Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 736
Filtrar
1.
Open Biol ; 14(6): 240069, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864244

RESUMO

Elongation of very long-chain fatty acid (Elovl) proteins plays pivotal functions in the biosynthesis of the physiologically essential long-chain polyunsaturated fatty acids (LC-PUFA). Polychaetes have important roles in marine ecosystems, contributing not only to nutrient recycling but also exhibiting a distinctive capacity for biosynthesizing LC-PUFA. To expand our understanding of the LC-PUFA biosynthesis in polychaetes, this study conducted a thorough molecular and functional characterization of Elovl occurring in the model organism Platynereis dumerilii. We identify six Elovl in the genome of P. dumerilii. The sequence and phylogenetic analyses established that four Elovl, identified as Elovl2/5, Elovl4 (two genes) and Elovl1/7, have putative functions in LC-PUFA biosynthesis. Functional characterization confirmed the roles of these elongases in LC-PUFA biosynthesis, demonstrating that P. dumerilii possesses a varied and functionally diverse complement of Elovl that, along with the enzymatic specificities of previously characterized desaturases, enables P. dumerilii to perform all the reactions required for the biosynthesis of the LC-PUFA. Importantly, we uncovered that one of the two Elovl4-encoding genes is remarkably long in comparison with any other animals' Elovl, which contains a C terminal KH domain unique among Elovl. The distinctive expression pattern of this protein in photoreceptors strongly suggests a central role in vision.


Assuntos
Elongases de Ácidos Graxos , Ácidos Graxos Insaturados , Filogenia , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/biossíntese , Animais , Elongases de Ácidos Graxos/metabolismo , Elongases de Ácidos Graxos/genética , Poliquetos/metabolismo , Poliquetos/genética , Acetiltransferases/metabolismo , Acetiltransferases/genética , Anelídeos/genética , Anelídeos/metabolismo
2.
J Lipid Res ; 65(6): 100562, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762122

RESUMO

Perinatal exposure to omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) can be characterized through biomarkers in maternal or cord blood or breast milk. Objectives were to describe perinatal PUFA status combining multiple biofluids and to investigate how it was influenced by dietary intake during pregnancy and maternal FADS and ELOVL gene polymorphisms. This study involved 1,901 mother-child pairs from the EDEN cohort, with PUFA levels measured in maternal and cord erythrocytes, and colostrum. Maternal dietary PUFA intake during the last trimester was derived from a food frequency questionnaire. Twelve single-nucleotide polymorphisms in FADS and ELOVL genes were genotyped from maternal DNA. Principal component analysis incorporating PUFA levels from the three biofluids identified patterns of perinatal PUFA status. Spearman's correlations explored associations between patterns and PUFA dietary intake, and linear regression models examined pattern associations with FADS or ELOVL haplotypes. Five patterns were retained: "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs"; "Omega-6 LC-PUFAs"; "Colostrum LC-PUFAs"; "Omega-6 precursor (LA) and DGLA"; "Omega-6 precursor and colostrum ALA". Maternal omega-3 LC-PUFA intakes were correlated with "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs" (r(DHA) = 0.33) and "Omega-6 LC-PUFAs" (r(DHA) = -0.19) patterns. Strong associations were found between FADS haplotypes and PUFA patterns except for "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs". Lack of genetic association with the "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs" pattern, highly correlated with maternal omega-3 LC-PUFA intake, emphasizes the importance of adequate omega-3 LC-PUFA intake during pregnancy and lactation. This study offers a more comprehensive assessment of perinatal PUFA status and its determinants.


