Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 92020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32432545

RESUMO

Neuromodulatory systems are essential for remodeling glutamatergic connectivity during experience-dependent cortical plasticity. This permissive/enabling function of neuromodulators has been associated with their capacity to facilitate the induction of Hebbian forms of long-term potentiation (LTP) and depression (LTD) by affecting cellular and network excitability. In vitro studies indicate that neuromodulators also affect the expression of Hebbian plasticity in a pull-push manner: receptors coupled to the G-protein Gs promote the expression of LTP at the expense of LTD, and Gq-coupled receptors promote LTD at the expense of LTP. Here we show that pull-push mechanisms can be recruited in vivo by pairing brief monocular stimulation with pharmacological or chemogenetical activation of Gs- or Gq-coupled receptors to respectively enhance or reduce neuronal responses in primary visual cortex. These changes were stable, inducible in adults after the termination of the critical period for ocular dominance plasticity, and can rescue deficits induced by prolonged monocular deprivation.


Assuntos
Dominância Ocular/fisiologia , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Neurotransmissores/agonistas , Receptores Acoplados a Proteínas G/agonistas , Córtex Visual/fisiologia , Animais , Dominância Ocular/efeitos dos fármacos , Feminino , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neurociências , Norepinefrina/administração & dosagem , Estimulação Luminosa , Serotonina/administração & dosagem , Visão Monocular/efeitos dos fármacos , Visão Monocular/fisiologia , Córtex Visual/efeitos dos fármacos
2.
Neuroscience ; 393: 1-11, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30300702

RESUMO

In juvenile and young adult mice monocular deprivation (MD) shifts the ocular dominance (OD) of binocular neurons in the primary visual cortex (V1) away from the deprived eye. However, OD plasticity is completely absent in mice older than 110 days, but can be reactivated by treatments which decrease GABA levels in V1. Typically, these OD shifts can be prevented by increasing GABAergic transmission with diazepam. We could recently demonstrate that both bilateral whisker and auditory deprivation (WD, AD), can also restore OD plasticity in mice older than 110 days, since MD for 7 days in WD mice caused a potentiation of V1 input through the ipsilateral (open) eye, the characteristic feature of OD plasticity of "young adult" mice. Here we examined whether WD for 7 days also decreases GABA levels. For this, we performed post mortem HPLC analysis of V1 tissue. Indeed, we found that WD significantly decreased GABA levels in V1. Surprisingly, enhancing GABAergic inhibition by diazepam did not abolish OD shifts in WD mice, as revealed by repeated intrinsic signal imaging. On the contrary, this treatment led to a depression of V1 input through the previously closed contralateral eye, the characteristic signature of OD plasticity in juvenile mice during the critical period. Interestingly, the same result was obtained after AD. Taken together, these results suggest that cross-modally restored OD plasticity does not only depend on reduction of GABA levels in V1, but also requires other, so far unknown mechanisms.


Assuntos
Diazepam/farmacologia , Moduladores GABAérgicos/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Privação Sensorial/fisiologia , Animais , Dominância Ocular/efeitos dos fármacos , Inibição Psicológica , Camundongos Endogâmicos C57BL , Córtex Visual/efeitos dos fármacos , Córtex Visual/fisiologia
3.
PLoS One ; 12(10): e0186999, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073219

RESUMO

In standard cage (SC) raised mice, experience-dependent ocular dominance (OD) plasticity in the primary visual cortex (V1) rapidly declines with age: in postnatal day 25-35 (critical period) mice, 4 days of monocular deprivation (MD) are sufficient to induce OD-shifts towards the open eye; thereafter, 7 days of MD are needed. Beyond postnatal day 110, even 14 days of MD failed to induce OD-plasticity in mouse V1. In contrast, mice raised in a so-called "enriched environment" (EE), exhibit lifelong OD-plasticity. EE-mice have more voluntary physical exercise (running wheels), and experience more social interactions (bigger housing groups) and more cognitive stimulation (regularly changed labyrinths or toys). Whether experience-dependent shifts of V1-activation happen faster in EE-mice and how long the plasticity promoting effect would persist after transferring EE-mice back to SCs has not yet been investigated. To this end, we used intrinsic signal optical imaging to visualize V1-activation i) before and after MD in EE-mice of different age groups (from 1-9 months), and ii) after transferring mice back to SCs after postnatal day 130. Already after 2 days of MD, and thus much faster than in SC-mice, EE-mice of all tested age groups displayed a significant OD-shift towards the open eye. Transfer of EE-mice to SCs immediately abolished OD-plasticity: already after 1 week of SC-housing and MD, OD-shifts could no longer be visualized. In an attempt to rescue abolished OD-plasticity of these mice, we either administered the anti-depressant fluoxetine (in drinking water) or supplied a running wheel in the SCs. OD-plasticity was only rescued for the running wheel- mice. Altogether our results show that raising mice in less deprived environments like large EE-cages strongly accelerates experience-dependent changes in V1-activation compared to the impoverished SC-raising. Furthermore, preventing voluntary physical exercise of EE-mice in adulthood immediately precludes OD-shifts in V1.


