Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Parasitol ; 266: 18-26, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30736944

RESUMO

In vitro and in vivo studies were performed to assess whether Eimeria tenella (E. tenella) oocysts, exposed to low energy electron irradiation (LEEI), might be considered potential vaccine candidates against cecal coccidiosis. Sporulated oocysts were exposed to LEEI of 0.1 kGy to 10.0 kGy. Reproduction inhibition assays (RIA) were performed in MDBK cells to assess infectivity of sporozoites excysted from irradiated and non-irradiated oocysts. LEEI of 0.1 kGy or 0.5 kGy resulted in 73.2% and 86.5% inhibition of in vitro reproduction (%IRIA), respectively. Groups of 12 one day old (D1) chicken were orally inoculated with Paracox®-8 (G1), 2.0 × 103 non-irradiated oocysts (G2) or 1.0 × 104 irradiated oocysts exposed to LEEI of 0.1 kGy (G3, G4) or 0.5 kGy (G5). Chicken of groups G1, G2, G4 and G5 were challenged 3 weeks later (D21) by a single inoculation of 7.5 × 104 non-attenuated oocysts of the same strain while G3 remained unchallenged. All chickens were subject to necropsy 7 days after challenge (D28) to estimate lesion scores (LS) and oocyst index (OI). A positive control (PC, non-vaccinated, challenged) and a negative control (NC, non-vaccinated, non-challenged) were kept in parallel. Chicken of group G5 had similar weight gain as the Paracox®-8 group (G1) after challenge and higher weight gains as compared to the other vaccinated groups. Feed conversion ratio (FCR) did not differ between chickens inoculated with oocysts irradiated with 0.5 kGy (G5) and negative control (NC) before challenge (1.25-1.52). After challenge FCR was 1.99 (G5) to 2.23 (G4) in the vaccinated chicken compared to 1.76 in group NC. LS and OI were significantly lower in all vaccinated groups as compared to group PC. Progeny oocysts collected from the feces of chickens following vaccination with irradiated oocysts exhibited lower in vitro infectivity/reproduction in MDBK cells with %IRIA of 89.7% and 82.4% for progeny of oocysts irradiated with 0.5 kGy and 0.1 kGy, respectively, suggesting hereditary attenuation by LEEI treatment. Seroconversion was demonstrated by ELISA before challenge (D21) in all vaccinated groups, however, chicken inoculated with irradiated oocysts displayed higher antibody levels than those inoculated with precocious oocysts (G1). In Western blot analysis chicken vaccinated with virulent (G2) or 0.1 kGy-irradiated E. tenella oocysts (G3, G4) showed more protein bands compared to G5 (0.5 kGy). We conclude that LEEI could be a promising technology for production of attenuated oocyst vaccines.


Assuntos
Coccidiose/veterinária , Eimeria tenella/efeitos da radiação , Elétrons , Oocistos/efeitos da radiação , Vacinas Protozoárias/imunologia , Vacinação/veterinária , Animais , Anticorpos Antiprotozoários/sangue , Galinhas/imunologia , Galinhas/parasitologia , Coccidiose/prevenção & controle , Fezes/parasitologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Protozoárias/administração & dosagem , Soroconversão , Esporozoítos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
2.
Parasitol Res ; 84(6): 437-41, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9660131

RESUMO

Sporulated oocysts of a field strain (FS-111) and a laboratory strain (WIS) of Eimeria tenella were exposed to 0, 50, 100, 150, or 200 Gy of gamma-radiation from a 60Co source. Irradiated oocysts of WIS and FS-111 were not significantly more fragile after irradiation as shown by the release of sporocysts after 5-105 s of vortex agitation with glass beads. Excystation was normal in both strains after treatment of the sporocysts with trypsin and sodium taurodeoxycholate, even in groups exposed to 200 Gy of radiation. Sporozoite release from irradiated sporocysts was more rapid than that from unirradiated sporocysts, primarily because of a shorter lag phase during the first 30 min. Irradiated sporozoites were slower to parasitize cultured chick kidney cells than were control sporozoites (4 h postinoculation), but after 24 h there was no significant difference (P < 0.05) between irradiated and control groups except for the WIS treated with 200 Gy. After 48 h, developing schizonts were reduced by 77-94% on exposure to 50-200 Gy. Strain FS-111 did not develop as well as WIS in vitro, but the effect of irradiation was similar. When irradiated oocysts of WIS or FS-111 were inoculated into chickens the prepatent period was unaffected, but fewer oocysts were produced, lesion scores were lower, and the weight gain was less strongly affected in proportion to the doses of radiation. These results suggest that the effects of radiation damage were largely confined to the mechanism of nuclear and cellular reproduction rather than other physiological processes.