Assuntos
Ácidos Graxos Dessaturases , Ácidos Graxos Insaturados , Polimorfismo de Nucleotídeo Único , Humanos , Feminino , Gravidez , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Adulto , Ácidos Graxos Insaturados/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Dieta , Colostro/química , Colostro/metabolismo , Sangue Fetal/metabolismo , Sangue Fetal/química , Recém-Nascido
3.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791555

RESUMO

Disordered eating behavior differs between the restricting subtype (AN-R) and the binging and purging subtype (AN-BP) of anorexia nervosa (AN). Yet, little is known about how these differences impact fatty acid (FA) dysregulation in AN. To address this question, we analyzed 26 FAs and 7 FA lipogenic enzymes (4 desaturases and 3 elongases) in 96 women: 25 AN-R, 25 AN-BP, and 46 healthy control women. Our goal was to assess subtype-specific patterns. Lauric acid was significantly higher in AN-BP than in AN-R at the fasting timepoint (p = 0.038) and displayed significantly different postprandial changes 2 h after eating. AN-R displayed significantly higher levels of n-3 alpha-linolenic acid, stearidonic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid, and n-6 linoleic acid and gamma-linolenic acid compared to controls. AN-BP showed elevated EPA and saturated lauric acid compared to controls. Higher EPA was associated with elevated anxiety in AN-R (p = 0.035) but was linked to lower anxiety in AN-BP (p = 0.043). These findings suggest distinct disordered eating behaviors in AN subtypes contribute to lipid dysregulation and eating disorder comorbidities. A personalized dietary intervention may improve lipid dysregulation and enhance treatment effectiveness for AN.


Assuntos
Anorexia Nervosa , Ácidos Graxos , Humanos , Feminino , Anorexia Nervosa/metabolismo , Adulto , Ácidos Graxos/metabolismo , Adulto Jovem , Lipogênese , Ácido Eicosapentaenoico/metabolismo , Ácidos Láuricos/metabolismo , Elongases de Ácidos Graxos/metabolismo , Adolescente , Ácidos Graxos Dessaturases/metabolismo , Estudos de Casos e Controles , Ácidos Graxos Insaturados
4.
Artigo em Inglês | MEDLINE | ID: mdl-38763083

RESUMO

Docosahexaenoic acid (DHA, 22:6n-3) must be consumed from the diet or synthesized from polyunsaturated fatty acid (PUFA) precursors, such as α-linolenic acid (ALA, 18:3n-3). Elongase 2 (encoded by Elovl2 gene) catalyzes two elongation reactions in the PUFA biosynthesis pathway and may be important in regulating the observed sex differences in n-3 PUFA levels. Our aim was to determine how targeted knockout of liver Elovl2 affects tissue and blood n-3 PUFA levels in male and female C57BL/6J mice. Twenty-eight-day old male and female liver Elovl2-KO and control mice were placed onto one of two dietary protocols for a total of 8 weeks (4-8 mice per genotype, per diet, per sex): 1) an 8-week 2 % ALA in total fat diet or 2) a 4-week 2 % ALA diet followed by a 4-week 2 % ALA + 2 % DHA diet. Following this 8-week feeding period, 12-week-old mice were sacrificed and serum, red blood cells (RBC), liver, heart and brain were collected and fatty acid levels measured. Significant interaction effects (p < 0.05, sex x genotype) for serum, RBC, liver and heart DHA levels were identified. In serum and liver, DHA levels were significantly different (p < 0.01) between all groups with male controls > female controls > female KO > male KO in serum and female controls > male controls > female KO > male KO in liver. In RBCs and the heart, female controls = male controls > female KO > male KO (p < 0.001). The addition of DHA to diet removed the interaction effects on DHA levels in the serum, liver and heart, yielding a significant sex effect in serum, liver (female > male, p < 0.01) and brain (male > female, p < 0.05) and genotype effect in serum and heart (control > KO, p < 0.05). Ablation of liver Elovl2 results in significantly lower blood and tissue DHA in a sex-dependent manner, suggesting a role for Elovl2 on sex differences in n-3 PUFA levels.


