Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Biol Ther ; 23(1): 1-12, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36404439

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Ephrin A4 (EFNA4) acts as an oncogene in multiple cancers but is little known in HCC. It is revealed that EFNA4 is highly expressed in patients with HCC and influences the proliferation of HCC cells; however, detailed regulatory mechanism of EFNA4 in HCC needs to be unveiled. Here, we discovered that EFNA4 was highly expressed in HCC cell lines. EFNA4 knockdown greatly suppressed cell proliferation, migration and invasion, as well as inhibiting angiogenesis in Huh7 cells. EFNA4 was demonstrated to interact with pygopus-2 (PYGO2) and positively regulate PYGO2 expression. Gene gain- and loss-of-function experiments revealed that the anti-tumor effect of EFNA4 knockdown was partly abolished by PYGO2 overexpression. Furthermore, EFNA4 knockdown blocked wnt/ß-catenin signaling in Huh7 cells, which was then abolished by PYGO2. In conclusion, this study further ensured the oncogenic role of EFNA4 in HCC, and disclosed that EFNA4 knockdown suppressed cell proliferation, invasion, angiogenesis, and wnt/ß-catenin signaling in HCC by downregulating PYGO2.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Efrina-A4/metabolismo , beta Catenina/metabolismo , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Neovascularização Patológica/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
2.
Nat Commun ; 12(1): 2788, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986289

RESUMO

Human ribonuclease 1 (hRNase 1) is critical to extracellular RNA clearance and innate immunity to achieve homeostasis and host defense; however, whether it plays a role in cancer remains elusive. Here, we demonstrate that hRNase 1, independently of its ribonucleolytic activity, enriches the stem-like cell population and enhances the tumor-initiating ability of breast cancer cells. Specifically, secretory hRNase 1 binds to and activates the tyrosine kinase receptor ephrin A4 (EphA4) signaling to promote breast tumor initiation in an autocrine/paracrine manner, which is distinct from the classical EphA4-ephrin juxtacrine signaling through contact-dependent cell-cell communication. In addition, analysis of human breast tumor tissue microarrays reveals a positive correlation between hRNase 1, EphA4 activation, and stem cell marker CD133. Notably, high hRNase 1 level in plasma samples is positively associated with EphA4 activation in tumor tissues from breast cancer patients, highlighting the pathological relevance of the hRNase 1-EphA4 axis in breast cancer. The discovery of hRNase 1 as a secretory ligand of EphA4 that enhances breast cancer stemness suggests a potential treatment strategy by inactivating the hRNase 1-EphA4 axis.


Assuntos
Neoplasias da Mama/patologia , Carcinogênese/patologia , Efrina-A4/metabolismo , Células-Tronco Neoplásicas/patologia , Ribonuclease Pancreático/metabolismo , Antígeno AC133/metabolismo , Animais , Neoplasias da Mama/genética , Carcinogênese/genética , Linhagem Celular , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Ligação Proteica/genética , Ribonuclease Pancreático/sangue , Ribonuclease Pancreático/genética , Resultado do Tratamento
3.
Sci Rep ; 11(1): 644, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436772

RESUMO

Ephrin type-A receptor 10 (EPHA10) has been implicated as a potential target for breast and prostate cancer therapy. However, its involvement in oral squamous cell carcinoma (OSCC) remains unclear. We demonstrated that EPHA10 supports in vivo tumor growth and lymphatic metastasis of OSCC cells. OSCC cell migration, epithelial mesenchymal transition (EMT), and sphere formation were found to be regulated by EPHA10, and EPHA10 was found to drive expression of some EMT- and stemness-associated transcription factors. Among EPHA10 ligands, exogenous ephrin A4 (EFNA4) induced the most OSCC cell migration and sphere formation, as well as up-regulation of SNAIL, NANOG, and OCT4. These effects were abolished by extracellular signal-regulated kinase (ERK) inhibition and NANOG knockdown. Also, EPHA10 was required for EFNA4-induced cell migration, sphere formation, and expression of NANOG and OCT4 mRNA. Our microarray dataset revealed that EFNA4 mRNA expression was associated with expression of NANOG and OCT4 mRNA, and OSCC patients showing high co-expression of EFNA4 with NANOG or OCT4 mRNA demonstrated poor recurrence-free survival rates. Targeting forward signaling of the EFNA4-EPHA10 axis may be a promising therapeutic approach for oral malignancies, and the combination of EFNA4 mRNA and downstream gene expression may be a useful prognostic biomarker for OSCC.


