Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.507
Filtrar
1.
Nature ; 631(8021): 670-677, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987591

RESUMO

In all organisms, regulation of gene expression must be adjusted to meet cellular requirements and frequently involves helix-turn-helix (HTH) domain proteins1. For instance, in the arms race between bacteria and bacteriophages, rapid expression of phage anti-CRISPR (acr) genes upon infection enables evasion from CRISPR-Cas defence; transcription is then repressed by an HTH-domain-containing anti-CRISPR-associated (Aca) protein, probably to reduce fitness costs from excessive expression2-5. However, how a single HTH regulator adjusts anti-CRISPR production to cope with increasing phage genome copies and accumulating acr mRNA is unknown. Here we show that the HTH domain of the regulator Aca2, in addition to repressing Acr synthesis transcriptionally through DNA binding, inhibits translation of mRNAs by binding conserved RNA stem-loops and blocking ribosome access. The cryo-electron microscopy structure of the approximately 40 kDa Aca2-RNA complex demonstrates how the versatile HTH domain specifically discriminates RNA from DNA binding sites. These combined regulatory modes are widespread in the Aca2 family and facilitate CRISPR-Cas inhibition in the face of rapid phage DNA replication without toxic acr overexpression. Given the ubiquity of HTH-domain-containing proteins, it is anticipated that many more of them elicit regulatory control by dual DNA and RNA binding.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Microscopia Crioeletrônica , Modelos Moleculares , Bacteriófagos/metabolismo , Bacteriófagos/genética , Bacteriófagos/química , Sistemas CRISPR-Cas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/química , Biossíntese de Proteínas , Sequências Hélice-Volta-Hélice , Ribossomos/metabolismo , Ribossomos/química , Sítios de Ligação , Domínios Proteicos , Proteínas Virais/metabolismo , Proteínas Virais/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/química , Conformação de Ácido Nucleico , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , RNA Viral/metabolismo , RNA Viral/genética , RNA Viral/química , Transcrição Gênica
2.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999934

RESUMO

Biomolecular condensates (BMCs) exhibit physiological and pathological relevance in biological systems. Both liquid and solid condensates play significant roles in the spatiotemporal regulation and organization of macromolecules and their biological activities. Some pathological solid condensates, such as Lewy Bodies and other fibrillar aggregates, have been hypothesized to originate from liquid condensates. With the prevalence of BMCs having functional and dysfunctional roles, it is imperative to understand the mechanism of biomolecular condensate formation and initiation. Using the low-complexity domain (LCD) of heterogenous ribonuclear protein A1 (hnRNPA1) as our model, we monitored initial assembly events using dynamic light scattering (DLS) while modulating pH and salt conditions to perturb macromolecule and condensate properties. We observed the formation of nanometer-sized BMCs (nano-condensates) distinct from protein monomers and micron-sized condensates. We also observed that conditions that solubilize micron-sized protein condensates do not solubilize nano-condensates, indicating that the balance of forces that stabilize nano-condensates and micron-sized condensates are distinct. These findings provide insight into the forces that drive protein phase separation and potential nucleation structures of macromolecular condensation.


Assuntos
Difusão Dinâmica da Luz , Ribonucleoproteína Nuclear Heterogênea A1 , Humanos , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/química , Domínios Proteicos , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Concentração de Íons de Hidrogênio
3.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000408