Assuntos
Criação de Animais Domésticos , Dominância Ocular/fisiologia , Meio Ambiente , Plasticidade Neuronal , Córtex Visual/fisiologia , Envelhecimento/fisiologia , Animais , Dominância Ocular/efeitos dos fármacos , Feminino , Fluoxetina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Fatores de Tempo , Córtex Visual/efeitos dos fármacos
4.
Brain Struct Funct ; 220(6): 3449-67, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25119525

RESUMO

A hallmark of neocortical circuits is the segregation of processing streams into six distinct layers. The importance of this layered organization for cortical processing and plasticity is little understood. We investigated the structure, function and plasticity of primary visual cortex (V1) of adult mice deficient for the glycoprotein reelin and their wild-type littermates. In V1 of rl-/- mice, cells with different laminar fates are present at all cortical depths. Surprisingly, the (vertically) disorganized cortex maintains a precise retinotopic (horizontal) organization. Rl-/- mice have normal basic visual capabilities, but are compromised in more challenging perceptual tasks, such as orientation discrimination. Additionally, rl-/- animals learn and memorize a visual task as well as their wild-type littermates. Interestingly, reelin deficiency enhances visual cortical plasticity: juvenile-like ocular dominance plasticity is preserved into late adulthood. The present data offer an important insight into the capabilities of a disorganized cortical system to maintain basic functional properties.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal , Serina Endopeptidases/metabolismo , Córtex Visual/metabolismo , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/genética , Diazepam/farmacologia , Discriminação Psicológica/fisiologia , Dominância Ocular/efeitos dos fármacos , Proteínas da Matriz Extracelular/genética , Moduladores GABAérgicos/farmacologia , Camundongos , Rede Nervosa/citologia , Proteínas do Tecido Nervoso/genética , Parvalbuminas/metabolismo , Estimulação Luminosa , Proteína Reelina , Reforço Psicológico , Serina Endopeptidases/genética , Córtex Visual/citologia
5.
eNeuro ; 2(6)2015.
Artigo em Inglês | MEDLINE | ID: mdl-26730408

RESUMO

Fluoxetine has emerged as a novel treatment for persistent amblyopia because in adult animals it reinstates critical period-like ocular dominance plasticity and promotes recovery of visual acuity. Translation of these results from animal models to the clinic, however, has been challenging because of the lack of understanding of how this selective serotonin reuptake inhibitor affects glutamatergic and GABAergic synaptic mechanisms that are essential for experience-dependent plasticity. An appealing hypothesis is that fluoxetine recreates a critical period (CP)-like state by shifting synaptic mechanisms to be more juvenile. To test this we studied the effect of fluoxetine treatment in adult rats, alone or in combination with visual deprivation [monocular deprivation (MD)], on a set of highly conserved presynaptic and postsynaptic proteins (synapsin, synaptophysin, VGLUT1, VGAT, PSD-95, gephyrin, GluN1, GluA2, GluN2B, GluN2A, GABAAα1, GABAAα3). We did not find evidence that fluoxetine shifted the protein amounts or balances to a CP-like state. Instead, it drove the balances in favor of the more mature subunits (GluN2A, GABAAα1). In addition, when fluoxetine was paired with MD it created a neuroprotective-like environment by normalizing the glutamatergic gain found in adult MDs. Together, our results suggest that fluoxetine treatment creates a novel synaptic environment dominated by GluN2A- and GABAAα1-dependent plasticity.


