Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36.703
Filtrar
1.
ACS Appl Bio Mater ; 7(7): 4642-4653, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38967050

RESUMO

Titanium-based implants have long been studied and used for applications in bone tissue engineering, thanks to their outstanding mechanical properties and appropriate biocompatibility. However, many implants struggle with osseointegration and attachment and can be vulnerable to the development of infections. In this work, we have developed a composite coating via electrophoretic deposition, which is both bioactive and antibacterial. Mesoporous bioactive glass particles with gentamicin were electrophoretically deposited onto a titanium substrate. In order to validate the hypothesis that the quantity of particles in the coatings is sufficiently high and uniform in each deposition process, an easy-to-use image processing algorithm was designed to minimize human dependence and ensure reproducible results. The addition of loaded mesoporous particles did not affect the good adhesion of the coating to the substrate although roughness was clearly enhanced. After 7 days of immersion, the composite coatings were almost dissolved and released, but phosphate-related compounds started to nucleate at the surface. With a simple and low-cost technique like electrophoretic deposition, and optimized stir and suspension times, we were able to synthesize a hemocompatible coating that significantly improves the antibacterial activity when compared to the bare substrate for both Gram-positive and Gram-negative bacteria.


Assuntos
Antibacterianos , Quitosana , Eletroforese , Gentamicinas , Vidro , Teste de Materiais , Nanopartículas , Tamanho da Partícula , Propriedades de Superfície , Titânio , Gentamicinas/farmacologia , Gentamicinas/química , Titânio/química , Titânio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Vidro/química , Nanopartículas/química , Quitosana/química , Quitosana/farmacologia , Porosidade , Testes de Sensibilidade Microbiana , Humanos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Próteses e Implantes , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
2.
ACS Nano ; 18(23): 15013-15024, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38822455

RESUMO

Electrophoretic transport plays a pivotal role in advancing sensing technologies. So far, systematic studies have focused on the translocation of canonical B-form or A-form nucleic acids, while direct RNA analysis is emerging as the new frontier for nanopore sensing and sequencing. Here, we compare the less-explored dynamics of noncanonical RNA:DNA hybrids in electrophoretic transport to the well-researched transport of B-form DNA. Using DNA/RNA nanotechnology and solid-state nanopores, the translocation of RNA:DNA (RD) and DNA:DNA (DD) duplexes was examined. Notably, RD duplexes were found to translocate through nanopores faster than DD duplexes, despite containing the same number of base pairs. Our experiments reveal that RD duplexes present a noncanonical helix, with distinct transport properties from B-form DD molecules. We find that RD and DD molecules, with the same contour length, move with comparable velocity through nanopores. We examined the physical characteristics of both duplex forms using atomic force microscopy, atomistic molecular dynamics simulations, agarose gel electrophoresis, and dynamic light scattering measurements. With the help of coarse-grained and molecular dynamics simulations, we find the effective force per unit length applied by the electric field to a fragment of RD or DD duplex in nanopores with various geometries or shapes to be approximately the same. Our results shed light on the significance of helical form in nucleic acid translocation, with implications for RNA sensing, sequencing, and the molecular understanding of electrophoretic transport.


Assuntos
DNA , Eletroforese , Simulação de Dinâmica Molecular , Nanoporos , RNA , RNA/química , DNA/química , Conformação de Ácido Nucleico , Nanotecnologia/métodos
3.
Anal Chem ; 96(24): 10074-10083, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38848224

RESUMO

Numerous high-performance nanotechnologies have been developed, but their practical applications are largely restricted by the nanomaterials' low stabilities and high operation complexity in aqueous substrates. Herein, we develop a simple and high-reliability hydrogel-based nanotechnology based on the in situ formation of Au nanoparticles in molybdenum disulfide (MoS2)-doped agarose (MoS2/AG) hydrogels for electrophoresis-integrated microplate protein recognition. After the incubation of MoS2/AG hydrogels in HAuCl4 solutions, MoS2 nanosheets spontaneously reduce Au ions, and the hydrogels are remarkably stained with the color of as-synthetic plasmonic Au hybrid nanomaterials (Au staining). Proteins can precisely mediate the morphologies and optical properties of Au/MoS2 heterostructures in the hydrogels. Consequently, Au staining-based protein recognition is exhibited, and hydrogels ensure the comparable stabilities and sensitivities of protein analysis. In comparison to the fluorescence imaging and dye staining, enhanced sensitivity and recognition performances of proteins are implemented by Au staining. In Au staining, exfoliated MoS2 semiconductors directly guide the oriented growth of plasmonic Au nanostructures in the presence of formaldehyde, showing environment-friendly features. The Au-stained hydrogels merge the synthesis and recognition applications of plasmonic Au nanomaterials. Significantly, the one-step incubation of the electrophoretic hydrogels leads to high simplicity of operation, largely challenging those multiple-step Ag staining routes which were performed with high complexity and formaldehyde toxicity. Due to its toxic-free, simple, and sensitive merits, the Au staining integrated with electrophoresis-based separation and microplate-based high-throughput measurements exhibits highly promising and improved practicality of those developing nanotechnologies and largely facilitates in-depth understanding of biological information.


