Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.702
Filtrar
1.
Life Sci ; 350: 122765, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830506

RESUMO

BACKGROUND: Malnutrition is a common problem in developing countries, and the impact of severe malnutrition on optimal treatment outcomes of chemotherapy in pediatric cancer patients is well documented. However, despite being a more prevalent and distinct entity, moderate malnutrition is until now unexplored for its effects on treatment outcomes. AIMS: In this study we aimed to investigate the molecular basis of altered pharmacokinetics and cardiotoxicity of doxorubicin observed in early-life chronic moderate protein deficiency malnutrition. MATERIALS AND METHODS: We developed an animal model of early-life moderate protein-deficiency malnutrition and validated it using clinical samples. This model was used to study pharmacokinetic and toxicity changes and was further utilized to study the molecular changes in liver and heart to get mechanistic insights. KEY FINDINGS: Here we show that moderate protein-deficiency malnutrition in weanling rats causes changes in drug disposition in the liver by modification of hepatic ABCC3 and MRP2 transporters through the TNFα signalling axis. Furthermore, malnourished rats in repeat-dose doxorubicin toxicity study showed higher toxicity and mortality. A higher accumulation of doxorubicin in the heart was observed which was associated with alterations in cardiac metabolic pathways and increased cardiotoxicity. SIGNIFICANCE: Our findings indicate that moderate malnutrition causes increased susceptibility towards toxic side effects of chemotherapy. These results may necessitate further investigations and new guidelines on the dosing of chemotherapy in moderately malnourished pediatric cancer patients.


Assuntos
Cardiotoxicidade , Doxorrubicina , Animais , Doxorrubicina/farmacocinética , Doxorrubicina/efeitos adversos , Ratos , Cardiotoxicidade/etiologia , Masculino , Desmame , Fígado/metabolismo , Desnutrição Proteico-Calórica/metabolismo , Humanos , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/toxicidade , Feminino , Modelos Animais de Doenças , Ratos Wistar
2.
Rev Assoc Med Bras (1992) ; 70(suppl 1): e2024S106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38865526

RESUMO

BACKGROUND: Chemotherapy with doxorubicin may lead to left ventricular dysfunction. There is a controversial recommendation that biomarkers can predict ventricular dysfunction, which is one of the most feared manifestations of anthracycline cardiotoxicity. OBJECTIVE: The aim of this study was to evaluate the behavior of biomarkers such as Troponin I, type B natriuretic peptide, creatine phosphokinase fraction MB, and myoglobin in predicting cardiotoxicity in a cohort of women with breast cancer undergoing chemotherapy with anthracycline. METHODS: This is an observational, prospective, longitudinal, unicentric study, which included 40 women with breast cancer, whose therapeutic proposal included treatment with doxorubicin. The protocol had a clinical follow-up of 12 months. Biomarkers such as Troponin I, type B natriuretic peptide, creatine phosphokinase fraction MB, and myoglobin were measured pre-chemotherapy and after the first, third, fourth, and sixth cycles of chemotherapy. RESULTS: There was a progressive increase in type B natriuretic peptide and myoglobin values in all chemotherapy cycles. Although creatine phosphokinase fraction MB showed a sustained increase, this increase was not statistically significant. Troponin, type B natriuretic peptide, myoglobin, and creatine phosphokinase fraction MB were the cardiotoxicity markers with the earliest changes, with a significant increase after the first chemotherapy session. However, they were not able to predict cardiotoxicity. CONCLUSION: Troponin I, type B natriuretic peptide, myoglobin, and creatine phosphokinase fraction MB are elevated during chemotherapy with doxorubicin, but they were not able to predict cardiotoxicity according to established clinical and echocardiographic criteria. The incidence of subclinical cardiotoxicity resulting from the administration of doxorubicin was 12.5%.


Assuntos
Biomarcadores , Neoplasias da Mama , Cardiotoxicidade , Doxorrubicina , Mioglobina , Troponina I , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Estudos Prospectivos , Troponina I/sangue , Doxorrubicina/efeitos adversos , Cardiotoxicidade/etiologia , Pessoa de Meia-Idade , Biomarcadores/sangue , Mioglobina/sangue , Adulto , Antibióticos Antineoplásicos/efeitos adversos , Peptídeo Natriurético Encefálico/sangue , Idoso , Creatina Quinase Forma MB/sangue , Estudos Longitudinais , Antraciclinas/efeitos adversos , Disfunção Ventricular Esquerda/induzido quimicamente , Valor Preditivo dos Testes
3.
Peptides ; 178: 171245, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38801993