RESUMO

Nucleotide-binding and leucine-rich repeat receptors (NLRs) are the most important and largest class of immune receptors in plants. The Pi36 gene encodes a canonical CC-NBS-LRR protein that confers resistance to rice blast fungal infections. Here, we show that the CC domain of Pi36 plays a role in cell death induction. Furthermore, self-association is required for the CC domain-mediated cell death, and the self-association ability is correlated with the cell death level. In addition, the NB-ARC domain may suppress the activity of the CC domain through intramolecular interaction. The mutations D440G next to the RNBS-D motif and D503V in the MHD motif autoactivated Pi36, but the mutation K212 in the P-loop motif inhibited this autoactivation, indicating that nucleotide binding of the NB-ARC domain is essential for Pi36 activation. We also found that the LRR domain is required for D503V- and D440G-mediated Pi36 autoactivation. Interestingly, several mutations in the CC domain compromised the CC domain-mediated cell death without affecting the D440G- or D503V-mediated Pi36 autoactivation. The autoactivate Pi36 variants exhibited stronger self-associations than the inactive variants. Taken together, we speculated that the CC domain of Pi36 executes cell death activities, whereas the NB-ARC domain suppressed CC-mediated cell death via intermolecular interaction. The NB-ARC domain releases its suppression of the CC domain and strengthens the self-association of Pi36 to support the CC domain, possibly through nucleotide exchange.


Assuntos
Proteínas NLR , Oryza , Proteínas de Plantas , Oryza/metabolismo , Oryza/genética , Oryza/imunologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas NLR/metabolismo , Proteínas NLR/genética , Proteínas NLR/química , Morte Celular , Mutação , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Domínios Proteicos , Resistência à Doença/genética , Imunidade Vegetal/genética
4.
Protein Sci ; 33(8): e5089, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39012001

RESUMO

D-3-phosphoglycerate dehydrogenase (PHGDH) catalyzes the NAD+-dependent conversion of D-3-phospho-glycerate to 3-phosphohydroxypyruvate, the first step in the phosphorylated pathway for L-serine (L-Ser) biosynthesis. L-Ser plays different relevant metabolic roles in eukaryotic cells: alterations in L-Ser metabolism have been linked to serious neurological disorders. The human PHGDH (hPHGDH), showing a homotetrameric state in solution, is made of four domains, among which there are two regulatory domains at the C-terminus: the aspartate kinase-chorismate mutase-tyrA prephenate dehydrogenase (ACT) and allosteric substrate-binding (ASB) domains. The structure of hPHGDH was solved only for a truncated, dimeric form harboring the N-terminal end containing the substrate and the cofactor binding domains. A model ensemble of the tetrameric hPHGDH was generated using AlphaFold coupled with molecular dynamics refinement. By analyzing the inter-subunit interactions at the tetrameric interface, the residues F418, L478, P479, R454, and Y495 were selected and their role was studied by the alanine-scanning mutagenesis approach. The F418A variant modifies the putative ASB, slightly alters the activity, the fraction of protein in the tetrameric state, and the protein stability; it seems relevant in dimers' recognition to yield the tetrameric oligomer. On the contrary, the R454A, L478A, P479A, and Y495A variants (ACT domain) determine a loss of the tetrameric assembly, resulting in low stability and misfolding, triggering the aggregation and hampering the activity. The predicted tetrameric interface seems mediated by residues at the ACT domain, and the tetramer formation seems crucial for proper folding of hPHGDH, which, in turn, is essential for both stability and functionality.


Assuntos
Fosfoglicerato Desidrogenase , Fosfoglicerato Desidrogenase/química , Fosfoglicerato Desidrogenase/metabolismo , Fosfoglicerato Desidrogenase/genética , Humanos , Estrutura Quaternária de Proteína , Modelos Moleculares , Multimerização Proteica , Simulação de Dinâmica Molecular , Domínios Proteicos , Cristalografia por Raios X
5.
Protein Sci ; 33(8): e5105, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39012012

RESUMO

The Hsp70 system is essential for maintaining protein homeostasis and comprises a central Hsp70 and two accessory proteins that belong to the J-domain protein (JDP) and nucleotide exchange factor families. Posttranslational modifications offer a means to tune the activity of the system. We explore how phosphorylation of specific residues of the J-domain of DNAJA2, a class A JDP, regulates Hsc70 activity using biochemical and structural approaches. Among these residues, we find that pseudophosphorylation of Y10 and S51 enhances the holding/folding balance of the Hsp70 system, reducing cochaperone collaboration with Hsc70 while maintaining the holding capacity. Truly phosphorylated J domains corroborate phosphomimetic variant effects. Notably, distinct mechanisms underlie functional impacts of these DNAJA2 variants. Pseudophosphorylation of Y10 induces partial disordering of the J domain, whereas the S51E substitution weakens essential DNAJA2-Hsc70 interactions without a large structural reorganization of the protein. S51 phosphorylation might be class-specific, as all cytosolic class A human JDPs harbor a phosphorylatable residue at this position.