Assuntos
Eimeria tenella/efeitos da radiação , Raios gama , Animais , Células Cultivadas , Galinhas , Coccidiose/parasitologia , Coccidiose/veterinária , Relação Dose-Resposta à Radiação , Eimeria tenella/patogenicidade , Eimeria tenella/fisiologia , Fezes/parasitologia , Rim/parasitologia , Doenças das Aves Domésticas/parasitologia , Reprodução , Virulência/efeitos da radiação
3.
Exp Parasitol ; 80(4): 645-53, 1995 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-7758545

RESUMO

Eimeria tenella sporozoites were exposed in the oocyst form to either an optimum (15 kRad) or a high (25 kRad) dose of gamma irradiation and used to infect cultured chicken embryo fibroblasts (CEF). The sporozoite-infected CEF monolayer was pulsed at time of infection or 24 hr postinfection with [3H]uracil and harvested 24 hr later to measure sporozoite metabolic activity. Sporozoites exposed to either 0 or 15 kRad gamma irradiation incorporated similar (P > 0.05) amounts of [3H]uracil during the first and second 24-hr periods after infection. However, there was a significant decrease (P < 0.05) in [3H]uracil uptake by 25 kRad-exposed sporozoites compared to nonirradiated and 15 kRad-irradiated sporozoites. Indirect immunofluorescence (IFA) staining of E. tenella sporozoite-infected CEFs using monoclonal antibodies (MAb) specific for somatic or "metabolic" antigens showed that gamma irradiation also affected the release of intracellular metabolites. Regardless of irradiation dose, extracellular sporozoites exhibited similar intensity of immunofluorescence when stained with either somatic antigen- or metabolic antigen-reactive MAb. Also, somatic antigen expression was similar for intracellular parasites irrespective of radiation dose. However, metabolic 7- to 10-kDa antigen expression by 25 kRad-irradiated sporozoites was markedly reduced compared to nonirradiated or 15 kRad-irradiated intracellular sporozoites. These results were corroborated by immunostaining sporozoite/CEF protein-impregnated Immobilon membrane with somatic or metabolic 7- to 10-kDa antigen-reactive MAb. These findings may indicate that the metabolic 7- to 10-kDa antigen is involved in protective immunity elicited by nonirradiated and/or 15 kRad-irradiated E. tenella sporozoites.


Assuntos
Antígenos de Protozoários/biossíntese , Eimeria tenella/efeitos da radiação , Uracila/metabolismo , Animais , Células Cultivadas , Embrião de Galinha , Eimeria tenella/imunologia , Eimeria tenella/metabolismo , Fibroblastos/parasitologia , Imunofluorescência , Raios gama , Immunoblotting , Proteínas de Protozoários/análise , Proteínas de Protozoários/imunologia
4.
Infect Immun ; 59(11): 4042-8, 1991 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-1937763

RESUMO

Sporulated oocysts of the protozoan parasite Eimeria tenella were attenuated by exposure to various doses of X-radiation to inhibit intracellular replication and thus determine whether sporozoites alone can induce a protective immune response. Exposure to doses greater than 15-kilorads had a significant effect on development, as indicated by the absence of oocyst production in chickens infected with parasites treated with 20 or 30 kilorads of radiation. Infection with nonirradiated or 15-kilorad-exposed parasites led to either normal or reduced oocyst shedding. Equivalent protection was afforded chickens inoculated with a minimum immunizing dose of either nonirradiated or 20-kilorad-irradiated E. tenella oocysts. Immunofluorescence staining of cecal tissue from chickens inoculated with 10(7) nonirradiated or 20- or 30-kilorad-irradiated oocysts with stage-specific monoclonal antibodies showed no significant difference in sporozoite invasion between treatment groups. Normal merogonic development was observed at appropriate times (48, 60, 72, and 96 h) postinfection in chickens inoculated with nonirradiated oocysts. In contrast, irradiated parasites exhibited minimal merogonic development at 48 h postinfection. Furthermore, no merogonic stages were observed at times of otherwise peak merozoite development (60, 72, and 96 h) in cecal tissue from chickens inoculated with irradiated parasites. Infection of chicken cells with irradiated or nonirradiated parasites in vitro corroborated these findings and indicate that events early after sporozoite invasion induce a protective immune response against this parasite.


Assuntos
Coccidiose/imunologia , Eimeria tenella/imunologia , Animais , Antígenos de Protozoários/metabolismo , Peso Corporal , Galinhas/imunologia , Coccidiose/patologia , Eimeria tenella/crescimento & desenvolvimento , Eimeria tenella/metabolismo , Eimeria tenella/efeitos da radiação , Intestinos/parasitologia , Intestinos/patologia , Proteínas de Protozoários/metabolismo , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...