RESUMO

BACKGROUND: Doxorubicin (DOX) is a highly effective and widely used cytotoxic agent with application for various malignancies, but it's clinically limited due to its cardiotoxicity Oxidative stress and inflammation were reported to take part in DOX-induced cardiotoxicity. Tirzepatide, a dual glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor agonist has been approved to treat type 2 diabetes. However, its role in DOX-induced cardiotoxicity and the underlying mechanisms has not been explored. METHODS: The cardioprotective properties of Tirzepatide against DOX-induced cardiotoxicity are examined in this work both in vivo and in vitro. For four weeks, an intraperitoneal injection of 4 mg/kg DOX was used to cause cardiotoxicity in C57BL/6 mice. To ascertain the cardioprotective function and underlying mechanisms of Tirzepatide against DOX-induced cardiotoxicity, mice and H9c2 cells were treated with and without Tirzepatide. RESULTS: Tirzepatide treatment significantly inhibited DOX-induced oxidative stress, inflammation and cardiac injury. Mechanistically, PI3K/Akt signaling pathway contributes to the protective effect of Tirzepatide against DOX-induced cardiotoxicity and inhibited PI3K/Akt signaling pathway with LY294002 almost blocked its therapeutic effect. CONCLUSIONS: Collectively, Tirzepatide could alleviate DOX-induced oxidative stress, inflammation and cardiac injury via activating PI3K/Akt signaling pathway and Tirzepatide may be a novel therapeutic target for DOX-induced cardiotoxicity.


Assuntos
Cardiotoxicidade , Doxorrubicina , Inflamação , Estresse Oxidativo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Doxorrubicina/efeitos adversos , Animais , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/metabolismo , Cardiotoxicidade/etiologia , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Cardiotônicos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo
4.
Med Sci Monit ; 30: e945188, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775003

RESUMO

This publication has been retracted by the Editor due to the identification of non-original figure images and manuscript content that raise concerns regarding the credibility and originality of the study and the manuscript. Reference: Ying-Jun Zhang, He Huang, Yu Liu, Bin Kong, Guangji Wang. MD-1 Deficiency Accelerates Myocardial Inflammation and Apoptosis in Doxorubicin-Induced Cardiotoxicity by Activating the TLR4/MAPKs/Nuclear Factor kappa B (NF-kappaB) Signaling Pathway. Med Sci Monit, 2019; 25: 7898-7907. DOI: 10.12659/MSM.919861.


Assuntos
Apoptose , Cardiotoxicidade , Doxorrubicina , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/deficiência , NF-kappa B/metabolismo , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacologia , Apoptose/efeitos dos fármacos , Animais , Cardiotoxicidade/metabolismo , Cardiotoxicidade/etiologia , Transdução de Sinais/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia , Miocárdio/patologia , Miocárdio/metabolismo , Camundongos , Antígeno 96 de Linfócito/metabolismo , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo
5.
FASEB J ; 38(10): e23677, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38775792

RESUMO

Although the use of Doxorubicin (Dox) is extensive in the treatment of malignant tumor, the toxic effects of Dox on the heart can cause myocardial injury. Therefore, it is necessary to find an alternative drug to alleviate the Dox-induced cardiotoxicity. Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin, which is an active ingredient of Artemisia annua. The study investigates the effects of DHA on doxorubicin-induced cardiotoxicity and ferroptosis, which are related to the activation of Nrf2 and the regulation of autophagy. Different concentrations of DHA were administered by gavage for 4 weeks in mice. H9c2 cells were pretreated with different concentrations of DHA for 24 h in vitro. The mechanism of DHA treatment was explored through echocardiography, biochemical analysis, real-time quantitative PCR, western blotting analysis, ROS/DHE staining, immunohistochemistry, and immunofluorescence. In vivo, DHA markedly relieved Dox-induced cardiac dysfunction, attenuated oxidative stress, alleviated cardiomyocyte ferroptosis, activated Nrf2, promoted autophagy, and improved the function of lysosomes. In vitro, DHA attenuated oxidative stress and cardiomyocyte ferroptosis, activated Nrf2, promoted clearance of autophagosomes, and reduced lysosomal destruction. The changes of ferroptosis and Nrf2 depend on selective degradation of keap1 and recovery of lysosome. We found for the first time that DHA could protect the heart from the toxic effects of Dox-induced cardiotoxicity. In addition, DHA significantly alleviates Dox-induced ferroptosis through the clearance of autophagosomes, including the selective degradation of keap1 and the recovery of lysosomes.


Assuntos
Artemisininas , Autofagia , Cardiotoxicidade , Doxorrubicina , Ferroptose , Miócitos Cardíacos , Fator 2 Relacionado a NF-E2 , Artemisininas/farmacologia , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Autofagia/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Doxorrubicina/toxicidade , Camundongos , Ferroptose/efeitos dos fármacos , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/metabolismo , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Linhagem Celular , Ratos
6.
Int J Mol Sci ; 25(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38791311