Assuntos
Movimento Celular , Efrina-A4/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Bucais/patologia , Proteína Homeobox Nanog/metabolismo , Receptores da Família Eph/metabolismo , Esferoides Celulares/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Efrina-A4/genética , Transição Epitelial-Mesenquimal , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Proteína Homeobox Nanog/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Receptores da Família Eph/genética , Esferoides Celulares/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Int J Cancer ; 145(7): 1798-1808, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30680712

RESUMO

PF-06647263, a novel antibody-drug conjugate consisting of an anti-EFNA4 antibody linked to a calicheamicin payload, has shown potent antitumor activity in human xenograft tumor models, including triple-negative breast cancer (TNBC). In the dose-escalation part 1 of this multicenter, open-label, phase I study (NCT02078752), successive cohorts of patients (n, 48) with advanced solid tumors and no available standard therapy received PF-06647263 every 3 weeks (Q3W) or every week (QW), following a modified toxicity probability interval (mTPI) method (initial dosing: 0.015 mg/kg Q3W). Primary objective in part 1 was to estimate the maximum tolerated dose (MTD) and select the recommended phase 2 dose (RP2D). In part 2 (dose-expansion cohort), 12 patients with pretreated, metastatic TNBC received PF-06647263 at the RP2D to further evaluate tumor response and overall safety. PF-06647263 QW administration (n, 23) was better tolerated than the Q3W regimen (n, 25) with only 1 DLT reported (thrombocytopenia). The most common AEs with the QW regimen (fatigue, nausea, vomiting, mucosal inflammation, thrombocytopenia, and diarrhea) were mostly mild to moderate in severity. The MTD was not estimated. PF-06647263 exposures increased in a dose-related manner across the doses evaluated. The RP2D was determined to be 0.015 mg/kg QW. Six (10%) patients achieved a confirmed partial response and 22 (36.7%) patients had stable disease. No correlations were observed between tumor responses and EFNA4 expression levels. Study findings showed manageable safety and favorable PK for PF-06647263 administered QW at the RP2D, with preliminary evidence of limited antitumor activity in patients with TNBC and ovarian cancer.


Assuntos
Aminoglicosídeos/administração & dosagem , Anticorpos Monoclonais Murinos/administração & dosagem , Metástase Neoplásica/tratamento farmacológico , Neoplasias/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Aminoglicosídeos/efeitos adversos , Animais , Anticorpos Monoclonais Murinos/efeitos adversos , Esquema de Medicação , Efrina-A4/metabolismo , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Camundongos , Pessoa de Meia-Idade , Neoplasias/metabolismo , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
5.
Oncotarget ; 7(30): 48481-48500, 2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27374180

RESUMO

A role of endothelial cells in the survival of CLL cells during extravasation is presently unknown. Herein we show that CLL cells but not normal B cells can receive apoptotic signals through physical contact with TNF-α activated endothelium impairing survival in transendothelial migration (TEM) assays. In addition, the CLL cells of patients having lymphadenopathy (LApos) show a survival advantage during TEM that can be linked to increased expression of α4 and αL integrin chains. Within this context, ephrinA4 expressed on the surface of CLL cells sequestrates integrins and inactivates them resulting in reduced adhesion and inhibition of apoptotic/survival signals through them. In agreement, ephrinA4 silencing resulted in increased survival of CLL cells of LApos patients but not LA neg patients. Similarly was observed when a soluble ephrinA4 isoform was added to TEM assays strongly suggesting that accumulation of this isoform in the serum of LApos patients could contribute to CLL cells dissemination and survival in vivo. In supporting, CLL lymphadenopathies showed a preferential accumulation of apoptotic CLL cells around high endothelial venules lacking ephrinA4. Moreover, soluble ephrinA4 isolated from sera of patients increased the number and viability of CLL cells recovered from the lymph nodes of adoptively transferred mice. Finally, we present evidence suggesting that soluble ephrinA4 mediated survival during TEM could enhance a transcellular TEM route of the CLL cells. Together these findings point to an important role of ephrinA4 in the nodal dissemination of CLL cells governing extravasation and survival.


Assuntos
Apoptose , Antígeno CD11a/metabolismo , Sobrevivência Celular , Efrina-A4/metabolismo , Integrina alfa4/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Linfócitos B/fisiologia , Células Cultivadas , Técnicas de Cocultura , Endotélio/metabolismo , Efrina-A4/sangue , Efrina-A4/genética , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Leucemia Linfocítica Crônica de Células B/sangue , Linfonodos/patologia , Metástase Linfática , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Isoformas de Proteínas/sangue , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Organismos Livres de Patógenos Específicos , Migração Transendotelial e Transepitelial , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Hear Res ; 335: 64-75, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26906676

