Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Signal Behav ; 15(4): 1743518, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32213104

RESUMO

High salinity and waterlogging are two stress factors that often occur simultaneously in nature, particularly during the rainy season in the Yellow River Delta (YRD) of China. An attractive approach to improve the saline-alkali soil produced by waterlogging and high salt is to use plants for wetland ecosystem restoration. In this work, we examined the ecological adaptability of Elaeagnus angustifolia L. under combined waterlogging and salt stress, to evaluate the potential of this species for introduction to the YRD. We monitored the effects of salt plus waterlogging co-stress on the anatomy, physiology, and enzymatic systems in E. angustifolia seedlings. Salt alone and waterlogging alone inhibited the growth of the seedlings, while salt plus waterlogging co-stress reduced this growth inhibition. Furthermore, E. angustifolia seedlings resisted the salt plus waterlogging co-stress by increasing porosity, accumulating more inorganic ions and organic solutes, and increasing antioxidant enzyme activities to maintain high photosynthetic rates and membrane stability and thus avoid damage. These findings support the inclusion of E. angustifolia in the ecological restoration of the YRD.


Assuntos
Adaptação Fisiológica , Elaeagnaceae/fisiologia , Plântula/fisiologia , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Água/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Ascorbato Peroxidases/metabolismo , Elaeagnaceae/efeitos dos fármacos , Elaeagnaceae/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Porosidade , Salinidade , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento
2.
PLoS One ; 13(1): e0191552, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29360848

RESUMO

Elaeagnus angustifolia is one of the most extensively afforested tree species in environment-harsh regions of northern China. Despite its exceptional tolerance to saline soil, the intrinsic adaptive physiology has not been revealed. In this study, we investigated the growth, organ-level ionic relations and organic osmoregulation of the seedlings hydroponically treated with 0, 100 and 200 mM NaCl for 30 days. We found that the growth characteristics and the whole-plant dry weight were not obviously stunted, but instead, were even slightly stimulated by the treatment of 100 mM NaCl. In contrast, these traits were significantly inhibited by 200 mM NaCl treatment. Interestingly, as compared with the control (0 mM NaCl), both 100 and 200 mM NaCl treatments had a promotional effect on root growth as evidenced by 26.3% and 2.4% increases in root dry weight, respectively. Roots had the highest Na+ and Cl- concentrations and obviously served as the sink for the net increased Na+ and Cl-, while, stems might maintain the capacity of effective Na+ constraint, resulting in reduced Na+ transport to the leaves. K+, Ca2+ and Mg2+ concentrations in three plant organs of NaCl-treated seedlings presented a substantial decline, eventually leading to an enormously drop of K+/Na+ ratio. As the salt concentration increased, proline and soluble protein contents continuously exhibited a prominent and a relatively tardy accumulation, respectively, whereas soluble sugar firstly fell to a significant level and then regained to a level that is close to that of the control. Taken together, our results provided quantitative measures that revealed some robust adaptive physiological mechanisms underpinning E. angustifolia's moderately high salt tolerance, and those mechanisms comprise scalable capacity for root Na+ and Cl- storage, effectively constrained transportation of Na+ from stems to leaves, root compensatory growth, as well as an immediate and prominent leaf proline accumulation.


Assuntos
Elaeagnaceae/efeitos dos fármacos , Osmorregulação , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Adaptação Fisiológica , Cloretos/metabolismo , Elaeagnaceae/crescimento & desenvolvimento , Elaeagnaceae/fisiologia , Transporte de Íons , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Potássio/metabolismo , Plântula/metabolismo , Sódio/metabolismo
3.
Mol Cells ; 23(1): 115-21, 2007 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-17464220

RESUMO

Root nodule formation is controlled by plant hormones such as auxin. Auxin-repressed protein (ARP) genes have been identified in various plant species but their functions are not clear. We have isolated a full-length cDNA clone (EuNOD-ARP1) showing high sequence homology to previously identified ARP genes from root nodules of Elaeagnus umbellata. Genomic Southern hybridization showed that there are at least four ARP-related genes in the genome of E. umbellata. The cDNA clone encodes a polypeptide of 120 amino acid residues with no signal peptide or organelle-targeting signals, indicating that it is a cytosolic protein. Its cytosolic location was confirmed using Arabidopsis protoplasts expressing a EuNOD-ARP1:smGFP fusion protein. Northern hybridization showed that EuNOD-ARP1 expression was higher in root nodules than in leaves or uninoculated roots. Unlike the ARP genes of strawberry and black locust, which are negatively regulated by exogenous auxin, EuNOD-ARP1 expression is induced by auxin in leaf tissue of E. umbellata. In situ hybridization revealed that EuNOD-ARP1 is mainly expressed in the fixation zone of root nodules.


Assuntos
Elaeagnaceae/metabolismo , Ácidos Indolacéticos/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/efeitos dos fármacos , Homologia de Sequência de Aminoácidos , Regulação para Cima/efeitos dos fármacos , Sequência de Aminoácidos , Southern Blotting , Elaeagnaceae/efeitos dos fármacos , Elaeagnaceae/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Genoma de Planta/efeitos dos fármacos , Dados de Sequência Molecular , Família Multigênica , Filogenia , Proteínas de Plantas/química , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nódulos Radiculares de Plantas/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...