RESUMO

Doxorubicin (DOX), widely used as a chemotherapeutic agent for various cancers, is limited in its clinical utility by its cardiotoxic effects. Despite its widespread use, the precise mechanisms underlying DOX-induced cardiotoxicity at the cellular and molecular levels remain unclear, hindering the development of preventive and early detection strategies. To characterize the cytotoxic effects of DOX on isolated ventricular cardiomyocytes, focusing on the expression of specific microRNAs (miRNAs) and their molecular targets associated with endogenous cardioprotective mechanisms such as the ATP-sensitive potassium channel (KATP), Sirtuin 1 (SIRT1), FOXO1, and GSK3ß. We isolated Guinea pig ventricular cardiomyocytes by retrograde perfusion and enzymatic dissociation. We assessed cell morphology, Reactive Oxygen Species (ROS) levels, intracellular calcium, and mitochondrial membrane potential using light microscopy and specific probes. We determined the miRNA expression profile using small RNAseq and validated it using stem-loop qRT-PCR. We quantified mRNA levels of some predicted and validated molecular targets using qRT-PCR and analyzed protein expression using Western blot. Exposure to 10 µM DOX resulted in cardiomyocyte shortening, increased ROS and intracellular calcium levels, mitochondrial membrane potential depolarization, and changes in specific miRNA expression. Additionally, we observed the differential expression of KATP subunits (ABCC9, KCNJ8, and KCNJ11), FOXO1, SIRT1, and GSK3ß molecules associated with endogenous cardioprotective mechanisms. Supported by miRNA gene regulatory networks and functional enrichment analysis, these findings suggest that DOX-induced cardiotoxicity disrupts biological processes associated with cardioprotective mechanisms. Further research must clarify their specific molecular changes in DOX-induced cardiac dysfunction and investigate their diagnostic biomarkers and therapeutic potential.


Assuntos
Cardiotoxicidade , Doxorrubicina , MicroRNAs , Miócitos Cardíacos , Espécies Reativas de Oxigênio , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Animais , Doxorrubicina/efeitos adversos , Doxorrubicina/toxicidade , Cardiotoxicidade/etiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cobaias , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/citologia , Masculino , Cálcio/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos
7.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791345

RESUMO

Doxorubicin (DOX) is a potent chemotherapeutic agent known for its multi-organ toxicity, especially in the heart, which limits its clinical application. The toxic side effects of DOX, including DNA damage, oxidative stress, mitochondrial dysfunction and cell apoptosis, are intricately linked to the involvement of nicotinamide adenine dinucleotide (NAD+). To assess the effectiveness of the NAD+ precursor nicotinamide mononucleotide (NMN) in counteracting the multi-organ toxicity of DOX, a mouse model was established through DOX administration, which led to significant reductions in NAD+ in tissues with evident injury, including the heart, liver and lungs. NMN treatment alleviated both multi-organ fibrosis and mortality in mice. Mechanistically, tissue fibrosis, macrophage infiltration and DOX-related cellular damage, which are potentially implicated in the development of multi-organ fibrosis, could be attenuated by NAD+ restoration. Our findings provide compelling evidence for the benefits of NMN supplementation in mitigating the adverse effects of chemotherapeutic drugs on multiple organs.


Assuntos
Doxorrubicina , Fibrose , Mononucleotídeo de Nicotinamida , Animais , Doxorrubicina/efeitos adversos , Mononucleotídeo de Nicotinamida/farmacologia , Camundongos , Suplementos Nutricionais , Masculino , NAD/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia
8.
Asian Pac J Cancer Prev ; 25(5): 1567-1577, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38809628

RESUMO

BACKGROUND: ATP Binding Cassette Transporters (ABCB1) gene plays an important role in transport of different metabolites and anticancer drugs across the cell membrane. There is lack of knowledge on ABCB1 gene polymorphism and its correlation with Adriamycin or paclitaxel based chemotherapy induced toxicity in breast cancer patients. Therefore in this study, we explored the correlation of ABCB1 polymorphisms gene on response and toxicity in adriamycin and paclitaxel based chemotherapy in breast cancer patients from Indian population. METHODS: Two hundred BC patients receiving Adriamycin and paclitaxel chemotherapy were enrolled in this study and chemotherapy induced hematological and non-hematological toxicity reactions were noted. The polymorphisms in ABCB1 gene (C1236T, C3435T) were studied by PCR and RFLP analysis. RESULTS: The univariate logistic regression analysis showed statistically significant negative association with protective effects of ABCB1 (C3435T) polymorphism with heterozygous genotype (OR=0.34, 95% CI: 0.13-0.89; p=0.027), homozygous variant genotype (OR=0.31, 95% CI: 0.10-0.99; p=0.049) and combined C/T+T/T genotypes (OR=0.33, 95% CI: 0.13-0.79; p=0.013) in relation with severe toxicity of chemotherapy induced nausea and vomiting in breast cancer patients treated with Adriamycin chemotherapy. The 3435 C>T polymorphism of ABCB1 gene with heterozygous C/T genotype showed significantly negative association (OR=0.37, 95% CI: 0.14-0.96; p=0.042) with peripheral neuropathy in patients treated primarily with paclitaxel thereafter Adriamycin. CONCLUSION: The findings obtained from this study revealed significant association of ABCB1 3435 C>T polymorphisms with non-hematological toxicity in response to adriamycin and paclitaxel based chemotherapy.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama , Doxorrubicina , Paclitaxel , Polimorfismo de Nucleotídeo Único , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Doxorrubicina/efeitos adversos , Pessoa de Meia-Idade , Paclitaxel/efeitos adversos , Paclitaxel/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Adulto , Prognóstico , Genótipo , Seguimentos , Idoso , Resultado do Tratamento
9.
Int Heart J ; 65(3): 487-497, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38749755