Assuntos
Potenciais Evocados Visuais/efeitos dos fármacos , Neurônios GABAérgicos/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sinapses/efeitos dos fármacos , Córtex Visual/efeitos dos fármacos , Animais , Dominância Ocular/efeitos dos fármacos , Fluoxetina/farmacologia , Masculino , Ratos Long-Evans
6.
Cereb Cortex ; 25(2): 507-15, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24047601

RESUMO

Ocular dominance plasticity (ODP) in the cat primary visual cortex (V1) is induced during waking by monocular deprivation (MD) and consolidated during subsequent sleep. The mechanisms underlying this process are incompletely understood. Extracellular signal-regulated kinase (ERK) is activated in V1 during sleep after MD, but it is unknown whether ERK activation during sleep is necessary for ODP consolidation. We investigated the role of ERK in sleep-dependent ODP consolidation by inhibiting the ERK-activating enzyme MEK in V1 (via U0126) during post-MD sleep. ODP consolidation was then measured with extracellular microelectrode recordings. Western blot analysis was used to confirm the efficacy of U0126 and to examine proteins downstream of ERK. U0126 abolished ODP consolidation and reduced both phosphorylation of eukaryotic initiation factor 4E (eIF4E) and levels of the synaptic marker PSD-95. Furthermore, interfering with ERK-mediated translation by inhibiting MAP kinase-interacting kinase 1 (Mnk1) with CGP57380 mimicked the effects of U0126. These results demonstrate that ODP consolidation requires sleep-dependent activation of the ERK-Mnk1 pathway.


Assuntos
Dominância Ocular/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Plasticidade Neuronal/fisiologia , Privação Sensorial/fisiologia , Sono/fisiologia , Córtex Visual/enzimologia , Potenciais de Ação/efeitos dos fármacos , Compostos de Anilina/farmacologia , Animais , Butadienos/farmacologia , Gatos , Dominância Ocular/efeitos dos fármacos , Fator de Iniciação 4E em Eucariotos/metabolismo , Feminino , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/metabolismo , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Sono/efeitos dos fármacos , Córtex Visual/efeitos dos fármacos
7.
Sci Transl Med ; 6(258): 258ra140, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25320232

RESUMO

During critical periods of development, the brain easily changes in response to environmental stimuli, but this neural plasticity declines by adulthood. By acutely disrupting paired immunoglobulin-like receptor B (PirB) function at specific ages, we show that PirB actively represses neural plasticity throughout life. We disrupted PirB function either by genetically introducing a conditional PirB allele into mice or by minipump infusion of a soluble PirB ectodomain (sPirB) into mouse visual cortex. We found that neural plasticity, as measured by depriving mice of vision in one eye and testing ocular dominance, was enhanced by this treatment both during the critical period and when PirB function was disrupted in adulthood. Acute blockade of PirB triggered the formation of new functional synapses, as indicated by increases in miniature excitatory postsynaptic current (mEPSC) frequency and spine density on dendrites of layer 5 pyramidal neurons. In addition, recovery from amblyopia--the decline in visual acuity and spine density resulting from long-term monocular deprivation--was possible after a 1-week infusion of sPirB after the deprivation period. Thus, neural plasticity in adult visual cortex is actively repressed and can be enhanced by blocking PirB function.


Assuntos
Ambliopia/fisiopatologia , Espinhas Dendríticas/metabolismo , Plasticidade Neuronal , Receptores Imunológicos/metabolismo , Sinapses/metabolismo , Regulação para Cima , Córtex Visual/fisiopatologia , Ambliopia/metabolismo , Animais , Animais Recém-Nascidos , Espinhas Dendríticas/efeitos dos fármacos , Dominância Ocular/efeitos dos fármacos , Deleção de Genes , Genótipo , Integrases/metabolismo , Ligantes , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Tamoxifeno/farmacologia , Regulação para Cima/efeitos dos fármacos , Acuidade Visual/efeitos dos fármacos , Córtex Visual/efeitos dos fármacos
8.
Exp Gerontol ; 60: 1-11, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25220148