Assuntos
Proteínas de Choque Térmico HSC70 , Proteínas de Choque Térmico HSP40 , Domínios Proteicos , Dobramento de Proteína , Humanos , Fosforilação , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/genética , Modelos Moleculares
7.
Structure ; 32(7): 851-853, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996510

RESUMO

In this issue of Structure, Oot and Wilkens1 present new mechanistic insights to finally merge the function of V-ATPase and TLDc domain proteins. They show that TLDc proteins directly affect V-ATPase activity and assembly, expanding our understanding of how V-ATPase and TLDc proteins exert a plethora of biological functions.


Assuntos
ATPases Vacuolares Próton-Translocadoras , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/química , Humanos , Domínios Proteicos
8.
J Transl Med ; 22(1): 641, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982548

RESUMO

BACKGROUND: Trastuzumab and pertuzumab combination has been approved for the treatment of patients with HER2-positive metastatic breast cancer. However, trastuzumab and pertuzumab combination did not show improvement in overall survival in patients with HER2-positive metastatic gastric cancer. METHODS: We developed a new HER2-targeted monoclonal antibody, HLX22, targeting HER2 subdomain IV as trastuzumab but with non-overlapping epitopes. We examined the antitumor effects of this novel HER2-antibody in gastric cell lines and cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) models. RESULTS: HLX22 in combination with HLX02 (trastuzumab biosimilar) induced enhancement of HER2/HER2 homodimers and HER2/EGFR heterodimers internalization, which ultimately led to the reduction in signal transductions involving STAT3, P70 S6, and AKT; gene expressions of FGF-FGFR-PI3K-MTOR, EGF-EGFR-RAS, TGF-ß-SMAD, PLCG and cell cycle progression related pathways that favor tumor development, proliferation, progression, migration and survival in gastric cancer cell line NCI-N87 were also reduced. These differing but complementary actions contributed to the synergistic antitumor efficacy of the HLX22 and HLX02 combination in gastric cancer cell lines, CDX and PDX. In addition, HLX22 in combination with HLX02 demonstrated stronger antitumor efficacy than HLX02 and HLX11 (a potential pertuzumab biosimilar) combination treatment both in vitro and in vivo. CONCLUSIONS: These results suggested that the application of non-competing antibodies HLX22 and HLX02 targeting HER2 subdomain IV together may be of substantial benefit to gastric cancer patients who currently respond suboptimal to trastuzumab therapy.


Assuntos
Epitopos , Receptores ErbB , Receptor ErbB-2 , Neoplasias Gástricas , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Humanos , Receptor ErbB-2/metabolismo , Linhagem Celular Tumoral , Animais , Receptores ErbB/metabolismo , Multimerização Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Domínios Proteicos , Feminino , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
9.
Protein Sci ; 33(8): e5114, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38989557

RESUMO

Sodium-calcium exchanger (NCX) proteins are ubiquitously expressed and play a pivotal role in cellular calcium homeostasis by mediating uphill calcium efflux across the cell membrane. Intracellular calcium allosterically regulates the exchange activity by binding to two cytoplasmic calcium-binding domains, CBD1 and CBD2. However, the calcium-binding affinities of these domains are seemingly inadequate to sense physiological calcium oscillations. Previously, magnesium binding to either domain was shown to tune their affinity for calcium, bringing it into the physiological range. However, while the magnesium-binding site of CBD2 was identified, the identity of the CBD1 magnesium site remains elusive. Here, using molecular dynamics in combination with differential scanning fluorimetry and mutational analysis, we pinpoint the magnesium-binding site in CBD1. Specifically, among four calcium-binding sites (Ca1-Ca4) in this domain, only Ca1 can accommodate magnesium with an affinity similar to its free intracellular concentration. Moreover, our results provide mechanistic insights into the modulation of the regulatory calcium affinity by magnesium, which allows an adequate NCX activity level throughout varying physiological needs.