RESUMO

Myocardial fibrosis is a pathological feature of doxorubicin-induced chronic cardiotoxicity that severely affects the prognosis of oncology patients. However, the specific cellular and molecular mediators driving doxorubicin-induced cardiac fibrosis, and the relative impact of different cell populations on cardiac fibrosis, remain unclear.This study aimed to explore the mechanism of doxorubicin-induced cardiotoxicity and myocardial fibrosis and to find potential therapeutic targets. Single-cell RNA sequencing was used to analyze the transcriptome of non-cardiomyocytes from normal and doxorubicin-induced chronic cardiotoxicity in mouse model heart tissue.We established a mouse model of doxorubicin-induced cardiotoxicity with a well-defined fibrotic phenotype. Analysis of single-cell sequencing results showed that fibroblasts were the major origin of extracellular matrix in doxorubicin-induced myocardial fibrosis. Further resolution of fibroblast subclusters showed that resting fibroblasts were converted to matrifibrocytes and then to myofibroblasts to participate in the myocardial remodeling process in response to doxorubicin treatment. Ctsb expression was significantly upregulated in fibroblasts after doxorubicin-induced.This study provides a comprehensive map of the non-cardiomyocyte landscape at high resolution, reveals multiple cell populations contributing to pathological remodeling of the cardiac extracellular matrix, and identifies major cellular sources of myofibroblasts and dynamic gene-expression changes in fibroblast activation. Finally, we used this strategy to detect potential therapeutic targets and identified Ctsb as a specific target for fibroblasts in doxorubicin-induced myocardial fibrosis.


Assuntos
Cardiotoxicidade , Doxorrubicina , Fibrose , Análise de Célula Única , Doxorrubicina/efeitos adversos , Animais , Camundongos , Análise de Célula Única/métodos , Miocárdio/patologia , Miocárdio/metabolismo , Antibióticos Antineoplásicos/toxicidade , Antibióticos Antineoplásicos/efeitos adversos , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma , Masculino , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Camundongos Endogâmicos C57BL
10.
Asian Pac J Cancer Prev ; 25(5): 1497-1505, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38809621

RESUMO

BACKGROUND: Several studies of multi-drug regimens for osteosarcoma have shown different efficacies and are still controversial. Meanwhile, chemotherapy options have remained largely unchanged over a couple of decades. This study is designed to ascertain the outcome and safety of Methotrexate, Doxorubicin, and Cisplatin regimen for chemotherapy in osteosarcoma patients through the utilization of meta-analysis. METHODS: We interrogated trials that compared the MAP regimen with other regimens as chemotherapy for osteosarcoma from several databases encompassing PubMed, Science Direct, and grey literature (Google Scholar) until December 2022. The analyzed outcomes including Event-Free Survival (EFS), Overall Survival (OS), Tumor Necrosis (TN) rate, and Adverse Event (AE) were then analyzed using RevMan 5.4 software in fixed or random effect models. RESULTS: Our meta-analysis comprised 8 prospective articles that evaluated a cumulative number of 2920 OS patients. The analysis results indicated no meaningful difference in 5-year EFS (OR=0.99, 95% CI=0.77-1.27, [P = 0.91]) and neoadjuvant chemotherapy response (TN) (OR=0.76, 95% CI=0.49-1.17, [P = 0.22]) between the MAP and control groups. Furthermore, 5-year OS analysis revealed a significant association in the control group (OR=0.82, 95% CI=0.68-0.99, [P = 0.04]). However, the control group was associated with statistically meaningful AE compared to the MAP group, particularly in thrombocytopenia (OR=0.46, 95% CI=0.23-0.90, [P = 0.02]) and fever (OR=0.34, 95% CI=0.26-0.46, [P < 0.00001]). CONCLUSION: The present meta-analysis showed that the MAP regimen remains preferable in treating osteosarcoma patients despite no significant outcome compared to the other regimens considering the less frequent AE in the MAP regimen.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Ósseas , Cisplatino , Doxorrubicina , Metotrexato , Osteossarcoma , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Osteossarcoma/mortalidade , Humanos , Metotrexato/administração & dosagem , Metotrexato/efeitos adversos , Doxorrubicina/uso terapêutico , Doxorrubicina/efeitos adversos , Doxorrubicina/administração & dosagem , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Segurança do Paciente , Prognóstico , Taxa de Sobrevida , Resultado do Tratamento
11.
BMC Cardiovasc Disord ; 24(1): 260, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769516