RESUMO

Eph-ephrin interactions guide topographic mapping and pattern formation in a variety of systems. In contrast to other sensory pathways, their precise role in the assembly of central auditory circuits remains poorly understood. The auditory midbrain, or inferior colliculus (IC) is an intriguing structure for exploring guidance of patterned projections as adjacent subdivisions exhibit distinct organizational features. The central nucleus of the IC (CNIC) and deep aspects of its neighboring lateral cortex (LCIC, Layer 3) are tonotopically-organized and receive layered inputs from primarily downstream auditory sources. While less is known about more superficial aspects of the LCIC, its inputs are multimodal, lack a clear tonotopic order, and appear discontinuous, terminating in modular, patch/matrix-like distributions. Here we utilize X-Gal staining approaches in lacZ mutant mice (ephrin-B2, -B3, and EphA4) to reveal EphA-ephrinB expression patterns in the nascent IC during the period of projection shaping that precedes hearing onset. We also report early postnatal protein expression in the cochlear nuclei, the superior olivary complex, the nuclei of the lateral lemniscus, and relevant midline structures. Continuous ephrin-B2 and EphA4 expression gradients exist along frequency axes of the CNIC and LCIC Layer 3. In contrast, more superficial LCIC localization is not graded, but confined to a series of discrete ephrin-B2 and EphA4-positive Layer 2 modules. While heavily expressed in the midline, much of the auditory brainstem is devoid of ephrin-B3, including the CNIC, LCIC Layer 2 modular fields, the dorsal nucleus of the lateral lemniscus (DNLL), as well as much of the superior olivary complex and cochlear nuclei. Ephrin-B3 LCIC expression appears complementary to that of ephrin-B2 and EphA4, with protein most concentrated in presumptive extramodular zones. Described tonotopic gradients and seemingly complementary modular/extramodular patterns suggest Eph-ephrin guidance in establishing juxtaposed continuous and discrete neural maps in the developing IC prior to experience.


Assuntos
Efrina-A4/metabolismo , Efrina-B2/metabolismo , Efrina-B3/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Colículos Inferiores/crescimento & desenvolvimento , Vias Aferentes , Animais , Vias Auditivas/metabolismo , Mapeamento Encefálico , Tronco Encefálico/metabolismo , Núcleo Coclear/metabolismo , Perfilação da Expressão Gênica , Genótipo , Colículos Inferiores/metabolismo , Camundongos , Neurogênese , Núcleo Olivar/metabolismo
7.
Mol Neurobiol ; 53(1): 561-576, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25502292

RESUMO

Studies have shown that neurogenesis and angiogenesis do exist in temporal lobe epilepsy (TLE). The ephrin ligands and Eph receptors are the largest members of receptor tyrosine kinases, and their interaction via cell-cell contact participates in cell proliferation, differentiation, migration, and tissue remodeling. However, there is little information about the function of the ephrin-A5/EphA4 complex in TLE. In the current study, we found that ephrin-A5 was expressed in astrocytes, while EphA4 existed in endothelial cells in the hippocampus in a mouse model of TLE. Furthermore, the messenger RNA (mRNA) and protein levels of both ephrin-A5 and EphA4 and the binding capacity of ephrin-A5/EphA4 showed gradual increase in spatiotemporal course. When ephrin-A5-Fc was injected into the hippocampus at 3 days post-status epilepticus (SE) for 7 days, the spontaneous recurrent seizure (SRS) frequency and intensity of the mice attenuated in the following 2 weeks. Furthermore, doublecortin-positive neuronal progenitor cells were reduced in the subgranular zone, and the density of microvessels decreased in the hilus. The molecular mechanism was attributed to ephrin-A5-Fc-induced inhibition of phosphorylated ERK (p-ERK) and phosphorylated Akt (p-Akt), and also EphA4 and VEGF reduction. In summary, interaction between ephrin-A5 and EphA4 could mediate the ERK and Akt signaling pathways in pilocarpine-induced epilepsy, and intervention of the ephrin/Eph interaction may play an essential role in the suppression of newborn neuron generation, microvessel remodeling, and SRS in a mouse model of TLE. The ephrin-A5/EphA4 communication may provide a potential therapy for the treatment of TLE.


Assuntos
Modelos Animais de Doenças , Efrina-A4/metabolismo , Efrina-A5/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Epilepsia do Lobo Temporal/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neurogênese/fisiologia , Ligação Proteica/fisiologia
8.
Acta Pharmacol Sin ; 36(8): 928-38, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26095039

RESUMO

AIM: Connexin 43 (Cx43) is a member of connexin family mainly expressed in astrocytes, which forms gap junctions and hemichannels and maintains the normal shape and function of astrocytes. In this study we investigated the role of Cx43 in astrocytes in facilitating neuronal recovery during ischemic stroke. METHODS: Primary culture of astrocytes or a mixed culture of astrocytes and cortical neurons was subjected to oxygen glucose deprivation and reperfusion (OGD/R). The expression of Cx43 and Ephrin-A4 in astrocytes was detected using immunocytochemical staining and Western blot assays. Intercellular Ca(2+) concentration was determined with Fluo-4 AM fluorescent staining. Middle cerebral artery occlusion (MCAO) model rats were used for in vivo studies. RESULTS: OGD/R treatment of cultured astrocytes caused a decrement of Cx43 expression and translocation of Cx43 from cell membrane to cytoplasm, accompanied by cell retraction. Furthermore, OGD/R increased intracellular Ca(2+) concentration, activated CaMKII/CREB pathways and upregulated expression of Ephrin-A4 in the astrocytes. All these changes in OGD/R-treated astrocytes were alleviated by overexpression of Cx43. In the cortical neurons cultured with astrocytes, OGD/R inhibited the neurite growth, whereas overexpression of Cx43 or knockdown of Ephrin-A4 in astrocytes restored the neurite growth. In MCAO model rats, neuronal recovery was found to be correlated with the recuperation of Cx43 and Ephrin-A4 in astrocytes. CONCLUSION: Cx43 can stabilize astrocytes and facilitate the resistance to the deleterious effects of a stroke-like milieu and promote neuronal recovery.


