha 1-4glucosamine-inositol-phospho-ceramide. During our investigations on the biosynthesis of the acid-labile modification, the additional mannosyl phosphate substitution, we observed that the use of the nucleotide triphosphate analogue GTP gamma S (guanosine 5-O-(thiotriphosphate)) blocks the biosynthesis of the mannosylated GPI glycolipids. We show that GTP gamma S inhibits the synthesis of dolichol-phosphate-mannose, which is the donor of the mannose residues for GPI biosynthesis. Therefore, we investigated the role of GTP binding regulatory 'G' proteins using cholera and pertussis toxins and an intracellular second messenger cAMP analogue, 8-bromo-cAMP. All the data obtained suggest the involvement of classical heterotrimeric G proteins in the regulation of GPI-anchor biosynthesis through dolichol-phosphate-mannose synthesis via the activation of adenylyl cyclase and protein phosphorylation. Furthermore, our data suggest that GTP gamma S interferes with synthesis of dolichol monophosphate, indicating that the dolichol kinase is regulated by the heterotrimeric G proteins.


Assuntos
Dolicol Monofosfato Manose/metabolismo , Glicosilfosfatidilinositóis/biossíntese , Manosiltransferases/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Animais , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Paramecium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...