Assuntos
Dissulfetos , Ouro , Hidrogéis , Molibdênio , Molibdênio/química , Dissulfetos/química , Ouro/química , Hidrogéis/química , Nanopartículas Metálicas/química , Eletroforese , Proteínas/análise , Proteínas/química
4.
Langmuir ; 40(26): 13505-13514, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38896798

RESUMO

Development of an energy-driven self-assembly process is a matter of interest for understanding and mimicking diverse ranges of biological and environmental patterns in a synthetic system. In this article, first we demonstrate transient and temporally controlled self-assembly of a DNA-histone condensate where trypsin (already present in the system) hydrolyzes histone, resulting in disassembly. Upon performing this dynamic self-assembly process in a gel matrix under an electric field, we observe diverse kinds of DNA patterning across the gel matrix depending on the amount of trypsin, incubation time of the reaction mixture, and gel porosity. Notably, here, the micrometer-sized DNA-histone condensate does not move through the gel and only free DNA can pass; therefore, transport and accumulation of DNA at different zones depend on the release rate of DNA by trypsin. Furthermore, we show that the viscoelasticity of the native gel increases in the presence of DNA and a pattern over gel viscoelasticity at different zones can be achieved by tuning the amount of enzyme, i.e., the dissociation rate of the DNA-histone condensate. We believe enabling spatiotemporally controlled DNA patterning by applying an electric field will be potentially important in designing different kinds of spatiotemporally distinct dynamic materials.


Assuntos
DNA , Elasticidade , Histonas , Hidrogéis , Tripsina , DNA/química , Histonas/química , Histonas/metabolismo , Tripsina/química , Tripsina/metabolismo , Hidrogéis/química , Viscosidade , Eletroforese
5.
Biosensors (Basel) ; 14(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38920601

RESUMO

Optically induced dielectrophoresis (ODEP)-based microparticle sorting and separation is regarded as promising. However, current methods normally lack the downstream process for the transportation and collection of separated microparticles, which could limit its applications. To address this issue, an ODEP microfluidic chip encompassing three microchannels that join only at the central part of the microchannels (i.e., the working zone) was designed. During operation, three laminar flows were generated in the zone, where two dynamic light bar arrays were designed to sort and separate PS (polystyrene) microbeads of different sizes in a continuous manner. The separated PS microbeads were then continuously transported in laminar flows in a partition manner for the final collection. The results revealed that the method was capable of sorting and separating PS microbeads in a high-purity manner (e.g., the microbead purity values were 89.9 ± 3.7, 88.0 ± 2.5, and 92.8 ± 6.5% for the 5.8, 10.8, and 15.8 µm microbeads harvested, respectively). Overall, this study demonstrated the use of laminar flow and ODEP to achieve size-based sorting, separation, and collection of microparticles in a continuous and high-performance manner. Apart from the demonstration, this method can also be utilized for size-based sorting and the separation of other biological or nonbiological microparticles.


Assuntos
Eletroforese , Técnicas Analíticas Microfluídicas , Microesferas , Tamanho da Partícula , Poliestirenos , Microfluídica
6.
Biosensors (Basel) ; 14(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38785691