Assuntos
Astrócitos/metabolismo , Conexina 43/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Neurônios/metabolismo , Animais , Astrócitos/citologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Efrina-A4/metabolismo , Glucose/metabolismo , Masculino , Neurônios/citologia , Oxigênio/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
9.
Neurochem Res ; 40(2): 274-83, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25064044

RESUMO

Hepatic encephalopathy (HE) represents a neuropsychiatric syndrome, which evolves as a consequence of a low grade cerebral edema and a concomitant oxidative/nitrosative stress response. Ephrin receptors (EphR) and their ligands (ephrins) regulate astrocytic glutamate uptake and gliotransmitter release thereby governing neurotransmission, but their role in HE and ammonia toxicity is unclear. We therefore tested effects of ammonia on expression levels of EphR/ephrin isoforms in cultured rat astrocytes and analysed underlying mechanisms. NH4Cl induced mRNA expression changes of several EphR/ephrin isoforms in a methionine sulfoximine-, NADPH oxidase- and NO synthase-dependent manner in cultured astrocytes. A prominent upregulation was noted for EphR A4 mRNA and protein in NH4Cl-treated astrocytes. NH4Cl-treatment decreased EphR A4 molecular mass to similar extent as found in astrocytes treated with the N-glycosylation inhibitor tunicamycin. Knockdown of EphR A4 by siRNA, or treating astrocytes with NH4Cl or tunicamycin abolished fibroblast growth factor-induced and EphR A4-dependent astrocyte proliferation. NH4Cl-treatment also decreased GLAST mRNA levels in cultured astrocytes. This effect was sensitive to inhibitors of NAPDH oxidase or glutamine synthetase, but was insensitive to siRNA-mediated EphR A4 knockdown. Eph/ephrin gene expression changes were also found in post mortem brain samples of cirrhotic patients without or with HE compared to controls suggesting a potential in vivo relevance of the present findings. The present study suggests that ammonia modulates EphR/ephrin signaling in astrocytes and in the brain of cirrhotic patients with HE with potential implications for deranged neurotransmission in HE.


Assuntos
Receptores da Família Eph/metabolismo , Cloreto de Amônio/farmacologia , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Estudos de Casos e Controles , Células Cultivadas , Córtex Cerebral/metabolismo , Efrina-A4/metabolismo , Técnicas de Silenciamento de Genes , Encefalopatia Hepática/complicações , Encefalopatia Hepática/metabolismo , Humanos , Cirrose Hepática/complicações , Cirrose Hepática/metabolismo , RNA Mensageiro/genética , Ratos , Ratos Wistar , Receptores da Família Eph/genética
10.
Anat Rec (Hoboken) ; 297(10): 1908-18, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25070915

RESUMO

The association of microglia with brain vasculature during development and the reduced brain vascular complexity in microglia-deficient mice suggest the role of microglia in cerebrovascular angiogenesis. However, the underlying molecular mechanism remains unclear. Here, using an in vitro angiogenesis model, we found the culture supernatant of BV2 microglial cells significantly enhanced capillary-like tube formation and migration of brain microvascular endothelial cells (BMECs). The expression of angiogenic factors, ephrin-A3 and ephrin-A4, were specifically upregulated in BMECs exposed to BV2-derived culture supernatant. Knockdown of ephrin-A3 and ephrin-A4 in BMECs by siRNA significantly attenuated the enhanced angiogenesis and migration of BMECs induced by BV2 supernatant. Our further results indicated that the ability of BV2 supernatant to promote endothelial angiogenesis was caused by the soluble tumor necrosis factor α (TNF-α) released from BV2 microglial cells. Moreover, the upregulations of ephrin-A3 and ephrin-A4 in BMECs in response to BV2 supernatant were effectively abolished by neutralization antibody against TNF-α and TNF receptor 1, respectively. The present study provides evidence that microglia upregulates endothelial ephrin-A3 and ephrin-A4 to facilitate in vitro angiogenesis of brain endothelial cells, which is mediated by microglia-released TNF-α.