RESUMO

INTRODUCTION: Use of doxorubicin, an anthracycline chemotherapeutic agent has been associated with late-occurring cardiac toxicities. Detection of early-occurring cardiac effects of cancer chemotherapy is essential to prevent occurrence of adverse events including toxicity, myocardial dysfunction, and death. OBJECTIVE: To investigate the prevalence of elevated cardiac troponin T (cTnT) and associated factors of myocardial injury in children on doxorubicin cancer chemotherapy. METHODS: Design: A cross-sectional study. SETTING AND SUBJECTS: A hospital-based study conducted on children aged 1-month to 12.4-years who had a diagnosis of cancer and were admitted at Kenyatta National Hospital (KNH). INTERVENTIONS AND OUTCOMES: The patients underwent Echocardiography (ECHO) before their scheduled chemotherapy infusion. Twenty-four (24) hours after the chemotherapy infusion the patients had an evaluation of the serum cardiac troponin T (cTnT) and a repeat ECHO. Myocardial injury was defined as cTnT level > 0.014 ng/ml or a Fractional Shortening (FS) of < 29% on ECHO. RESULTS: One hundred (100) children were included in the final analysis. Thirty-two percent (32%) of the study population had an elevated cTnT. A cumulative doxorubicin dose of > 175 mg/m2 was significantly associated with and elevated cTnT (OR, 10.76; 95% CI, 1.18-97.92; p = 0.035). Diagnosis of nephroblastoma was also associated with an elevated cTnT (OR, 3.0; 95% CI, 1.23-7.26) but not statistically significant (p = 0.105). Nine percent (9%) of the participants had echocardiographic evidence of myocardial injury. CONCLUSION: When compared to echocardiography, elevated levels of cTnT showed a higher association with early-occurring chemotherapy-induced myocardial injury among children on cancer treatment at a tertiary teaching and referral hospital in Kenya.


Assuntos
Antibióticos Antineoplásicos , Biomarcadores , Cardiotoxicidade , Doxorrubicina , Neoplasias , Centros de Atenção Terciária , Troponina T , Humanos , Estudos Transversais , Masculino , Feminino , Doxorrubicina/efeitos adversos , Criança , Quênia/epidemiologia , Troponina T/sangue , Pré-Escolar , Antibióticos Antineoplásicos/efeitos adversos , Lactente , Neoplasias/tratamento farmacológico , Neoplasias/sangue , Fatores de Risco , Biomarcadores/sangue , Prevalência , Fatores de Tempo , Regulação para Cima , Cardiopatias/induzido quimicamente , Cardiopatias/epidemiologia , Cardiopatias/diagnóstico por imagem , Cardiopatias/diagnóstico , Cardiopatias/sangue , Fatores Etários , Medição de Risco , Ecocardiografia
12.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732210

RESUMO

Investigating the role of podocytes in proteinuric disease is imperative to address the increasing global burden of chronic kidney disease (CKD). Studies strongly implicate increased levels of monocyte chemoattractant protein-1 (MCP-1/CCL2) in proteinuric CKD. Since podocytes express the receptor for MCP-1 (i.e., CCR2), we hypothesized that podocyte-specific MCP-1 production in response to stimuli could activate its receptor in an autocrine manner, leading to further podocyte injury. To test this hypothesis, we generated podocyte-specific MCP-1 knockout mice (Podo-Mcp-1fl/fl) and exposed them to proteinuric injury induced by either angiotensin II (Ang II; 1.5 mg/kg/d, osmotic minipump) or Adriamycin (Adr; 18 mg/kg, intravenous bolus). At baseline, there were no between-group differences in body weight, histology, albuminuria, and podocyte markers. After 28 days, there were no between-group differences in survival, change in body weight, albuminuria, kidney function, glomerular injury, and tubulointerstitial fibrosis. The lack of protection in the knockout mice suggests that podocyte-specific MCP-1 production is not a major contributor to either Ang II- or Adr-induced glomerular disease, implicating that another cell type is the source of pathogenic MCP-1 production in CKD.


Assuntos
Angiotensina II , Quimiocina CCL2 , Doxorrubicina , Camundongos Knockout , Podócitos , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Podócitos/metabolismo , Podócitos/patologia , Podócitos/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Camundongos , Masculino , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Deleção de Genes , Modelos Animais de Doenças
13.
Rev Assoc Med Bras (1992) ; 70(4): e20230937, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716933

RESUMO

OBJECTIVE: Anticipatory nausea and vomiting are unpleasant symptoms observed before undergoing chemotherapy sessions. Less is known about the occurrence of symptoms since the advent of the new neurokinin-1 antagonist. METHODS: This prospective cohort study was performed at a single Brazilian Institution. This study included breast cancer patients who received doxorubicin and cyclophosphamide chemotherapy and an appropriate antiemetic regimen (dexamethasone 10 mg, palonosetron 0.56 mg, and netupitant 300 mg in the D1 followed by dexamethasone 10 mg 12/12 h in D2 and D4). Patients used a diary to record nausea, vomiting, and use of rescue medication in the first two cycles of treatment. The prevalence of anticipatory nausea and vomiting was assessed before chemotherapy on day 1 of C2. RESULTS: From August 4, 2020, to August 12, 2021, 60 patients were screened, and 52 patients were enrolled. The mean age was 50.8 (28-69) years, most had stage III (53.8%), and most received chemotherapy with curative intent (94%). During the first cycle, the frequency of overall nausea and vomiting was 67.31%, and that of severe nausea and vomiting (defined as grade>4 on a 10-point visual scale or use of rescue medication) was 55.77%. Ten patients had anticipatory nausea and vomiting (19.23%). The occurrence of nausea and vomiting during C1 was the only statistically significant predictor of anticipatory nausea and vomiting (OR=16, 95%CI 2.4-670.9, p=0.0003). CONCLUSION: The prevalence of anticipatory nausea is still high in the era of neurokinin-1 antagonists, and failure of antiemetic control in C1 remains the main risk factor. All efforts should be made to control chemotherapy-induced nausea or nausea and vomiting on C1 to avoid anticipatory nausea.