RESUMO

In the primary visual cortex (V1), monocular deprivation (MD) induces a shift in the ocular dominance (OD) of binocular neurons towards the open eye (Wiesel and Hubel, 1963; Gordon and Stryker, 1996). In V1 of C57Bl/6J mice, this OD-plasticity is maximal in juveniles, declines in adults and is absent beyond postnatal day (PD) 110 (Lehmann and Löwel, 2008) if mice are raised in standard cages. Since it was recently shown that brief dark exposure (DE) restored OD-plasticity in young adult rats (PD70-100) (He et al., 2006), we wondered whether DE would restore OD-plasticity also in adult and old mice and after a cortical stroke. To this end, we raised mice in standard cages until adulthood and transferred them to a darkroom for 10-14 days. Using intrinsic signal optical imaging we demonstrate that short-term DE can restore OD-plasticity after MD in both adult (PD138) and old mice (PD535), and that OD-shifts were mediated by an increase of open eye responses in V1. Interestingly, restored OD-plasticity after DE was accompanied by a reduction of both parvalbumin expressing cells and perineuronal nets and was prevented by increasing intracortical inhibition with diazepam. DE also maintained OD-plasticity in adult mice (PD150) after a stroke in the primary somatosensory cortex. In contrast, short-term DE did not affect basic visual parameters as measured by optomotry. In conclusion, short-term DE was able to restore OD-plasticity in both adult and aging mice and even preserved plasticity after a cortical stroke, most likely mediated by reducing intracortical inhibition.


Assuntos
Envelhecimento/fisiologia , Dominância Ocular/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Córtex Visual/fisiologia , Animais , Sensibilidades de Contraste/fisiologia , Escuridão , Diazepam/farmacologia , Dominância Ocular/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Parvalbuminas/metabolismo , Ratos , Privação Sensorial/fisiologia , Córtex Somatossensorial/fisiopatologia , Acuidade Visual/fisiologia , Córtex Visual/fisiopatologia
9.
Nature ; 501(7468): 543-6, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-23975100

RESUMO

Early sensory experience instructs the maturation of neural circuitry in the cortex. This has been studied extensively in the primary visual cortex, in which loss of vision to one eye permanently degrades cortical responsiveness to that eye, a phenomenon known as ocular dominance plasticity (ODP). Cortical inhibition mediates this process, but the precise role of specific classes of inhibitory neurons in ODP is controversial. Here we report that evoked firing rates of binocular excitatory neurons in the primary visual cortex immediately drop by half when vision is restricted to one eye, but gradually return to normal over the following twenty-four hours, despite the fact that vision remains restricted to one eye. This restoration of binocular-like excitatory firing rates after monocular deprivation results from a rapid, although transient, reduction in the firing rates of fast-spiking, parvalbumin-positive (PV) interneurons, which in turn can be attributed to a decrease in local excitatory circuit input onto PV interneurons. This reduction in PV-cell-evoked responses after monocular lid suture is restricted to the critical period for ODP and appears to be necessary for subsequent shifts in excitatory ODP. Pharmacologically enhancing inhibition at the time of sight deprivation blocks ODP and, conversely, pharmacogenetic reduction of PV cell firing rates can extend the critical period for ODP. These findings define the microcircuit changes initiating competitive plasticity during critical periods of cortical development. Moreover, they show that the restoration of evoked firing rates of layer 2/3 pyramidal neurons by PV-specific disinhibition is a key step in the progression of ODP.


Assuntos
Período Crítico Psicológico , Dominância Ocular/fisiologia , Inibição Neural , Plasticidade Neuronal/fisiologia , Visão Monocular/fisiologia , Córtex Visual/fisiologia , Animais , Dominância Ocular/efeitos dos fármacos , Feminino , Interneurônios/citologia , Interneurônios/efeitos dos fármacos , Lasers , Masculino , Camundongos , Inibição Neural/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Parvalbuminas/metabolismo , Estimulação Luminosa , Privação Sensorial/fisiologia , Visão Binocular/efeitos dos fármacos , Visão Binocular/fisiologia , Visão Monocular/efeitos dos fármacos , Córtex Visual/citologia , Córtex Visual/efeitos dos fármacos
10.
Exp Eye Res ; 109: 17-21, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23370270

RESUMO

A key model for examining the activity-dependent development of primary visual cortex (V1) involves the imbalance in activity between the two eyes induced by monocular deprivation (MD). MD early in life causes dramatic changes in the functional and structural organization of mammalian visual cortex. The molecular signals that mediate the effects of MD on the development of visual cortex are not well defined. Neurotrophic factors are important in regulating the plasticity of visual cortex, but the choice of an appropriate growth factor as well as its delivery has proven difficult. Although vascular endothelial growth factor-B (VEGF-B) is a homolog of the angiogenic factor VEGF-A, it has only minimal angiogenic activity, raising the question of whether this factor has other (more relevant) biological properties. Intrigued by the possibility that VEGF family members affect neuronal cells, we explored whether VEGF-B has a role in the nervous system. In rats, VEGF-B infusion during monocular deprivation (MD) counteracted the normally occurring ocular dominance (OD) shift toward the non-deprived eye so that the deprived eye dominated the VEGF-B-treated cortex after MD. In particular, VEGF-B counteracted the effects of MD without causing detectable alterations in spontaneous discharge or behavior. In conclusion, the simultaneous analysis of visual cortical cell discharge and ocular dominance plasticity suggests that VEGF-B has important effects on the functional architecture of the visual cortex. Therefore, VEGF-B is a new candidate trophic challenge molecule for the visual cortex.