Assuntos
Encéfalo/metabolismo , Células Endoteliais/metabolismo , Efrina-A3/metabolismo , Efrina-A4/metabolismo , Microglia/metabolismo , Neovascularização Fisiológica/fisiologia , Capilares/metabolismo , Movimento Celular/fisiologia , Proliferação de Células , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
11.
Eur J Neurosci ; 38(11): 3567-79, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24103058

RESUMO

Adult central nervous system axons show restricted growth and regeneration properties after injury. One of the underlying mechanisms is the activation of the Nogo-A/Nogo receptor (NgR1) signaling pathway. Nogo-A knockout (KO) mice show enhanced regenerative growth in vivo, even though it is less pronounced than after acute antibody-mediated neutralization of Nogo-A. Residual inhibition may involve a compensatory component. By mRNA expression profiling and immunoblots we show increased expression of several members of the Ephrin/Eph and Semaphorin/Plexin families of axon guidance molecules, e.g. EphrinA3 and EphA4, in the intact spinal cord of adult Nogo-A KO vs. wild-type (WT) mice. EphrinA3 inhibits neurite outgrowth of EphA4-positive neurons in vitro. In addition, EphrinA3 KO myelin extracts are less growth-inhibitory than WT but more than Nogo-A KO myelin extracts. EphA4 KO cortical neurons show decreased growth inhibition on Nogo-A KO myelin as compared with WT neurons, supporting increased EphA4-mediated growth inhibition in Nogo-A KO mice. Consistently, in vivo, Nogo-A/EphA4 double KO mice show increased axonal sprouting and regeneration after spinal cord injury as compared with EphA4 KO mice. Our results reveal the upregulation of developmental axon guidance cues following constitutive Nogo-A deletion, e.g. the EphrinA3/EphA4 ligand/receptor pair, and support their role in restricting neurite outgrowth in the absence of Nogo-A.


Assuntos
Axônios/fisiologia , Córtex Cerebral/metabolismo , Gânglios Espinais/metabolismo , Proteínas da Mielina/metabolismo , Regeneração da Medula Espinal , Regulação para Cima , Animais , Axônios/metabolismo , Células Cultivadas , Córtex Cerebral/patologia , Córtex Cerebral/fisiologia , Efrina-A3/genética , Efrina-A3/metabolismo , Efrina-A4/genética , Efrina-A4/metabolismo , Gânglios Espinais/patologia , Gânglios Espinais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas da Mielina/genética , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Proteínas Nogo , Tratos Piramidais/metabolismo , Tratos Piramidais/patologia , Tratos Piramidais/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Traumatismos da Medula Espinal/metabolismo
12.
Biochim Biophys Acta ; 1833(10): 2201-11, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23707953

RESUMO

The Eph receptors represent the largest family of receptor tyrosine kinases. Both Eph receptors and their ephrin ligands are cell-surface proteins, and they typically mediate cell-to-cell communication by interacting at sites of intercellular contact. The major aim of the present study was to investigate the involvement of EphA4-ephrin-A1 interaction in monocyte adhesion to endothelial cells, as this process is a crucial step during the initiation and progression of the atherosclerotic plaque. Immunohistochemical analysis of human atherosclerotic plaques revealed expression of EphA4 receptor and ephrin-A1 ligand in major cell types within the plaque. Short-time stimulation of endothelial cells with the soluble ligand ephrin-A1 leads to a fourfold increase in adhesion of human monocytes to endothelial cells. In addition, ephrin-A1 further increases monocyte adhesion to already inflamed endothelial cells. EphrinA1 mediates its effect on monocyte adhesion via the activated receptor EphA4. This ephrinA1/EphA4 induced process involves the activation of the Rho signaling pathway and does not require active transcription. Rho activation downstream of EphA4 leads to increased polymerization of actin filaments in endothelial cells. This process was shown to be crucial for the proadhesive effect of ephrin-A1. The results of the present study show that ephrin-A1-induced EphA4 forward signaling promotes monocyte adhesion to endothelial cells via activation of RhoA and subsequent stress-fiber formation by a non-transcriptional mechanism.


Assuntos
Aterosclerose/metabolismo , Adesão Celular , Endotélio Vascular/metabolismo , Efrina-A1/metabolismo , Efrina-A4/metabolismo , Monócitos/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Western Blotting , Proliferação de Células , Células Cultivadas , Endotélio Vascular/citologia , Efrina-A1/antagonistas & inibidores , Efrina-A1/genética , Efrina-A4/antagonistas & inibidores , Efrina-A4/genética , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
13.
PLoS One ; 7(2): e32019, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363788