Assuntos
Antieméticos , Neoplasias da Mama , Náusea , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto , Antieméticos/uso terapêutico , Idoso , Náusea/induzido quimicamente , Prevalência , Brasil/epidemiologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Ciclofosfamida/efeitos adversos , Ciclofosfamida/uso terapêutico , Doxorrubicina/efeitos adversos , Vômito Precoce , Vômito/induzido quimicamente , Vômito/epidemiologia , Dexametasona/uso terapêutico , Palonossetrom/uso terapêutico
14.
J Transl Med ; 22(1): 433, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720361

RESUMO

Doxorubicin (DOX) is a broad-spectrum and highly efficient anticancer agent, but its clinical implication is limited by lethal cardiotoxicity. Growing evidences have shown that alterations in intestinal microbial composition and function, namely dysbiosis, are closely linked to the progression of DOX-induced cardiotoxicity (DIC) through regulating the gut-microbiota-heart (GMH) axis. The role of gut microbiota and its metabolites in DIC, however, is largely unelucidated. Our review will focus on the potential mechanism between gut microbiota dysbiosis and DIC, so as to provide novel insights into the pathophysiology of DIC. Furthermore, we summarize the underlying interventions of microbial-targeted therapeutics in DIC, encompassing dietary interventions, fecal microbiota transplantation (FMT), probiotics, antibiotics, and natural phytochemicals. Given the emergence of microbial investigation in DIC, finally we aim to point out a novel direction for future research and clinical intervention of DIC, which may be helpful for the DIC patients.


Assuntos
Cardiotoxicidade , Doxorrubicina , Microbioma Gastrointestinal , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Doxorrubicina/efeitos adversos , Cardiotoxicidade/etiologia , Animais , Disbiose , Transplante de Microbiota Fecal
15.
J Exp Med ; 221(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38695876

RESUMO

Platinum-based chemotherapy drugs can lead to the development of anorexia, a detrimental effect on the overall health of cancer patients. However, managing chemotherapy-induced anorexia and subsequent weight loss remains challenging due to limited effective therapeutic strategies. Growth differentiation factor 15 (GDF15) has recently gained significant attention in the context of chemotherapy-induced anorexia. Here, we report that hepatic GDF15 plays a crucial role in regulating body weight in response to chemo drugs cisplatin and doxorubicin. Cisplatin and doxorubicin treatments induce hepatic Gdf15 expression and elevate circulating GDF15 levels, leading to hunger suppression and subsequent weight loss. Mechanistically, selective activation by chemotherapy of hepatic IRE1α-XBP1 pathway of the unfolded protein response (UPR) upregulates Gdf15 expression. Genetic and pharmacological inactivation of IRE1α is sufficient to ameliorate chemotherapy-induced anorexia and body weight loss. These results identify hepatic IRE1α as a molecular driver of GDF15-mediated anorexia and suggest that blocking IRE1α RNase activity offers a therapeutic strategy to alleviate the adverse anorexia effects in chemotherapy.


Assuntos
Anorexia , Doxorrubicina , Endorribonucleases , Fator 15 de Diferenciação de Crescimento , Fígado , Proteínas Serina-Treonina Quinases , Redução de Peso , Proteína 1 de Ligação a X-Box , Animais , Humanos , Camundongos , Anorexia/induzido quimicamente , Anorexia/metabolismo , Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Doxorrubicina/efeitos adversos , Endorribonucleases/metabolismo , Endorribonucleases/genética , Fator 15 de Diferenciação de Crescimento/efeitos adversos , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética
16.
Sci Rep ; 14(1): 11229, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755279

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin's lymphoma, for which cyclophosphamide, doxorubicin, vincristine, and prednisone with rituximab(R-CHOP) is one of the standard regimens. Given that R-CHOP is highly emetogenic, chemotherapy-induced nausea and vomiting (CINV) prevention is clinically important. However, there is a paucity of studies focusing on these patients. This study aimed to ascertain the effectiveness of an oral fixed-dose combination of netupitant and palonosetron (NEPA) in preventing CINV in patients with DLBCL undergoing first-line R-CHOP chemotherapy. Seventy patients were enrolled in this single-center prospective non-comparative study conducted between November 2020 and May 2023 in South Korea. NEPA was administered 1 h prior to chemotherapy initiation on day 1. The primary endpoint of the study was the complete response rate (no emesis, and no rescue medication) during the acute, delayed, and overall phases, which were assessed over a period of 120 h post-chemotherapy. The complete response rates for NEPA were 90.0% [95% CI 80.5, 95.9] for the acute phase, 85.7% [95% CI 75.3, 92.9] for the delayed phase, and 84.3% [95% CI 73.6, 91.9] for the overall phase, with no-emesis rates (acute: 97.1% [95% CI 97.1, 99.7], delayed: 95.7% [95% CI 88.0, 99.1], overall: 92.9% [95% CI 84.1, 97.6]). NEPA was well tolerated with no severe treatment-emergent adverse events. NEPA exhibited substantial efficacy in mitigating CINV in DLBCL patients undergoing R-CHOP chemotherapy, demonstrating high CR and no-emesis rates, and favorable safety profiles.