Assuntos
Dominância Ocular/fisiologia , Fator B de Crescimento do Endotélio Vascular/fisiologia , Visão Binocular/fisiologia , Visão Monocular/fisiologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologia , Potenciais de Ação/fisiologia , Animais , Período Crítico Psicológico , Dominância Ocular/efeitos dos fármacos , Eletrodos Implantados , Modelos Neurológicos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Ratos , Ratos Long-Evans , Privação Sensorial/fisiologia , Fator B de Crescimento do Endotélio Vascular/farmacologia , Visão Binocular/efeitos dos fármacos , Visão Monocular/efeitos dos fármacos , Córtex Visual/efeitos dos fármacos , Vias Visuais/efeitos dos fármacos , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/fisiologia
11.
Neuroscience ; 235: 1-9, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23333670

RESUMO

The roles of the central noradrenergic and serotonergic system in the activity-dependent regulation of ocular dominance plasticity have been a contentious issue. Using c-Fos activity mapping, we have developed a new, straightforward method to measure the strength of ocular dominance plasticity: the number of c-Fos-immunopositive cells in layer IV of rat visual cortex (Oc1B), ipsilateral to the stimulated eye, is a sensitive and reliable measure of the effects of monocular deprivation. Applying this new method, here we studied the unique modification of the degree of c-Fos expression induced in the visual cortex, in that endogenous noradrenaline (NA) and serotonin (5HT) in the cortex were significantly reduced, respectively by specific pharmacological agents. Intraperitoneal injections of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) and p-chlorophenylalanine (pCPA) selectively impair NA- and 5HT-containing nerve terminals and fibers, respectively. In the visual cortex with strongly reduced NA, the number of c-Fos-immunopositive cells was found remaining significantly decreased in response to stimulation of the deprived eye, while by open eye stimulation the expected increase in c-Fos-immunoreactivity was strongly suppressed, showing values not different from those obtained by monocular stimulation in the normal rats. In contrast, in the visual cortex with strongly reduced 5HT no expected decrease was found in response to stimulation of the deprived eye, while, as is usually the case for the normal animals, a significant increase was still induced in response to open eye stimulation. These findings suggest that the noradrenergic and serotonergic system regulate ocular dominance (OD) plasticity differently: in the NA-depleted cortex the expected increase in c-Fos expression by open eye stimulation was not seen due to strong suppression, whereas in 5HT-depletion, the expected decrease in c-Fos expression was not materialized due to strong suppression. The present findings with c-Fos activity mapping method indicated a novel possibility of the differential regulation of OD plasticity by two types of common monoaminergic systems.


Assuntos
Mapeamento Cromossômico , Dominância Ocular/genética , Dominância Ocular/fisiologia , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Norepinefrina/fisiologia , Proteínas Proto-Oncogênicas c-fos/fisiologia , Serotonina/fisiologia , Animais , Benzilaminas/farmacologia , Córtex Cerebral/fisiologia , Dominância Ocular/efeitos dos fármacos , Fenclonina/farmacologia , Imuno-Histoquímica , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Inibidores da Captação de Neurotransmissores , Estimulação Luminosa , Proteínas Proto-Oncogênicas c-fos/genética , Ratos , Ratos Long-Evans , Privação Sensorial , Serotoninérgicos/farmacologia , Visão Monocular , Córtex Visual/fisiologia
12.
J Neurosci ; 31(42): 15163-72, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22016550