RESUMO

Cells of the neural stem cell lineage in the adult subventricular zone (SVZ) respond to brain insult by increasing their numbers and migrating through the rostral migratory stream. However, in most areas of the brain other than the SVZ and the subgranular zone of the dentate gyrus, such a regenerative response is extremely weak. Even these two neurogenic regions do not show extensive regenerative responses to repair tissue damage, suggesting the presence of an intrinsic inhibitory microenvironment (niche) for stem cells. In the present study, we assessed the effects of injection of clustered ephrin-A1-Fc into the lateral ventricle of rats with unilateral nigrostriatal dopamine depletion. Ephrin-A1-Fc clustered by anti-IgG(Fc) antibody was injected stereotaxically into the ipsilateral lateral ventricle of rats with unilateral nigrostriatal lesions induced by 6-hydroxydopamine, and histologic analysis and behavioral tests were performed. Clustered ephrin-A1-Fc transformed the subventricular niche, increasing bromodeoxyuridine-positive cells in the subventricular area, and the cells then migrated to the striatum and differentiated to dopaminergic neurons and astrocytes. In addition, clustered ephrin-A1-Fc enhanced angiogenesis in the striatum on the injected side. Along with histologic improvements, behavioral derangement improved dramatically. These findings indicate that the subventricular niche possesses a mechanism for regulating both stem cell and angiogenic responses via an EphA-mediated signal. We conclude that activation of EphA receptor-mediated signaling by clustered ephrin-A1-Fc from within the lateral ventricle could potentially be utilized in the treatment of neurodegenerative diseases such as Parkinson's disease.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Efrina-A1/uso terapêutico , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Neovascularização Fisiológica , Neurogênese , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Proteínas Recombinantes de Fusão/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Bromodesoxiuridina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Rastreamento de Células , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Efrina-A1/administração & dosagem , Efrina-A1/farmacologia , Efrina-A4/metabolismo , Humanos , Fragmentos Fc das Imunoglobulinas/administração & dosagem , Fragmentos Fc das Imunoglobulinas/farmacologia , Injeções Intraventriculares , Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/metabolismo , Ventrículos Laterais/patologia , Camundongos , Neostriado/irrigação sanguínea , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Neostriado/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Doença de Parkinson/patologia , Ratos , Receptores da Família Eph/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais/efeitos dos fármacos
14.
Platelets ; 23(8): 617-25, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22273509

RESUMO

The main responses of P2Y(1) ligation are platelet shape change and transient aggregation while P2Y(12) ligation amplifies P2Y(1)-induced aggregation and accelerates aggregation, secretion and thromboxane A(2) production induced by other agonist-receptor complexes. We searched for new targets of P2Y signalling using micro-arrays with 144 peptides representing known phosphosites of protein tyrosine kinases. ADP induced phosphorylation of peptides representing surface receptors, second messenger enzymes and cytoskeletal proteins. Strong phosphorylation was found in peptides representing Ephrin-receptor family members. Blockade of P2Y(1/12) inhibited phosphorylation of EphA4- and EphB1-peptides on micro-arrays. The EphA2/4 inhibitor 2,5-dimethylpyrrolyl benzoic acid derivative interfered with P2Y(1/12)-induced EphA4 phosphorylation, left P2Y(1)-induced aggregation unchanged but inhibited with P2Y(12)-induced secretion, second phase aggregation and thrombus formation on collagen at 1600 s(-1). These results show that platelet EphA4 is an important intermediate in P2Y(12)-induced granule secretion.


Assuntos
Plaquetas/enzimologia , Fosfoproteínas/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptor EphA4/agonistas , Receptores Purinérgicos P2Y12/metabolismo , Vesículas Secretórias/enzimologia , Difosfato de Adenosina/farmacologia , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Efrina-A4/agonistas , Efrina-A4/metabolismo , Humanos , Ligantes , Fosfoproteínas/agonistas , Fosfoproteínas/antagonistas & inibidores , Fosforilação , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Análise Serial de Proteínas , Antagonistas do Receptor Purinérgico P2/farmacologia , Receptor Cross-Talk , Receptor EphA4/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Vesículas Secretórias/efeitos dos fármacos , Transdução de Sinais
15.
J Cell Physiol ; 227(6): 2330-40, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21809346

RESUMO

In the bi-directional signaling system comprising ephrins (EFNs) and ephrin receptors (Ephs), both EFNs and Ephs simultaneously function both as ligands and as receptors. Importantly, the EFN/Eph system is deregulated in human cancers and has been implicated in the metastatic processes because of its effects on the adhesion and migration of epithelial cells. The idiosyncratic function of Ephs, membrane-bound receptor kinases, as extracellular signaling ligands, has not been extensively studied. This prompted us to explore the transcriptional targets regulated by Ephs acting solely as ligands. To define the ligand function of EphB2 in human epidermal keratinocytes, we treated these cells with EphB2 as Fc-conjugate dimmers, which thus act exclusively as extracellular ligands. We compared the EphB2 and EFNA4 effects during a 48 h time course, using transcriptional profiling. We found that EphB2, acting as a ligand, promotes epidermal differentiation. For example, EphB2 induces expression of markers of epidermal differentiation, including keratins KRT1 and KRT10, SPRRs, desmosomal proteins and cell cycle inhibitors, while suppressing basal layer markers, integrins and cell cycle proteins. The effects of EphB2 are delayed relative to those of EFNA4. Unlike EFNA4, EphB2 did not induce lipid metabolism proteins, this particular aspect of epidermal differentiation seems not to be regulated by EphB2. Our results define the transcriptional targets of the reverse signaling by EphB2 acting exclusively as a ligand and begin to characterize this intriguing function of Ephs.