RESUMO

Antimicrobial resistance (AMR) has become a crucial global health issue. Antibiotic-resistant bacteria can survive after antibiotic treatments, lowering drug efficacy and increasing lethal risks. A microfluidic water-in-oil emulsion droplet system can entrap microorganisms and antibiotics within the tiny bioreactor, separate from the surroundings, enabling independent assays that can be performed in a high-throughput manner. This study presents the development of a label-free dielectrophoresis (DEP)-based microfluidic platform to sort droplets that co-encapsulate Escherichia coli (E. coli) and ampicillin (Amp) and droplets that co-encapsulate Amp-resistant (AmpR) E. coli with Amp only based on the conductivity-dependent DEP force (FDEP) without the assistance of optical analyses. The 9.4% low conductivity (LC) Luria-Bertani (LB) broth diluted with 170 mM mannitol can maintain E. coli and AmpR E. coli growth for 3 h and allow Amp to kill almost all E. coli, which can significantly increase the LCLB conductivity by about 100 µS/cm. Therefore, the AmpR E. coli/9.4%LCLB/Amp where no cells are killed and the E. coli/9.4%LCLB/Amp-containing droplets where most of the cells are killed can be sorted based on this conductivity difference at an applied electric field of 2 MHz and 100 Vpp that generates positive FDEP. Moreover, the sorting ratio significantly decreased to about 50% when the population of AmpR E. coli was equal to or higher than 50% in droplets. The conductivity-dependent DEP-based sorting platform exhibits promising potential to probe the ratio of AmpR E. coli in an unknown bacterial sample by using the sorting ratio as an index.


Assuntos
Farmacorresistência Bacteriana , Eletroforese , Escherichia coli , Escherichia coli/efeitos dos fármacos , Ampicilina/farmacologia , Antibacterianos/farmacologia , Condutividade Elétrica , Técnicas Analíticas Microfluídicas , Testes de Sensibilidade Microbiana
7.
Biosensors (Basel) ; 14(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38785706

RESUMO

The development of gel electrophoresis-based biodetection assays for point-of-care analysis are highly demanding. In this work, we proposed a ratiometric gel electrophoresis-based biosensing platform by employing catalytic hairpin assembly (CHA) process functions as both the signal output and the signal amplification module. Two types of nucleic acids, DNA and miRNA, are chosen for demonstration. The proposed strategy indeed provides a new paradigm for the design of a portable detection platform and may hold great potential for sensitive diagnoses.


Assuntos
Técnicas Biossensoriais , DNA , MicroRNAs , MicroRNAs/análise , Catálise , Eletroforese , Ácidos Nucleicos/análise
8.
ACS Biomater Sci Eng ; 10(6): 3747-3758, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38753577

RESUMO

Improving the clinical translation of nanomedicine requires better knowledge about how nanoparticles interact with biological environments. As researchers are recognizing the importance of understanding the protein corona and characterizing how nanocarriers respond in biological systems, new tools and techniques are needed to analyze nanocarrier-protein interactions, especially for smaller size (<10 nm) nanoparticles like polyamidoamine (PAMAM) dendrimers. Here, we developed a streamlined, semiquantitative approach to assess dendrimer-protein interactions using a nondenaturing electrophoresis technique combined with mass spectrometry. With this protocol, we detect fluorescently tagged dendrimers and proteins simultaneously, enabling us to analyze when dendrimers migrate with proteins. We found that PAMAM dendrimers mostly interact with complement proteins, particularly C3 and C4a, which aligns with previously published data, verifying that our approach can be used to isolate and identify dendrimer-protein interactions.


Assuntos
Dendrímeros , Dendrímeros/química , Dendrímeros/metabolismo , Estudo de Prova de Conceito , Eletroforese , Humanos , Proteínas/química , Proteínas/metabolismo , Nanopartículas/química , Ligação Proteica
9.
Biomed Eng Online ; 23(1): 47, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38750477

RESUMO

BACKGROUND: Electrotransfection is based on application of high-voltage pulses that transiently increase membrane permeability, which enables delivery of DNA and RNA in vitro and in vivo. Its advantage in applications such as gene therapy and vaccination is that it does not use viral vectors. Skeletal muscles are among the most commonly used target tissues. While siRNA delivery into undifferentiated myoblasts is very efficient, electrotransfection of siRNA into differentiated myotubes presents a challenge. Our aim was to develop efficient protocol for electroporation-based siRNA delivery in cultured primary human myotubes and to identify crucial mechanisms and parameters that would enable faster optimization of electrotransfection in various cell lines. RESULTS: We established optimal electroporation parameters for efficient siRNA delivery in cultured myotubes and achieved efficient knock-down of HIF-1α while preserving cells viability. The results show that electropermeabilization is a crucial step for siRNA electrotransfection in myotubes. Decrease in viability was observed for higher electric energy of the pulses, conversely lower pulse energy enabled higher electrotransfection silencing yield. Experimental data together with the theoretical analysis demonstrate that siRNA electrotransfer is a complex process where electropermeabilization, electrophoresis, siRNA translocation, and viability are all functions of pulsing parameters. However, despite this complexity, we demonstrated that pulse parameters for efficient delivery of small molecule such as PI, can be used as a starting point for optimization of electroporation parameters for siRNA delivery into cells in vitro if viability is preserved. CONCLUSIONS: The optimized experimental protocol provides the basis for application of electrotransfer for silencing of various target genes in cultured human myotubes and more broadly for electrotransfection of various primary cell and cell lines. Together with the theoretical analysis our data offer new insights into mechanisms that underlie electroporation-based delivery of short RNA molecules, which can aid to faster optimisation of the pulse parameters in vitro and in vivo.