Assuntos
Cálcio , Magnésio , Trocador de Sódio e Cálcio , Trocador de Sódio e Cálcio/química , Trocador de Sódio e Cálcio/metabolismo , Trocador de Sódio e Cálcio/genética , Magnésio/metabolismo , Cálcio/metabolismo , Sítios de Ligação , Humanos , Regulação Alostérica , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos
10.
Protein Sci ; 33(8): e5094, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38989636

RESUMO

Short sequences that mediate interactions with modular binding domains are ubiquitous throughout eukaryotic proteomes. Networks of short linear motifs (SLiMs) and their corresponding binding domains orchestrate many cellular processes, and the low mutational barrier to evolving novel interactions provides a way for biological systems to rapidly sample selectable phenotypes. Mapping SLiM binding specificity and the rules that govern SLiM evolution is fundamental to uncovering the pathways regulated by these networks and developing the tools to manipulate them. We used high-throughput screening of the human proteome to identify sequences that bind to the Enabled/VASP homology 1 (EVH1) domain of the postsynaptic density scaffolding protein Homer1. This expanded our understanding of the determinants of Homer EVH1 binding preferences and defined a new motif that can facilitate the discovery of additional Homer-mediated interactions. Interestingly, the Homer1 EVH1 domain preferentially binds to sequences containing an N-terminally overlapping motif that is bound by the paralogous family of Ena/VASP actin polymerases, and many of these sequences can bind to EVH1 domains from both protein families. We provide evidence from orthologous EVH1 domains in pre-metazoan organisms that the overlap in human Ena/VASP and Homer binding preferences corresponds to an incomplete divergence from a common Ena/VASP ancestor. Given this overlap in binding profiles, promiscuous sequences that can be recognized by both families either achieve specificity through extrinsic regulatory strategies or may provide functional benefits via multi-specificity. This may explain why these paralogs incompletely diverged despite the accessibility of further diverged isoforms.


Assuntos
Proteínas de Arcabouço Homer , Proteínas de Arcabouço Homer/metabolismo , Proteínas de Arcabouço Homer/química , Proteínas de Arcabouço Homer/genética , Humanos , Domínios Proteicos , Ligação Proteica , Motivos de Aminoácidos
11.
PLoS One ; 19(7): e0306410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38990885

RESUMO

Carbohydrate-active enzymes (CAZymes) can be found in all domains of life and play a crucial role in metabolic and physiological processes. CAZymes often possess a modular structure, comprising not only catalytic domains but also associated domains such as carbohydrate-binding modules (CBMs) and linker domains. By exploring the modular diversity of CAZy families, catalysts with novel properties can be discovered and further insight in their biological functions and evolutionary relationships can be obtained. Here we present the carbohydrate-active enzyme domain analysis tool (CANDy), an assembly of several novel scripts, tools and databases that allows users to analyze the domain architecture of all protein sequences in a given CAZy family. CANDy's usability is shown on glycoside hydrolase family 48, a small yet underexplored family containing multi-domain enzymes. Our analysis reveals the existence of 35 distinct domain assemblies, including eight known architectures, with the remaining assemblies awaiting characterization. Moreover, we substantiate the occurrence of horizontal gene transfer from prokaryotes to insect orthologs and provide evidence for the subsequent removal of auxiliary domains, likely through a gene fission event. CANDy is available at https://github.com/PyEED/CANDy.