RESUMO

A classical example of age-dependent plasticity is ocular dominance (OD) plasticity, triggered by monocular deprivation (MD). Sensitivity of cortical circuits to a brief period of MD is maximal in juvenile animals and downregulated in adult age. It remains unclear whether a reduced potential for morphological remodeling underlies this downregulation of physiological plasticity in adulthood. Here we have tested whether stimulation of structural rearrangements is effective in promoting experience-dependent plasticity in adult age. We have exploited a bacterial protein toxin, cytotoxic necrotizing factor 1 (CNF1), that regulates actin dynamics and structure of neuronal processes via a persistent activation of Rho GTPases. Injection of CNF1 into the adult rat visual cortex triggered a long-lasting activation of the Rho GTPase Rac1, with a consequent increase in spine density and length in pyramidal neurons. Adult rats treated with CNF1, but not controls, showed an OD shift toward the open eye after MD. CNF1-mediated OD plasticity was selectively attributable to the enhancement of open-eye responses, whereas closed-eye inputs were unaffected. This effect correlated with an increased density of geniculocortical terminals in layer IV of monocularly deprived, CNF1-treated rats. Thus, Rho GTPase activation reinstates OD plasticity in the adult cortex via the potentiation of more active inputs from the open eye. These data establish a direct link between structural remodeling and functional plasticity and demonstrate a role for Rho GTPases in brain plasticity in vivo. The plasticizing effects of Rho GTPase activation may be exploited to promote brain repair.


Assuntos
Plasticidade Neuronal/fisiologia , Córtex Visual/citologia , Córtex Visual/enzimologia , Proteínas rho de Ligação ao GTP/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Toxinas Bacterianas/farmacologia , Antígeno CD11b/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/enzimologia , Dominância Ocular/efeitos dos fármacos , Dominância Ocular/fisiologia , Proteínas de Escherichia coli/farmacologia , Potenciais Evocados Visuais/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Proteína Básica da Mielina/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo , Lectinas de Plantas/metabolismo , Ratos , Ratos Long-Evans , Receptores de N-Acetilglucosamina/metabolismo , Privação Sensorial/fisiologia , Estatísticas não Paramétricas , Fatores de Tempo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Vias Visuais/fisiologia
13.
Nat Neurosci ; 14(10): 1237-9, 2011 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-21892154

RESUMO

miR-132 is a CREB-induced microRNA that is involved in dendritic spine plasticity. We found that visual experience regulated histone post-translational modifications at a CRE locus that is important for miR-212 and miR-132 cluster transcription, and regulated miR-132 expression in the visual cortex of juvenile mice. Monocular deprivation reduced miR-132 expression in the cortex contralateral to the deprived eye. Counteracting this miR-132 reduction with an infusion of chemically modified miR-132 mimic oligonucleotides completely blocked ocular dominance plasticity.


Assuntos
Dominância Ocular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , MicroRNAs/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Córtex Visual/citologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Imunoprecipitação da Cromatina , Período Crítico Psicológico , Dominância Ocular/efeitos dos fármacos , Potenciais Evocados Visuais/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/química , MicroRNAs/genética , Células NIH 3T3 , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Oligonucleotídeos/farmacologia , Estimulação Luminosa/métodos , Processamento de Proteína Pós-Traducional/fisiologia , Privação Sensorial
14.
Neural Plast ; 2011: 391763, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21826276

RESUMO

During the last decade, we have gained much insight into the mechanisms that open and close a sensitive period of plasticity in the visual cortex. This brings the hope that novel treatments can be developed for brain injuries requiring renewed plasticity potential and neurodevelopmental brain disorders caused by defective synaptic plasticity. One of the central mechanisms responsible for opening the sensitive period is the maturation of inhibitory innervation. Many molecular and cellular events have been identified that drive this developmental process, including signaling through BDNF and IGF-1, transcriptional control by OTX2, maturation of the extracellular matrix, and GABA-regulated inhibitory synapse formation. The mechanisms through which the development of inhibitory innervation triggers and potentially closes the sensitive period may involve plasticity of inhibitory inputs or permissive regulation of excitatory synapse plasticity. Here, we discuss the current state of knowledge in the field and open questions to be addressed.


Assuntos
Dominância Ocular/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia , Animais , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Parvalbuminas/metabolismo , Sinapses/efeitos dos fármacos , Córtex Visual/crescimento & desenvolvimento
15.
Proc Natl Acad Sci U S A ; 108(37): 15450-5, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21873250

RESUMO

We tested the influence of a photothrombotic lesion in somatosensory cortex on plasticity in the mouse visual system and the efficacy of anti-inflammatory treatment to rescue compromised learning. To challenge plasticity mechanisms, we induced monocular deprivation (MD) in 3-mo-old mice. In control animals, MD induced an increase of visual acuity of the open eye and an ocular dominance (OD) shift towards this eye. In contrast, after photothrombosis, there was neither an enhancement of visual acuity nor an OD-shift. However, OD-plasticity was present in the hemisphere contralateral to the lesion. Anti-inflammatory treatment restored sensory learning but not OD-plasticity, as did a 2-wk delay between photothrombosis and MD. We conclude that (i) both sensory learning and cortical plasticity are compromised in the surround of a cortical lesion; (ii) transient inflammation is responsible for impaired sensory learning, suggesting anti-inflammatory treatment as a useful adjuvant therapy to support rehabilitation following stroke; and (iii) OD-plasticity cannot be conceptualized solely as a local process because nonlocal influences are more important than previously assumed.