Assuntos
Diferenciação Celular , Eletroporação , Inativação Gênica , Fibras Musculares Esqueléticas , RNA Interferente Pequeno , Humanos , Eletroporação/métodos , RNA Interferente Pequeno/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citologia , Sobrevivência Celular , Eletroforese , Transfecção/métodos
10.
Lab Chip ; 24(11): 2906-2919, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38721867

RESUMO

Type 2 diabetes mellitus (T2DM) is a prevalent and debilitating disease with numerous health risks, including cardiovascular diseases, kidney dysfunction, and nerve damage. One important aspect of T2DM is its association with the abnormal morphology of red blood cells (RBCs), which leads to increased blood viscosity and impaired blood flow. Therefore, evaluating the mechanical properties of RBCs is crucial for understanding the role of T2DM in cellular deformability. This provides valuable insights into disease progression and potential diagnostic applications. In this study, we developed an open micro-electro-fluidic (OMEF) biochip technology based on dielectrophoresis (DEP) to assess the deformability of RBCs in T2DM. The biochip facilitates high-throughput single-cell RBC stretching experiments, enabling quantitative measurements of the cell size, strain, stretch factor, and post-stretching relaxation time. Our results confirm the significant impact of T2DM on the deformability of RBCs. Compared to their healthy counterparts, diabetic RBCs exhibit ∼27% increased size and ∼29% reduced stretch factor, suggesting potential biomarkers for monitoring T2DM. The observed dynamic behaviors emphasize the contrast between the mechanical characteristics, where healthy RBCs demonstrate notable elasticity and diabetic RBCs exhibit plastic behavior. These differences highlight the significance of mechanical characteristics in understanding the implications for RBCs in T2DM. With its ∼90% sensitivity and rapid readout (ultimately within a few minutes), the OMEF biochip holds potential as an effective point-of-care diagnostic tool for evaluating the deformability of RBCs in individuals with T2DM and tracking disease progression.


Assuntos
Diabetes Mellitus Tipo 2 , Deformação Eritrocítica , Eritrócitos , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Eritrócitos/citologia , Eritrócitos/patologia , Dispositivos Lab-On-A-Chip , Eletroforese/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento
11.
ACS Appl Mater Interfaces ; 16(21): 26984-26997, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38753459

RESUMO

Lipid nanoparticles (LNPs) are clinically advanced nonviral gene delivery vehicles with a demonstrated ability to address viral, oncological, and genetic diseases. However, the further development of LNP therapies requires rapid analytical techniques to support their development and manufacturing. The method developed and described in this paper presents an approach to rapidly and accurately analyze LNPs for optimized therapeutic loading by utilizing an electrophoresis microfluidic platform to analyze the composition of LNPs with different clinical lipid compositions (Onpattro, Comirnaty, and Spikevax) and nucleic acid (plasmid DNA (pDNA) and messenger RNA (mRNA)) formulations. This method enables the high-throughput screening of LNPs using a 96- or 384-well plate with approximate times of 2-4 min per sample using a total volume of 11 µL. The lipid analysis requires concentrations approximately between 109 and 1010 particles/mL and has an average precision error of 10.4% and a prediction error of 19.1% when compared to using a NanoSight, while the nucleic acid analysis requires low concentrations of 1.17 ng/µL for pDNA and 0.17 ng/µL for mRNA and has an average precision error of 4.8% and a prediction error of 9.4% when compared to using a PicoGreen and RiboGreen assay. In addition, our method quantifies the relative concentration of nucleic acid per LNP. Utilizing this approach, we observed an average of 263 ± 62.2 mRNA per LNP and 126.3 ± 21.2 pDNA per LNP for the LNP formulations used in this study, where the accuracy of these estimations is dependent on reference standards. We foresee the utility of this technique in the high-throughput characterization of LNPs during manufacturing and formulation research and development.