Assuntos
Domínios Proteicos , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Domínio Catalítico , Software , Metabolismo dos Carboidratos , Carboidratos/química , Animais
12.
Sci Rep ; 14(1): 16018, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992080

RESUMO

Microscale thermophoresis (MST) is a well-established method to quantify protein-RNA interactions. In this study, we employed MST to analyze the RNA binding properties of glycine-rich RNA binding protein 7 (GRP7), which is known to have multiple biological functions related to its ability to bind different types of RNA. However, the exact mechanism of GRP7's RNA binding is not fully understood. While the RNA-recognition motif of GRP7 is known to be involved in RNA binding, the glycine-rich region (known as arginine-glycine-glycine-domain or RGG-domain) also influences this interaction. To investigate to which extend the RGG-domain of GRP7 is involved in RNA binding, mutation studies on putative RNA interacting or modulating sites were performed. In addition to MST experiments, we examined liquid-liquid phase separation of GRP7 and its mutants, both with and without RNA. Furthermore, we systemically investigated factors that might affect RNA binding selectivity of GRP7 by testing RNAs of different sizes, structures, and modifications. Consequently, our study revealed that GRP7 exhibits a high affinity for a variety of RNAs, indicating a lack of pronounced selectivity. Moreover, we established that the RGG-domain plays a crucial role in binding longer RNAs and promoting phase separation.


Assuntos
Glicina , Ligação Proteica , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/química , Glicina/metabolismo , Glicina/química , RNA/metabolismo , RNA/genética , Domínios Proteicos , Mutação , Sítios de Ligação , Humanos , Separação de Fases , Proteínas de Arabidopsis
13.
Genome Med ; 16(1): 88, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992748

RESUMO

BACKGROUND: One of the major hurdles in clinical genetics is interpreting the clinical consequences associated with germline missense variants in humans. Recent significant advances have leveraged natural variation observed in large-scale human populations to uncover genes or genomic regions that show a depletion of natural variation, indicative of selection pressure. We refer to this as "genetic constraint". Although existing genetic constraint metrics have been demonstrated to be successful in prioritising genes or genomic regions associated with diseases, their spatial resolution is limited in distinguishing pathogenic variants from benign variants within genes. METHODS: We aim to identify missense variants that are significantly depleted in the general human population. Given the size of currently available human populations with exome or genome sequencing data, it is not possible to directly detect depletion of individual missense variants, since the average expected number of observations of a variant at most positions is less than one. We instead focus on protein domains, grouping homologous variants with similar functional impacts to examine the depletion of natural variations within these comparable sets. To accomplish this, we develop the Homologous Missense Constraint (HMC) score. We utilise the Genome Aggregation Database (gnomAD) 125 K exome sequencing data and evaluate genetic constraint at quasi amino-acid resolution by combining signals across protein homologues. RESULTS: We identify one million possible missense variants under strong negative selection within protein domains. Though our approach annotates only protein domains, it nonetheless allows us to assess 22% of the exome confidently. It precisely distinguishes pathogenic variants from benign variants for both early-onset and adult-onset disorders. It outperforms existing constraint metrics and pathogenicity meta-predictors in prioritising de novo mutations from probands with developmental disorders (DD). It is also methodologically independent of these, adding power to predict variant pathogenicity when used in combination. We demonstrate utility for gene discovery by identifying seven genes newly significantly associated with DD that could act through an altered-function mechanism. CONCLUSIONS: Grouping variants of comparable functional impacts is effective in evaluating their genetic constraint. HMC is a novel and accurate predictor of missense consequence for improved variant interpretation.