Assuntos
Diferenciação Celular , Epiderme/enzimologia , Queratinócitos/enzimologia , Receptor EphB2/metabolismo , Transdução de Sinais , Biomarcadores/metabolismo , Diferenciação Celular/genética , Movimento Celular , Células Cultivadas , Efrina-A4/metabolismo , Células Epidérmicas , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Humanos , Ligantes , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/genética , Fatores de Tempo , Transcrição Gênica
16.
Sheng Li Xue Bao ; 63(6): 498-504, 2011 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-22193443

RESUMO

The aim of the study was to investigate the effect of chondroitinase ABC (ChABC) on ephrin A4 (EphA4) expression after spinal cord impairment (SCI) in rats. Adult female SD rats were randomly divided into three groups: ChABC group, normal saline (NS) group and sham group. In the ChABC and NS group, the SCI model was produced by the spinal cord hemisection. The rats in sham group received sham operation without the spinal hemisection. ChABC and NS groups were intrathecally injected with ChABC and normal saline, respectively. At different time points after SCI, injured region of spinal cord was taken out as sample. The levels of EphA4 expression were measured by immunofluorescence technique and Western blot. And the expressions of growth associated protein 43 (GAP-43) and glial fibrillary acidic protein (GFAP) were detected using double immunofluorescent staining. Immunofluorescent results showed that, compared with that in sham group, the EphA4 expression was significantly down-regulated on 1, 3 and 7 d after SCI, then up-regulated on 14 and 21 d after SCI in NS group. In ChABC group, the level of EphA4 expression was significantly less than that in the NS group during the whole time after SCI. Western blot showed an identical result to that of immunofluorescent staining. The double labeling results showed that on 3 d after SCI, the number of GFAP, glial cells marker, positive cells in NS group was lower than that in sham group, but higher than that in ChABC group. Moreover, GAP-43 was not detected in all three groups. These results suggest that ChABC can decrease the expression level of EphA4 and reduce the number of astrocytes after SCI, thus improving microenvironment of the injured region and promoting axonal growth and extension.


Assuntos
Condroitina ABC Liase/farmacologia , Efrina-A4/metabolismo , Neurônios/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Astrócitos/patologia , Feminino , Fármacos Neuroprotetores/farmacologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Medula Espinal/patologia
17.
PLoS Pathog ; 7(10): e1002309, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22028653

RESUMO

The IAPE (Intracisternal A-type Particles elements with an Envelope) family of murine endogenous retroelements is present at more than 200 copies in the mouse genome. We had previously identified a single copy that proved to be fully functional, i.e. which can generate viral particles budding out of the cell and infectious on a series of cells, including human cells. We also showed that IAPE are the progenitors of the highly reiterated IAP elements. The latter are now strictly intracellular retrotransposons, due to the loss of the envelope gene and re-localisation of the associated particles in the course of evolution. In the present study we searched for the cellular receptor of the IAPE elements, by using a lentiviral human cDNA library and a pseudotype assay on transduced cells. We identified Ephrin A4, a GPI-anchored molecule involved in several developmental processes, as a receptor for the IAPE pseudotypes. We also found that the other 4 members of the Ephrin A family -but not those of the closely related Ephrin B family- were also able to mediate IAPE cell entry, thus significantly increasing the amount of possible cell types susceptible to IAPE infection. We show that these include mouse germline cells, as illustrated by immunohistochemistry experiments, consistent with IAPE genomic amplification by successive re-infection. We propose that the uncovered properties of the identified receptors played a role in the accumulation of IAPE elements in the mouse genome, and in the survival of a functional copy.


Assuntos
Retrovirus Endógenos/patogenicidade , Efrinas/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Infecções por Retroviridae/virologia , Animais , Chlorocebus aethiops , Retrovirus Endógenos/genética , Efrina-A4/genética , Efrina-A4/metabolismo , Efrinas/genética , Feminino , Regulação Viral da Expressão Gênica , Biblioteca Gênica , Genes de Partícula A Intracisternal/genética , Genes Virais , Células HEK293 , Humanos , Camundongos , Ovário/metabolismo , Infecções por Retroviridae/metabolismo , Células Vero , Replicação Viral
18.
Hum Reprod ; 26(2): 299-306, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21138904