Assuntos
DNA , Lipídeos , Nanopartículas , Plasmídeos , RNA Mensageiro , RNA Mensageiro/genética , Nanopartículas/química , Plasmídeos/genética , DNA/química , Lipídeos/química , Humanos , Microfluídica/métodos , Técnicas de Transferência de Genes , Eletroforese , Lipossomos
12.
Anal Chim Acta ; 1311: 342713, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38816152

RESUMO

BACKGROUND: Psychrophiles can survive under cryogenic conditions because of various biomolecules. These molecules interact with cells, ice crystals, and lipid bilayers to enhance their functionality. Previous studies typically measured these interactions by thawing frozen samples and conducting biological assays at room temperature; however, studying these interactions under cryogenic conditions is crucial. This is because these biomolecules can function at lower temperatures. Therefore, a platform for measuring chemical interactions under sub-zero temperature conditions must be established. RESULTS: The chemical interactions between biomolecules under sub-zero temperature conditions were evaluated within ice grain boundaries with a channel-like structure, which circumvents the need for thawing. An aqueous solution of sucrose was frozen within a microfluidic channel, facilitating the formation of freeze-concentrated solutions (FCSs) that functioned as size-tunable electrophoretic fields. Avidin proteins or single-stranded DNA (ssDNA) were introduced into the FCS in advance. Probe micro/nanospheres whose surfaces were modified with molecules complementary to the target analytes were introduced into the FCS. If the targets have functionalities under sub-zero temperature conditions, they interact with complementary molecules. The chemical interactions between the target molecules and nanospheres led to the aggregation of the particles. The size tunability of the diameter of the FCS channels enabled the recognition of aggregation levels, which is indicative of interaction reactivity. The avidin-biotin interaction and ssDNA hybridization served as models for chemical interactions, demonstrating interactivity under sub-zero temperature conditions. The results presented herein suggest the potential for in situ measurement of biochemical assays in the frozen state, elucidating the functionality of bio-related macromolecules at or slightly below 0 °C. SIGNIFICANCE: This is the first methodology to evaluate chemical interactions under sub-zero temperature conditions without employing the freeze-and-thaw process. This method has the advantage of revealing the chemical interactions only at low temperatures. Therefore, it can be used to screen and evaluate the functionality of cryo-related biomolecules, including cold-shock and antifreeze proteins.


Assuntos
Temperatura Baixa , Eletroforese , DNA de Cadeia Simples/química , DNA de Cadeia Simples/análise , Gelo/análise , Congelamento
13.
Biosens Bioelectron ; 259: 116382, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38749284

RESUMO

Small extracellular vesicles (sEVs) reflect the genotype and phenotype of original cells and are biomarkers for early diagnosis and treatment monitoring of tumors. Yet, their small size and low density make them difficult to isolate and detect in body fluid samples. This study proposes a novel acDEP-Exo chip filled with transparent micro-beads, which formed a non-uniform electrical field, and finally achieved rapid, sensitive, and tunable sEVs capture and detection. The method requires only 20-50 µL of sample, achieved a limit of detection (LOD) of 161 particles/µL, and can detect biomarkers within 13 min. We applied the chip to analyze the two markers of sEV's EpCAM and MUC1 in clinical plasma samples from breast cancer (BC) patients and healthy volunteers and found that the combined evaluation of sEV's biomarkers has extremely high sensitivity, specificity and accuracy. The present study introduces an alternative approach to sEVs isolation and detection, has a great potential in real-time sEVs-based liquid biopsy.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Neoplasias da Mama , Molécula de Adesão da Célula Epitelial , Vesículas Extracelulares , Dispositivos Lab-On-A-Chip , Mucina-1 , Humanos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/sangue , Vesículas Extracelulares/química , Feminino , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Mucina-1/sangue , Mucina-1/análise , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/isolamento & purificação , Limite de Detecção , Desenho de Equipamento , Eletroforese/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Biópsia Líquida/métodos , Biópsia Líquida/instrumentação
14.
Electrophoresis ; 45(9-10): 777-778, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38623893
15.
ACS Appl Bio Mater ; 7(5): 2704-2709, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38635922