Assuntos
Mutação de Sentido Incorreto , Humanos , Domínios Proteicos , Predisposição Genética para Doença
14.
PLoS One ; 19(7): e0301987, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995916

RESUMO

Equid alphaherpesviruses 1 (EHV-1) and 4 (EHV-4) are closely related and both endemic in horses worldwide. Both viruses replicate in the upper respiratory tract, but EHV-1 may additionally lead to abortion and equine herpesvirus myeloencephalopathy (EHM). We focused on antibody responses in horses against the receptor-binding glycoprotein D of EHV-1 (gD1), which shares a 77% amino acid identity with its counterpart in EHV-4 (gD4). Both antigens give rise to cross-reacting antibodies, including neutralizing antibodies. However, immunity against EHV-4 is not considered protective against EHM. While a diagnostic ELISA to discriminate between EHV-1 and EHV-4 infections is available based on type-specific fragments of glycoprotein G (gG1 and gG4, respectively), the type-specific antibody reaction against gD1 has not yet been sufficiently addressed. Starting from the N-terminus of gD1, we developed luciferase immunoprecipitation system (LIPS) assays, using gD1-fragments of increasing size as antigens, i.e. gD1_83 (comprising the first 83 amino acids), gD1_160, gD1_180, and gD1_402 (the full-length molecule). These assays were then used to analyse panels of horse sera from Switzerland (n = 60) and Iceland (n = 50), the latter of which is considered EHV-1 free. We detected only one true negative horse serum from Iceland, whereas all other sera in both panels were seropositive for both gG4 (ELISA) and gD1 (LIPS against gD1_402). In contrast, seropositivity against gG1 was rather rare (35% Swiss sera; 14% Icelandic sera). Therefore, a high percentage of antibodies against gD1 could be attributed to cross-reaction and due to EHV-4 infections. In contrast, the gD1_83 fragment was able to identify sera with type-specific antibodies against gD1. Interestingly, those sera stemmed almost exclusively from vaccinated horses. Although it is uncertain that the N-terminal epitopes of gD1 addressed in this communication are linked to better protection, we suggest that in future vaccine developments, type-common antigens should be avoided, while a broad range of type-specific antigens should be favored.


Assuntos
Anticorpos Antivirais , Herpesvirus Equídeo 1 , Doenças dos Cavalos , Proteínas do Envelope Viral , Animais , Cavalos/imunologia , Herpesvirus Equídeo 1/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Proteínas do Envelope Viral/imunologia , Doenças dos Cavalos/virologia , Doenças dos Cavalos/imunologia , Doenças dos Cavalos/prevenção & controle , Herpesvirus Equídeo 4/imunologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Reações Cruzadas/imunologia , Ensaio de Imunoadsorção Enzimática , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Domínios Proteicos/imunologia
15.
Sci Adv ; 10(28): eadn0881, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996027

RESUMO

Epithelial ovarian cancer (EOC) remains one of the most lethal gynecological cancers. Cytokine-induced memory-like (CIML) natural killer (NK) cells have shown promising results in preclinical and early-phase clinical trials. In the current study, CIML NK cells demonstrated superior antitumor responses against a panel of EOC cell lines, increased expression of activation receptors, and up-regulation of genes involved in cell cycle/proliferation and down-regulation of inhibitory/suppressive genes. CIML NK cells transduced with a chimeric antigen receptor (CAR) targeting the membrane-proximal domain of mesothelin (MSLN) further improved the antitumor responses against MSLN-expressing EOC cells and patient-derived xenograft tumor cells. CAR arming of the CIML NK cells subtanstially reduced their dysfunction in patient-derived ascites fluid with transcriptomic changes related to altered metabolism and tonic signaling as potential mechanisms. Lastly, the adoptive transfer of MSLN-CAR CIML NK cells demonstrated remarkable inhibition of tumor growth and prevented metastatic spread in xenograft mice, supporting their potential as an effective therapeutic strategy in EOC.