Assuntos
Plasticidade Neuronal/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Córtex Visual/fisiopatologia , Vias Visuais/fisiopatologia , Animais , Cérebro/efeitos dos fármacos , Cérebro/patologia , Cérebro/fisiopatologia , Dominância Ocular/efeitos dos fármacos , Ibuprofeno/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Trombose/complicações , Trombose/fisiopatologia , Visão Ocular/efeitos dos fármacos , Visão Ocular/fisiologia , Córtex Visual/efeitos dos fármacos , Córtex Visual/patologia , Vias Visuais/efeitos dos fármacos , Vias Visuais/patologia
16.
Alcohol Clin Exp Res ; 34(3): 493-8, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20028352

RESUMO

BACKGROUND: There is growing evidence that deficits in neuronal plasticity account for some of the neurological problems observed in fetal alcohol spectrum disorders (FASD). Recently, we showed that early alcohol exposure results in a permanent impairment in visual cortex ocular dominance (OD) plasticity in a ferret model of FASD. This disruption can be reversed, however, by treating animals with a Phosphodiesterase (PDE) type 1 inhibitor long after the period of alcohol exposure. AIM: Because the mammalian brain presents different types of PDE isoforms we tested here whether inhibition of PDE type 4 also ameliorates the effects of alcohol on OD plasticity. MATERIAL AND METHODS: Ferrets received 3.5 g/Kg alcohol i.p. (25% in saline) or saline as control every other day between postnatal day (P) 10 to P30, which is roughly equivalent to the third trimester equivalent of human gestation. Following a prolonged alcohol-free period (10 to 15 days), ferrets had the lid of the right eye sutured closed for 4 days and were examined for ocular dominance changes at the end of the period of deprivation. RESULTS: Using in vivo electrophysiology we show that inhibition of PDE4 by rolipram does not restore OD plasticity in alcohol-treated ferrets. CONCLUSION: This result suggests that contrary to PDE1, PDE4 inhibition does not play a role in the restoration of OD plasticity in the ferret model of FASD.


Assuntos
Dominância Ocular/efeitos dos fármacos , Transtornos do Espectro Alcoólico Fetal/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Inibidores de Fosfodiesterase/uso terapêutico , Rolipram/uso terapêutico , Animais , Feminino , Furões , Inibidores da Fosfodiesterase 4 , Inibidores de Fosfodiesterase/farmacologia , Gravidez , Rolipram/farmacologia
17.
Neuroreport ; 20(3): 257-62, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-19212242

RESUMO

T-type voltage-dependent calcium channels may play an important role in synaptic plasticity, but lack of specific antagonists has hampered investigation into this possible function. We investigated the role of the T-type channel in a canonical model of in-vivo cortical plasticity triggered by monocular deprivation. We identified a compound (TTA-I1) with subnanomolar potency in standard voltage clamp assays and high selectivity for the T-type channel. When infused intracortically, TTA-I1 reduced cortical plasticity triggered by monocular deprivation while preserving normal visual response properties. These results show that the T-type calcium channel plays a central role in cortical plasticity.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Dominância Ocular/fisiologia , Plasticidade Neuronal/fisiologia , Visão Monocular/fisiologia , Córtex Visual/metabolismo , Percepção Visual/fisiologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/efeitos dos fármacos , Gatos , Linhagem Celular , Dominância Ocular/efeitos dos fármacos , Humanos , Indóis/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Técnicas de Patch-Clamp , Privação Sensorial/fisiologia , Triazóis/farmacologia , Córtex Visual/efeitos dos fármacos , Vias Visuais/efeitos dos fármacos , Vias Visuais/metabolismo , Percepção Visual/efeitos dos fármacos
18.
Science ; 320(5874): 385-8, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18420937

RESUMO

We investigated whether fluoxetine, a widely prescribed medication for treatment of depression, restores neuronal plasticity in the adult visual system of the rat. We found that chronic administration of fluoxetine reinstates ocular dominance plasticity in adulthood and promotes the recovery of visual functions in adult amblyopic animals, as tested electrophysiologically and behaviorally. These effects were accompanied by reduced intracortical inhibition and increased expression of brain-derived neurotrophic factor in the visual cortex. Cortical administration of diazepam prevented the effects induced by fluoxetine, indicating that the reduction of intracortical inhibition promotes visual cortical plasticity in the adult. Our results suggest a potential clinical application for fluoxetine in amblyopia as well as new mechanisms for the therapeutic effects of antidepressants and for the pathophysiology of mood disorders.