Assuntos
Antieméticos , Protocolos de Quimioterapia Combinada Antineoplásica , Ciclofosfamida , Doxorrubicina , Linfoma Difuso de Grandes Células B , Náusea , Palonossetrom , Prednisona , Rituximab , Vincristina , Vômito , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Doxorrubicina/efeitos adversos , Doxorrubicina/administração & dosagem , Ciclofosfamida/efeitos adversos , Ciclofosfamida/uso terapêutico , Ciclofosfamida/administração & dosagem , Masculino , Feminino , Pessoa de Meia-Idade , Vincristina/efeitos adversos , Vincristina/uso terapêutico , Vincristina/administração & dosagem , Náusea/prevenção & controle , Náusea/induzido quimicamente , Vômito/prevenção & controle , Vômito/induzido quimicamente , Rituximab/efeitos adversos , Rituximab/uso terapêutico , Rituximab/administração & dosagem , Prednisona/efeitos adversos , Prednisona/administração & dosagem , Prednisona/uso terapêutico , Idoso , Palonossetrom/uso terapêutico , Palonossetrom/administração & dosagem , Adulto , Estudos Prospectivos , Antieméticos/uso terapêutico , Antieméticos/administração & dosagem , Piridinas/efeitos adversos , Piridinas/administração & dosagem , Piridinas/uso terapêutico , Resultado do Tratamento , Combinação de Medicamentos , Isoquinolinas , Quinuclidinas
17.
Genes (Basel) ; 15(4)2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38674390

RESUMO

The Adriamycin (ADR) nephropathy model, which induces podocyte injury, is limited to certain mouse strains due to genetic susceptibilities, such as the PrkdcR2140C polymorphism. The FVB/N strain without the R2140C mutation resists ADR nephropathy. Meanwhile, a detailed analysis of the progression of ADR nephropathy in the FVB/N strain has yet to be conducted. Our research aimed to create a novel mouse model, the FVB-PrkdcR2140C, by introducing PrkdcR2140C into the FVB/NJcl (FVB) strain. Our study showed that FVB-PrkdcR2140C mice developed severe renal damage when exposed to ADR, as evidenced by significant albuminuria and tubular injury, exceeding the levels observed in C57BL/6J (B6)-PrkdcR2140C. This indicates that the FVB/N genetic background, in combination with the R2140C mutation, strongly predisposes mice to ADR nephropathy, highlighting the influence of genetic background on disease susceptibility. Using RNA sequencing and subsequent analysis, we identified several genes whose expression is altered in response to ADR nephropathy. In particular, Mmp7, Mmp10, and Mmp12 were highlighted for their differential expression between strains and their potential role in influencing the severity of kidney damage. Further genetic analysis should lead to identifying ADR nephropathy modifier gene(s), aiding in early diagnosis and providing novel approaches to kidney disease treatment and prevention.


Assuntos
Modelos Animais de Doenças , Doxorrubicina , Nefropatias , Animais , Doxorrubicina/efeitos adversos , Camundongos , Nefropatias/induzido quimicamente , Nefropatias/genética , Nefropatias/patologia , Masculino , Camundongos Endogâmicos C57BL , Predisposição Genética para Doença , Podócitos/metabolismo , Podócitos/patologia , Podócitos/efeitos dos fármacos
18.
J Mol Cell Cardiol ; 191: 12-22, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643934

RESUMO

Doxorubicin (DOX) is a widely used chemotherapeutic agent that can cause serious cardiotoxic side effects, leading to heart failure (HF). Impaired mitochondrial function is thought to be key factor driving progression into HF. We have previously shown in a rat model of DOX-HF that heart failure with reduced ejection fraction correlates with mitochondrial loss and dysfunction. Adenosine monophosphate-dependent kinase (AMPK) is a cellular energy sensor, regulating mitochondrial biogenesis and energy metabolism, including fatty acid oxidation. We hypothesised that AMPK activation could restore mitochondrial function and therefore be a novel cardioprotective strategy for the prevention of DOX-HF. Consequently, we set out to assess whether 5-aminoimidazole-4-carboxamide 1-ß-D-ribofuranoside (AICAR), an activator of AMPK, could prevent cardiac functional decline in this chronic intravenous rat model of DOX-HF. In line with our hypothesis, AICAR improved cardiac systolic function. AICAR furthermore improved cardiac mitochondrial fatty acid oxidation, independent of mitochondrial number, and in the absence of observable AMPK-activation. In addition, we found that AICAR prevented loss of myocardial mass. RNAseq analysis showed that this may be driven by normalisation of pathways associated with ribosome function and protein synthesis, which are impaired in DOX-treated rat hearts. AICAR furthermore prevented dyslipidemia and excessive body-weight loss in DOX-treated rats, which may contribute to preservation of myocardial mass. Though it is unclear whether AICAR exerted its cardioprotective effect through cardiac or extra-cardiac AMPK-activation or via an AMPK-independent effect, these results show promise for the use of AICAR as a cardioprotective agent in DOX-HF to both preserve cardiac function and mass.