Assuntos
Células Matadoras Naturais , Mesotelina , Neoplasias Ovarianas , Receptores de Antígenos Quiméricos , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Feminino , Camundongos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/terapia , Linhagem Celular Tumoral , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/genética , Imunoterapia Adotiva/métodos , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/imunologia , Carcinoma Epitelial do Ovário/terapia , Memória Imunológica , Domínios Proteicos
16.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000402

RESUMO

Von Willebrand factor (VWF) is a multimer with a variable number of protomers, each of which is a head-to-head dimer of two multi-domain monomers. VWF responds to shear through the unfolding and extension of distinct domains, thereby mediating platelet adhesion and aggregation to the injured blood vessel wall. VWF's C1-6 segment uncoils and then the A2 domain unfolds and extends in a hierarchical and sequential manner. However, it is unclear whether there is any reservoir of further extensibility. Here, we explored the presence of cryptic extensibility in VWF by nanodissecting individual, pre-stretched multimers with atomic force microscopy (AFM). The AFM cantilever tip was pressed into the surface and moved in a direction perpendicular to the VWF axis. It was possible to pull out protein loops from VWF, which resulted in a mean contour length gain of 217 nm. In some cases, the loop became cleaved, and a gap was present along the contour. Frequently, small nodules appeared in the loops, indicating that parts of the nanodissected VWF segment remained folded. After analyzing the nodal structure, we conclude that the cryptic extensibility lies within the C1-6 and A1-3 regions. Cryptic extensibility may play a role in maintaining VWF's functionality in extreme shear conditions.


Assuntos
Microscopia de Força Atômica , Fator de von Willebrand , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo , Humanos , Multimerização Proteica , Domínios Proteicos
17.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000450

RESUMO

GdmCl and NaSCN are two strong chaotropic salts commonly used in protein folding and stability studies, but their microscopic mechanisms remain enigmatic. Here, by CD and NMR, we investigated their effects on conformations, stability, binding and backbone dynamics on ps-ns and µs-ms time scales of a 39-residue but well-folded WW4 domain at salt concentrations ≤200 mM. Up to 200 mM, both denaturants did not alter the tertiary packing of WW4, but GdmCl exerted more severe destabilization than NaSCN. Intriguingly, GdmCl had only weak binding to amide protons, while NaSCN showed extensive binding to both hydrophobic side chains and amide protons. Neither denaturant significantly affected the overall ps-ns backbone dynamics, but they distinctively altered µs-ms backbone dynamics. This study unveils that GdmCl and NaSCN destabilize a protein before the global unfolding occurs with differential binding properties and µs-ms backbone dynamics, implying the absence of a simple correlation between thermodynamic stability and backbone dynamics of WW4 at both ps-ns and µs-ms time scales.


Assuntos
Estabilidade Proteica , Espectroscopia de Ressonância Magnética/métodos , Termodinâmica , Dobramento de Proteína , Desnaturação Proteica , Domínios WW , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Simulação de Dinâmica Molecular
18.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000549

RESUMO

Synaptic ribbons are the eponymous specializations of continuously active ribbon synapses. They are primarily composed of the RIBEYE protein that consists of a unique amino-terminal A-domain and carboxy-terminal B-domain that is largely identical to the ubiquitously expressed transcriptional regulator protein CtBP2. Both RIBEYE A-domain and RIBEYE B-domain are essential for the assembly of the synaptic ribbon, as shown by previous analyses of RIBEYE knockout and knockin mice and related investigations. How exactly the synaptic ribbon is assembled from RIBEYE subunits is not yet clear. To achieve further insights into the architecture of the synaptic ribbon, we performed analytical post-embedding immunogold-electron microscopy with direct gold-labelled primary antibodies against RIBEYE A-domain and RIBEYE B-domain for improved ultrastructural resolution. With direct gold-labelled monoclonal antibodies against RIBEYE A-domain and RIBEYE B-domain, we found that both domains show a very similar localization within the synaptic ribbon of mouse photoreceptor synapses, with no obvious differential gradient between the centre and surface of the synaptic ribbon. These data favour a model of the architecture of the synaptic ribbon in which the RIBEYE A-domain and RIBEYE B-domain are located similar distances from the midline of the synaptic ribbon.