Assuntos
Fluoxetina/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Córtex Visual/efeitos dos fármacos , Ambliopia/tratamento farmacológico , Ambliopia/fisiopatologia , Animais , Antidepressivos de Segunda Geração/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diazepam/farmacologia , Dominância Ocular/efeitos dos fármacos , Potenciais Evocados Visuais/efeitos dos fármacos , Fluoxetina/administração & dosagem , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Ratos , Serotonina/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Córtex Visual/fisiologia , Ácido gama-Aminobutírico/metabolismo
19.
Neuron ; 53(6): 805-12, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17359916

RESUMO

Local GABAergic circuits trigger visual cortical plasticity in early postnatal life. How these diverse connections contribute to critical period onset was investigated by nonstationary fluctuation analysis following laser photo-uncaging of GABA onto discrete sites upon individual pyramidal cells in slices of mouse visual cortex. The GABA(A) receptor number decreased on the soma-proximal dendrite (SPD), but not at the axon initial segment, with age and sensory deprivation. Benzodiazepine sensitivity was also higher on the immature SPD. Too many or too few SPD receptors in immature or dark-reared mice, respectively, were adjusted to critical period levels by benzodiazepine treatment in vivo, which engages ocular dominance plasticity in these animal models. Combining GAD65 deletion with dark rearing from birth confirmed that an intermediate number of SPD receptors enable plasticity. Site-specific optimization of perisomatic GABA response may thus trigger experience-dependent development in visual cortex.


Assuntos
Período Crítico Psicológico , Dendritos/fisiologia , Inibição Neural/fisiologia , Células Piramidais/citologia , Córtex Visual/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Benzodiazepinas/farmacologia , Dendritos/efeitos dos fármacos , Dendritos/efeitos da radiação , Dominância Ocular/efeitos dos fármacos , Dominância Ocular/genética , Dominância Ocular/efeitos da radiação , Estimulação Elétrica/métodos , Agonistas GABAérgicos/farmacologia , Glutamato Descarboxilase/deficiência , Técnicas In Vitro , Isoenzimas/deficiência , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Potenciais da Membrana/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibição Neural/genética , Técnicas de Patch-Clamp/métodos , Células Piramidais/efeitos dos fármacos , Células Piramidais/efeitos da radiação , Piridinas/farmacologia , Córtex Visual/citologia , Zolpidem , Ácido gama-Aminobutírico/farmacologia
20.
Curr Biol ; 15(23): 2119-24, 2005 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-16332537

RESUMO

Visual deprivation is a classical tool to study the plasticity of visual cortical connections. After eyelid closure in young animals (monocular deprivation, MD), visual cortical neurons become dominated by the open eye, a phenomenon known as ocular dominance (OD) plasticity . It is commonly held that the molecular mediators of OD plasticity are cortically derived and that the retina is immune to the effects of MD . Recently, it has been reported that visual deprivation induces neurochemical, structural, and functional changes in the retina , but whether these retinal changes contribute to the effects of MD in the cortex is unknown. Here, we provide evidence that brain-derived neurotrophic factor (BDNF) produced in the retina influences OD plasticity. We found a reduction of BDNF expression in the deprived retina of young rats. We compensated this BDNF imbalance between the two eyes by either injecting exogenous BDNF in the deprived eye or reducing endogenous BDNF expression in the nondeprived eye. Both treatments were effective in counteracting the OD shift induced by MD. Retinal BDNF could also influence OD distribution in normal animals. These results show for the first time that OD plasticity is modulated by BDNF produced in the retina.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Dominância Ocular/fisiologia , Retina/metabolismo , Vias Visuais/fisiologia , Análise de Variância , Animais , Sequência de Bases , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Dominância Ocular/efeitos dos fármacos , Eletrofisiologia , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Ratos , Ratos Long-Evans , Privação Sensorial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...