RESUMO

The structural integrity, assembly yield, and biostability of DNA nanostructures are influenced by the metal ions used to construct them. Although high (>10 mM) concentrations of divalent ions are often preferred for assembling DNA nanostructures, the range of ion concentrations and the composition of the assembly products vary for different assembly conditions. Here, we examined the unique ability of Ba2+ to retard double crossover DNA motifs by forming a low mobility species, whose mobility on the gel is determined by the concentration ratio of DNA and Ba2+. The formation of this electrophoretically retarded species is promoted by divalent ions such as Mg2+, Ca2+, and Sr2+ when combined with Ba2+ but not on their own, while monovalent ions such as Na+, K+, and Li+ do not have any effect on this phenomenon. Our results highlight the complex interplay between the metal ions and DNA self-assembly and could inform the design of DNA nanostructures for applications that expose them to multiple ions at high concentrations.


Assuntos
Bário , DNA , Teste de Materiais , Tamanho da Partícula , DNA/química , Bário/química , Nanoestruturas/química , Eletroforese , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química
16.
ACS Appl Bio Mater ; 7(5): 2966-2981, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38652577

RESUMO

This study presents a facile fabrication of 58S bioactive glass (BG)-polymer composite coatings on a 316L stainless steel (SS) substrate using the electrophoretic deposition technique. The suspension characteristics and deposition kinetics of BG, along with three different polymers, namely ethylcellulose (EC), poly(acrylic acid) (PAA), and polyvinylpyrrolidone (PVP), have been utilized to fabricate the coatings. Among all coatings, 58S BG and EC polymers are selected as the final composite coating (EC6) owing to their homogeneity and good adhesion. EC6 coating exhibits a thickness of ∼18 µm and an average roughness of ∼2.5 µm. Herein, EC6 demonstrates better hydroxyapatite formation compared to PAA and PVP coatings in simulated body fluid-based mineralization studies for a period of 28 days. Corrosion studies of EC6 in phosphate-buffered saline further confirm the higher corrosion resistance properties after 14 days. In vitro cytocompatibility studies using human placental mesenchymal stem cells demonstrate an increase in cellular viability, attachment, and higher proliferation compared to the bare SS substrate. EC6 coatings promote osteogenic differentiation, which is confirmed via the upregulation of the OPN and OCN genes. Moreover, the EC6 sample exhibits improved antibacterial properties against Escherichia coli and Staphylococcus aureus compared to the uncoated ones. The findings of this work emphasize the potential of electrophoretically fabricated BG-EC composite coatings on SS substrates for orthopedic applications.


Assuntos
Materiais Revestidos Biocompatíveis , Vidro , Teste de Materiais , Polímeros , Aço Inoxidável , Aço Inoxidável/química , Humanos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Vidro/química , Polímeros/química , Polímeros/farmacologia , Corrosão , Tamanho da Partícula , Propriedades de Superfície , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Eletroforese , Sobrevivência Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Testes de Sensibilidade Microbiana , Proliferação de Células/efeitos dos fármacos
17.
Transfus Apher Sci ; 63(3): 103919, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582651

RESUMO

Delayed hemolytic transfusion reaction (DHTR) and hyperhemolysis syndrome (HHS) are both complications of red blood cell transfusions in patients with sickle cell disease.Clinically, both present with hemolysis and can be difficult to differentiate. Hemoglobin electrophoresis may aid in the diagnosis. Herein we describe a case in which a patient with hemoglobin SC disease presented with features of severe hemolysis several days after initiation of red blood cell exchange. Increase in reticulocyte count and complete absence of hemoglobin A on electrophoresis during this event supported the diagnosis of severe DHTR, indicating a rapid and selective destruction of the transfused red blood cells. Ability to interpret the hemoglobin electrophoresis can help clinicians distinguish between these two severe transfusion complications in patients living with sickle cell disease. It is important to identify the presence or absence of concomitant HHS, as patients with HHS tend to have a worse prognosis and there is a higher rate of recurrence of HHS with subsequent transfusions. Accurate diagnosis can lead to prompt management and decrease morbidity and mortality.