RESUMO

BACKGROUND: During implantation, the human embryo invades endometrial stromal tissues, reducing the intercellular connections among epithelial cell layers. Since Eph-ephrin interaction can induce repulsive forces to control cell position and movement, we examined the possible involvement of this system in intercellular dissociation among endometrial epithelial cells. METHODS: The expression of Eph A receptor on human endometrial epithelial cells and endometrial carcinoma-derived Ishikawa cells was examined by RT-PCR, immunohistochemistry and western blotting. The effects of recombinant ephrin A1 on Eph A2 phosphorylation in Ishikawa cells were also examined by western blotting. A permeability assay was performed to determine the effects of ephrin A1 on cell-to-cell adhesion. RESULTS: Eph A1, A2 and A4 mRNAs were detected in human endometrial epithelial cells and Ishikawa cells, and ephrin A1 was present in human blastocysts. Immunohistochemical staining showed that Eph A1, A2 and A4 receptors were expressed on the cell surface region of luminal and glandular epithelial cells in human endometrium in both the proliferative and secretory phase. The presence of Eph A2 protein in the human endometrium was confirmed by western blot analysis. Recombinant ephrin A1 was bound to Ishikawa cells and induced phosphorylation of Eph A2 expressed in Ishikawa cells. In addition, stimulation by ephrin A1 for 20 min increased the permeability of monolayer Ishikawa cells versus control cultures (P < 0.01), without affecting cell viability. CONCLUSIONS: This study demonstrated that the Eph-ephrin A system can promote intercellular dissociation in Ishikawa cells suggesting an important role in the initial step of embryo implantation by opening the endometrial epithelial cell barrier.


Assuntos
Implantação do Embrião/fisiologia , Blastocisto/metabolismo , Carcinoma/metabolismo , Linhagem Celular Tumoral , Neoplasias do Endométrio/metabolismo , Endométrio/metabolismo , Efrina-A1/metabolismo , Efrina-A2/metabolismo , Efrina-A4/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Microesferas , Permeabilidade , Fosforilação , RNA Mensageiro/metabolismo , Receptores da Família Eph/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Azul Tripano
19.
Cell Adh Migr ; 4(3): 400-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20473036

RESUMO

Cortical interneurons are born in the proliferative zones of the ganglionic eminences in the subpallium and migrate to the developing cortex along well-defined tangential routes. The mechanisms regulating interneuron migration are not completely understood. Here we examine the role of class-A members of the Eph/ephrin system in directing the migration of interneurons. In situ hybridizations demonstrated that ephrin-A3 is expressed in the developing striatum, an area that is strictly avoided by migrating cortical interneurons in vivo, which express the EphA4 receptor. We then examined interneuron migration in grafting experiments, where explants of the medial ganglionic eminence (MGE) from enhanced green fluorescent protein-expressing transgenic mice were homotopically grafted into host slices from wildtype littermate embryos. After blocking ephrin-A ligands, many interneurons invaded the striatal anlage. Moreover, stripe assay experiments revealed that ephrin-A3 acts as a repellent cue for neurons from the medial ganglionic eminence. Downregulation of the EphA4 receptor via siRNA transfection reduced the repulsive effect of ephrin-A3, indicating that EphA4 mediates at least in part the repulsive effect of ephrin-A3 on these cells. Together, these results suggest that ephrin-A3 acts as a repulsive cue that restricts cortical interneurons from entering inappropriate regions and thus contributes to define the migratory route of cortical interneurons.


Assuntos
Movimento Celular , Córtex Cerebral/citologia , Efrina-A3/metabolismo , Efrina-A4/metabolismo , Interneurônios/citologia , Telencéfalo/citologia , Animais , Bioensaio , Regulação para Baixo , Humanos , Interneurônios/transplante , Ligantes , Eminência Mediana/citologia , Camundongos , Modelos Biológicos , Neostriado/metabolismo , Neostriado/patologia , Telencéfalo/metabolismo
20.
Cell Adh Migr ; 4(3): 363-7, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20400865

RESUMO

A better knowledge of the molecular mechanisms that govern leukocyte trafficking is of major relevance for the clinics. Both normal and pathologic extravasation of lymphocytes are a fine-tuned spatio-temporal event of migratory path-finding likely regulated by molecular guidance cues underlying cell movements in other systems. We have recently reported that members of the Eph family of receptor tyrosine kinases, namely EphA2 and one of its ligands, ephrin-A4 (EFNA4) can mediate in the traffic of chronic lymphocytic leukemia (CLL) cells and presumably of normal B cells between the blood and the tissues. The importance of EphA2-EFNA4 interactions at the endothelium-lymphocyte interface during TEM could rely on their attractive/repulsive properties. In the present work, we expand on those results by including additional insights and new suggestions for future studies that discuss the relevance of these molecules in overall cell adhesion dynamic events.


Assuntos
Efrinas/metabolismo , Linfócitos/citologia , Linfócitos/metabolismo , Receptores da Família Eph/metabolismo , Transdução de Sinais , Migração Transendotelial e Transepitelial , Animais , Efrina-A4/metabolismo , Humanos , Leucemia Linfocítica Crônica de Células B/enzimologia , Leucemia Linfocítica Crônica de Células B/patologia , Linfonodos/enzimologia , Linfonodos/patologia , Receptor EphA2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...