Assuntos
Acetiltransferases , Ácidos Docosa-Hexaenoicos , Elongases de Ácidos Graxos , Fígado , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácido alfa-Linolênico , Animais , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Masculino , Feminino , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/sangue , Fígado/metabolismo , Camundongos , Ácido alfa-Linolênico/metabolismo , Ácido alfa-Linolênico/administração & dosagem , Acetiltransferases/genética , Acetiltransferases/metabolismo , Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-3/metabolismo , Caracteres Sexuais , Fatores Sexuais
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(6): 159498, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38703945

RESUMO

The biosynthetic capability of the long-chain polyunsaturated fatty acids (LC-PUFA) in teleosts are highly diversified due to evolutionary events such as gene loss and subsequent neo- and/or sub-functionalisation of enzymes encoded by existing genes. In the present study, we have comprehensively characterised genes potentially involved in LC-PUFA biosynthesis, namely one front-end desaturase (fads2) and eight fatty acid elongases (elovl1a, elovl1b, elovl4a, elovl4b, elovl5, elovl7, elovl8a and elovl8b) from an amphidromous teleost, Ayu sweetfish, Plecoglossus altivelis. Functional analysis confirmed Fads2 with Δ6, Δ5 and Δ8 desaturase activities towards multiple PUFA substrates and several Elovl enzymes exhibited elongation capacities towards C18-20 or C18-22 PUFA substrates. Consequently, P. altivelis possesses a complete enzymatic capability to synthesise physiologically important LC-PUFA including arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) from their C18 precursors. Interestingly, the loss of elovl2 gene in P. altivelis was corroborated by genomic and phylogenetic analyses. However, this constraint would possibly be overcome by the function of alternative Elovl enzymes, such as Elovl1b, which has not hitherto been functionally characterised in teleosts. The present study contributes novel insights into LC-PUFA biosynthesis in the relatively understudied teleost group, Osmeriformes (Stomiati), thereby enhancing our understanding of the complement of LC-PUFA biosynthetic genes within teleosts.


Assuntos
Ácidos Graxos Dessaturases , Elongases de Ácidos Graxos , Ácidos Graxos Insaturados , Osmeriformes , Animais , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/genética , Osmeriformes/metabolismo , Osmeriformes/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos/metabolismo , Elongases de Ácidos Graxos/genética , Filogenia , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Vias Biossintéticas/genética , Acetiltransferases/metabolismo , Acetiltransferases/genética
6.
Nutrients ; 16(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38794645

RESUMO

To maintain a beneficial concentration of eicosapentaenoic acid (EPA), the efficient conversion of its precursor, α-linolenic acid (α-LA), is important. Here, we studied the conversion of α-LA to EPA using ICR and C57BL/6 mice. A single dose of perilla oil rich-in α-LA or free α-LA had not been converted to EPA 18 h following administration. The α-LA was absorbed into the circulation, and its concentration peaked 6 h after administration, after which it rapidly decreased. In contrast, EPA administration was followed by an increase in circulating EPA concentration, but this did not decrease between 6 and 18 h, indicating that the clearance of EPA is slower than that of α-LA. After ≥1 week perilla oil intake, the circulating EPA concentration was >20 times higher than that of the control group which consumed olive oil, indicating that daily consumption, but not a single dose, of α-LA-rich oil might help preserve the physiologic EPA concentration. The consumption of high concentrations of perilla oil for 4 weeks also increased the hepatic expression of Elovl5, which is involved in fatty acid elongation; however, further studies are needed to characterize the relationship between the expression of this gene and the conversion of α-LA to EPA.


Assuntos
Ácido Eicosapentaenoico , Fígado , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Óleos de Plantas , Ácido alfa-Linolênico , Animais , Ácido alfa-Linolênico/administração & dosagem , Ácido Eicosapentaenoico/sangue , Ácido Eicosapentaenoico/administração & dosagem , Masculino , Óleos de Plantas/administração & dosagem , Camundongos , Fígado/metabolismo , Elongases de Ácidos Graxos/metabolismo , Azeite de Oliva/administração & dosagem , Acetiltransferases/metabolismo , Acetiltransferases/genética
7.
Int J Biol Macromol ; 271(Pt 1): 132666, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806081