Assuntos
Anticorpos Monoclonais , Sinapses , Animais , Camundongos , Sinapses/ultraestrutura , Sinapses/metabolismo , Anticorpos Monoclonais/imunologia , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/química , Proteínas Correpressoras/metabolismo , Imuno-Histoquímica/métodos , Domínios Proteicos , Microscopia Imunoeletrônica/métodos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/imunologia
19.
Protein Expr Purif ; 222: 106543, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38971211

RESUMO

Dengue virus (DENV) is a considerable public health threat affecting millions of people globally. Vaccines for dengue are an important strategy to reduce the disease burden. We expressed capsid (C2) and envelope domain III of dengue virus serotype 2 (2EDIII) separately in the silkworm expression system. We conjugated them employing the monomeric streptavidin (mSA2) and biotin affinity to display the antigenic 2EDIII on the C2-forming capsid-like particle (CLP). Purified 2EDIII-displaying C2 (CLP/2EDIII) was immunogenic in BALB/c mice, eliciting neutralizing antibodies confirmed by a single-round infectious particle (SRIP) neutralization assay. Th1 cytokine levels were upregulated for the CLP/2EDIII group, and the anti-inflammatory IL-10 and pro-inflammatory IL-6 cytokine levels were also raised compared to the 2EDIII and the control groups. Elevated cytokine levels for CLP/2EDIII indicate the importance of displaying the 2EDIII as CLP/2EDIII rather than as an individual subunit. This study is the first to express the C2 protein as self-assembling CLP in vivo and 2EDIII separately in the silkworm expression system and conjugate them to form a monovalent CLP. Thus, this CLP/2EDIII display method may pave the way for an efficient tetravalent dengue vaccine candidate.


Assuntos
Anticorpos Neutralizantes , Bombyx , Vírus da Dengue , Camundongos Endogâmicos BALB C , Proteínas do Envelope Viral , Animais , Bombyx/genética , Bombyx/virologia , Bombyx/metabolismo , Vírus da Dengue/genética , Vírus da Dengue/imunologia , Camundongos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/biossíntese , Anticorpos Neutralizantes/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/biossíntese , Vacinas contra Dengue/imunologia , Vacinas contra Dengue/genética , Anticorpos Antivirais/imunologia , Dengue/imunologia , Dengue/virologia , Sorogrupo , Domínios Proteicos , Feminino
20.
Glycobiology ; 34(8)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38982733

RESUMO

Understanding the relation between enzyme domain structure and catalytic activity is crucial for optimal engineering of novel enzymes for lignocellulose bioconversion. Xylanases with varying specificities are commonly used to valorise the hemicellulose arabinoxylan (AX), yet characterization of specific arabinoxylanases remain limited. Two homologous GH5_34 arabinoxylanases, HhXyn5A and CtXyn5A, in which the two domains are connected by a 40-residue linker, exhibit distinct activity on AX, yielding different reaction product patterns, despite high sequence identity, conserved active sites and similar domain composition. In this study, the carbohydrate binding module 6 (CBM6), or the inter domain linker together with CBM6, were swapped to investigate their influence on hydrolytic activity and oligosaccharide product pattern on cereal AXs. The variants, with only CBM6 swapped, displayed reduced activity on commercial wheat and rye AX, as well as on extracted oat fibre, compared to the original enzymes. Additionally, exchange of both linker and CBM6 resulted in a reduced ratio of enzyme produced in soluble form in Escherichia coli cultivations, causing loss of activity of both HhXyn5A and CtXyn5A variants. Analysis of oligosaccharide product patterns applying HPAEC-PAD revealed a decreased number of reaction products for CtXyn5A with swapped CBM6, which resembled the product pattern of HhXyn5A. These findings emphasize the importance of the CBM6 interactions with the linker and the catalytic domain for enzyme activity and specificity, and underlines the role of the linker in enzyme structure organisation and product formation, where alterations in linker interactions with the catalytic and/or CBM6 domains, influence enzyme-substrate association and specificity.


Assuntos
Oligossacarídeos , Xilanos , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Xilanos/metabolismo , Xilanos/química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Domínio Catalítico , Domínios Proteicos , Especificidade por Substrato , Hidrólise , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...