Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heredity (Edinb) ; 122(6): 906-915, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30518968

RESUMO

Meiotic drivers are selfish genetic elements that promote their own transmission into the gametes, which results in intragenomic conflicts. In the Paris sex-ratio system of Drosophila simulans, drivers located on the X chromosome prevent the segregation of the heterochromatic Y chromosome during meiosis II, and hence the production of Y-bearing sperm. The resulting sex-ratio bias strongly impacts population dynamics and evolution. Natural selection, which tends to restore an equal sex ratio, favors the emergence of resistant Y chromosomes and autosomal suppressors. This is the case in the Paris sex-ratio system where the drivers became cryptic in most of the natural populations of D. simulans. Here, we used a quantitative trait locus (QTL) mapping approach based on the analysis of 152 highly recombinant inbred lines (RILs) to investigate the genetic determinism of autosomal suppression. The RILs were derived from an advanced intercross between two parental lines, one showing complete autosomal suppression while the other one was sensitive to drive. The confrontation of RIL autosomes with a reference XSR chromosome allowed us to identify two QTLs on chromosome 2 and three on chromosome 3, with strong epistatic interactions. Our findings highlight the multiplicity of actors involved in this intragenomic battle over the sex ratio.


Assuntos
Drosophila simulans/genética , Meiose , Locos de Características Quantitativas , Cromossomo X/genética , Animais , Mapeamento Cromossômico , Segregação de Cromossomos , Drosophila simulans/classificação , Drosophila simulans/citologia , Evolução Molecular , Feminino , Masculino , Modelos Genéticos , Filogenia , Razão de Masculinidade , Cromossomo Y
2.
PLoS One ; 13(10): e0205024, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30281656

RESUMO

Autophagy and phagocytosis are cellular immune mechanisms for internalization and elimination of intracellular and extracellular pathogens. Some pathogens have evolved the ability to inhibit or manipulate these processes, raising the prospect of adaptive reciprocal co-evolution by the host. We performed population genetic analyses on phagocytosis and autophagy genes in Drosophila melanogaster and D. simulans to test for molecular evolutionary signatures of immune adaptation. We found that phagocytosis and autophagy genes as a whole exhibited an elevated level of haplotype homozygosity in both species. In addition, we detected signatures of recent selection, notably in the Atg14 and Ykt6 genes in D. melanogaster and a pattern of elevated sequence divergence in the genderblind (gb) gene on the D. simulans lineage. These results suggest that the evolution of the host cellular immune system as a whole may be shaped by a dynamic conflict between Drosophila and its pathogens even without pervasive evidence of strong adaptive evolution at the individual gene level.


Assuntos
Autofagia/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/imunologia , Drosophila simulans/citologia , Drosophila simulans/imunologia , Fagocitose/genética , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila simulans/genética , Evolução Molecular , Genética Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...