Assuntos
Hemólise , Humanos , Anemia Falciforme/complicações , Anemia Falciforme/sangue , Anemia Falciforme/terapia , Eletroforese/métodos , Transfusão de Eritrócitos/métodos , Hemoglobinas/análise , Reação Transfusional/sangue
18.
Anal Methods ; 16(15): 2368-2377, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38572530

RESUMO

Microfluidic technology has great advantages in the precise manipulation of micro-nano particles, and the hybrid microfluidic separation technology has attracted much attention due to the advantages of both active and passive separation technology at the same time. In this paper, the hydrophoresis sorting technique is combined with the dielectrophoresis technique, and a dielectrophoresis-assisted hydrophoresis microdevice is studied to separate blood cells. By using the dielectrophoresis force to change the suspension position of the cells in the channel, the scope of the hydrophoresis device for sorting particles is expanded. At the same time, the effects of microchannel width, fluid velocity, and electrode voltage on cell sorting were discussed, and the cell separation process was simulated. This work has laid a certain theoretical foundation for the rapid diagnosis of diseases in practical applications.


Assuntos
Técnicas Analíticas Microfluídicas , Técnicas Analíticas Microfluídicas/métodos , Simulação por Computador , Microfluídica , Eletroforese/métodos , Separação Celular/métodos
19.
World J Microbiol Biotechnol ; 40(5): 157, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592517

RESUMO

This research investigated the physicochemical, microbiological, and bacterial diversity of Jben cheese, a popular artisanal variety in Morocco. The bacterial diversity was explored using culture-independent methods, including temporal temperature gel electrophoresis (TTGE), denaturing gradient gel electrophoresis (DGGE), and high-throughput sequencing (HTS). Significant intra-sample differences were observed for most physicochemical parameters within each milk type, while inter-sample differences occurred between cow and goat cheeses for dry matter and ash. Jben cheese exhibited distinct characteristics, with low pH values of 3.96, 4.16, and 4.18 for cow, goat, and mixed cheeses, respectively. Goat cheeses had higher fat (49.23 g/100 g), ash (1.91 g/100 g), and dry matter (36.39 g/100 g) than cow cheeses. All cheeses displayed high microbial counts, with a notable prevalence of the lactic acid bacteria (LAB) group, averaging 8.80 ± 0.92 log CFU/g. Jben cheese also displayed high contamination levels with total coliforms, faecal coliforms, yeast, and molds. Fatty acid profiling revealed fraudulent practices in Jben cheese marketing, with cow or mixed cheeses sold as goat cheese, as proven by low capric acid concentration. HTS analysis of Jben cheese identified ten genera and twenty-four species, highlighting Lactococcus lactis as predominant. TTGE and DGGE confirmed the presence of L. lactis but failed to provide the detailed profile achieved through HTS analysis. HTS has been demonstrated to be more reliable, whereas TTGE/DGGE methods, though informative, were more time-consuming and less reliable. Despite limitations, the combined use of TTGE, DGGE, and HTS provided a comprehensive view of indigenous bacterial communities in Jben cheese, identifying L. lactis as the main species.


Assuntos
Queijo , Animais , Bovinos , Feminino , RNA Ribossômico 16S/genética , Temperatura , Eletroforese , Cabras , Saccharomyces cerevisiae
20.
Nat Commun ; 15(1): 3564, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670952

RESUMO

Biomolecular condensates play an important role in cellular organization. Coacervates are commonly used models that mimic the physicochemical properties of biomolecular condensates. The surface of condensates plays a key role in governing molecular exchange between condensates, accumulation of species at the interface, and the stability of condensates against coalescence. However, most important surface properties, including the surface charge and zeta potential, remain poorly characterized and understood. The zeta potential of coacervates is often measured using laser doppler electrophoresis, which assumes a size-independent electrophoretic mobility. Here, we show that this assumption is incorrect for liquid-like condensates and present an alternative method to study the electrophoretic mobility of coacervates and in vitro condensate models by microelectrophoresis and single-particle tracking. Coacervates have a size-dependent electrophoretic mobility, originating from their fluid nature, from which a well-defined zeta potential is calculated. Interestingly, microelectrophoresis measurements reveal that polylysine chains are enriched at the surface of polylysine/polyaspartic acid complex coacervates, which causes the negatively charged protein ɑ-synuclein to adsorb and accumulate at the interface. Addition of ATP inverts the surface charge, displaces ɑ-synuclein from the surface and may help to suppress its interface-catalyzed aggregation. Together, these findings show how condensate surface charge can be measured and altered, making this microelectrophoresis platform combined with automated single-particle tracking a promising characterization technique for both biomolecular condensates and coacervate protocells.


Assuntos
Eletroforese , Propriedades de Superfície , Eletroforese/métodos , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Polilisina/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Humanos , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...