Assuntos
Proteínas Quinases Ativadas por AMP , Aminoimidazol Carboxamida , Cardiotônicos , Doxorrubicina , Insuficiência Cardíaca , Ribonucleotídeos , Animais , Doxorrubicina/efeitos adversos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/prevenção & controle , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/tratamento farmacológico , Ribonucleotídeos/farmacologia , Masculino , Cardiotônicos/farmacologia , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia , Ácidos Graxos/metabolismo , Modelos Animais de Doenças
19.
J Cell Mol Med ; 28(9): e18310, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38676361

RESUMO

Studies have shown that adoptive transfer of myeloid-derived suppressor cells (MDSCs) can alleviate various inflammatory diseases, including glomerulonephritis, but the long-term effects of the transferred MDSCs are still unclear. In addition, although glucocorticoids exert immunosuppressive effects on inflammatory diseases by inducing the expansion of MDSCs, the impact of glucocorticoids on the immunosuppressive function of MDSCs and their molecular mechanisms are unclear. In this study, we found that adoptive transfer of MDSCs to doxorubicin-induced focal segmental glomerulosclerosis (FSGS) mice for eight consecutive weeks led to an increase in serum creatinine and proteinuria and aggravation of renal interstitial fibrosis. Similarly, 8 weeks of high-dose dexamethasone administration exacerbated renal interstitial injury and interstitial fibrosis in doxorubicin-induced mice, manifested as an increase in serum creatinine and proteinuria, collagen deposition and α-SMA expression. On this basis, we found that dexamethasone could enhance MDSC expression and secretion of the fibrosis-related cytokines TGF-ß and IL-10. Mechanistically, we revealed that dexamethasone promotes the expression of immunoglobulin-like transcription factor 4 (ILT4), which enhances the T-cell inhibitory function of MDSCs and promotes the activation of STAT6, thereby strengthening the expression and secretion of TGF-ß and IL-10. Knocking down ILT4 alleviated renal fibrosis caused by adoptive transfer of MDSCs. Therefore, our findings demonstrate that the role and mechanism of dexamethasone mediate the expression and secretion of TGF-ß and IL-10 in MDSCs by promoting the expression of ILT4, thereby leading to renal fibrosis.


Assuntos
Dexametasona , Fibrose , Células Supressoras Mieloides , Animais , Dexametasona/farmacologia , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/efeitos dos fármacos , Camundongos , Rim/patologia , Rim/metabolismo , Rim/efeitos dos fármacos , Masculino , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacologia , Camundongos Endogâmicos C57BL , Glomerulosclerose Segmentar e Focal/induzido quimicamente , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Transferência Adotiva , Modelos Animais de Doenças , Regulação para Cima/efeitos dos fármacos , Interleucina-10/metabolismo , Interleucina-10/genética , Fator de Crescimento Transformador beta/metabolismo
20.
Clin Cancer Res ; 30(11): 2370-2376, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38573708

RESUMO

PURPOSE: Preventing Anthracycline Cardiovascular Toxicity with Statins (PREVENT; NCT01988571) randomized patients with breast cancer or lymphoma receiving anthracyclines to atorvastatin 40 mg daily or placebo. We evaluated the effects of atorvastatin on oxidative and nitrosative stress biomarkers, and explored whether these biomarkers could explain the lack of effect of atorvastatin on LVEF (left ventricular ejection fraction) in PREVENT. PATIENTS AND METHODS: Blood samples were collected and cardiac MRI was performed before doxorubicin initiation and at 6 and 24 months. Thirteen biomarkers [arginine-nitric oxide metabolites, paraoxonase-1 (PON-1) activity, and myeloperoxidase] were measured. Dimensionality reduction using principal component analysis was used to define biomarker clusters. Linear mixed-effects models determined the changes in biomarkers over time according to treatment group. Mediation analysis determined whether biomarker clusters explained the lack of effect of atorvastatin on LVEF. RESULTS: Among 202 participants with available biomarkers, median age was 53 years; 86.6% had breast cancer; median LVEF was 62%. Cluster 1 levels, reflecting arginine methylation metabolites, were lower over time with atorvastatin, although this was not statistically significant (P = 0.081); Cluster 2 levels, reflecting PON-1 activity, were significantly lower with atorvastatin (P = 0.024). There were no significant changes in other biomarker clusters (P > 0.05). Biomarker clusters did not mediate an effect of atorvastatin on LVEF (P > 0.05). CONCLUSIONS: Atorvastatin demonstrated very modest effects on oxidative/nitrosative stress biomarkers in this low cardiovascular risk population. Our findings provide potential mechanistic insight into the lack of effect of atorvastatin on LVEF in the PREVENT trial.


Assuntos
Atorvastatina , Biomarcadores , Neoplasias da Mama , Inibidores de Hidroximetilglutaril-CoA Redutases , Estresse Nitrosativo , Estresse Oxidativo , Humanos , Feminino , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Estresse Nitrosativo/efeitos dos fármacos , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Masculino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Idoso , Adulto , Doxorrubicina/efeitos adversos , Arildialquilfosfatase/metabolismo , Arginina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...