RESUMO

Elongation of very long-chain fatty acids protein 6 (ELOVL6) plays a pivotal role in the synthesis of endogenous fatty acids, influencing energy balance and metabolic diseases. The primary objective of this study was to discover the molecular attributes and regulatory roles of ELOVL6 in male Nile tilapia, Oreochromis niloticus. The full-length cDNA of elovl6 was cloned from male Nile tilapia, and was determined to be 2255-bp long, including a 5'-untranslated region of 193 bp, a 3'-untranslated region of 1252 bp, and an open reading frame of 810 bp encoding 269 amino acids. The putative protein had typical features of ELOVL proteins. The transcript levels of elovl6 differed among various tissues and among fish fed with different dietary lipid sources. Knockdown of elovl6 in Nile tilapia using antisense RNA technology resulted in significant alterations in hepatic morphology, long-chain fatty acid synthesis, and fatty acid oxidation, and led to increased fat deposition in the liver and disrupted glucose/lipid metabolism. A comparative transcriptomic analysis (elovl6 knockdown vs. the negative control) identified 5877 differentially expressed genes with significant involvement in key signaling pathways including the peroxisome proliferator-activated receptor signaling pathway, fatty acid degradation, glycolysis/gluconeogenesis, and the insulin signaling pathway, all of which are crucial for lipid and glucose metabolism. qRT-PCR analyses verified the transcript levels of 13 differentially expressed genes within these pathways. Our findings indicate that elovl6 knockdown in male tilapia impedes oleic acid synthesis, culminating in aberrant nutrient metabolism.


Assuntos
Ciclídeos , Elongases de Ácidos Graxos , Animais , Masculino , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Ciclídeos/genética , Ciclídeos/metabolismo , Metabolismo dos Lipídeos/genética , Inativação Gênica , Fígado/metabolismo , Nutrientes/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Sequência de Aminoácidos , Clonagem Molecular , Acetiltransferases/genética , Acetiltransferases/metabolismo , Técnicas de Silenciamento de Genes
8.
Lipids Health Dis ; 23(1): 144, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760797

RESUMO

BACKGROUND: Cancer-associated cachexia (CAC) arises from malignant tumors and leads to a debilitating wasting syndrome. In the pathophysiology of CAC, the depletion of fat plays an important role. The mechanisms of CAC-induced fat loss include the enhancement of lipolysis, inhibition of lipogenesis, and browning of white adipose tissue (WAT). However, few lipid-metabolic enzymes have been reported to be involved in CAC. This study hypothesized that ELOVL6, a critical enzyme for the elongation of fatty acids, may be involved in fat loss in CAC. METHODS: Transcriptome sequencing technology was used to identify CAC-related genes in the WAT of a CAC rodent model. Then, the expression level of ELOVL6 and the fatty acid composition were analyzed in a large clinical sample. Elovl6 was knocked down by siRNA in 3T3-L1 mouse preadipocytes to compare with wild-type 3T3-L1 cells treated with tumor cell conditioned medium. RESULTS: In the WAT of patients with CAC, a significant decrease in the expression of ELOVL6 was found, which was linearly correlated with the extent of body mass reduction. Gas chromatographic analysis revealed an increase in palmitic acid (C16:0) and a decrease in linoleic acid (C18:2n-6) in these tissue samples. After treatment with tumor cell-conditioned medium, 3T3-L1 mouse preadipocytes showed a decrease in Elovl6 expression, and Elovl6-knockdown cells exhibited a reduction in preadipocyte differentiation and lipogenesis. Similarly, the knockdown of Elovl6 in 3T3-L1 cells resulted in a significant increase in palmitic acid (C16:0) and a marked decrease in oleic acid (C18:1n-9) content. CONCLUSION: Overall, the expression of ELOVL6 was decreased in the WAT of CAC patients. Decreased expression of ELOVL6 might induce fat loss in CAC patients by potentially altering the fatty acid composition of adipocytes. These findings suggest that ELOVL6 may be used as a valuable biomarker for the early diagnosis of CAC and may hold promise as a target for future therapies.


Assuntos
Células 3T3-L1 , Tecido Adiposo Branco , Caquexia , Elongases de Ácidos Graxos , Neoplasias , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Animais , Caquexia/genética , Caquexia/metabolismo , Caquexia/patologia , Camundongos , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/complicações , Neoplasias/patologia , Masculino , Feminino , Ácido Palmítico/metabolismo , Lipogênese/genética , Pessoa de Meia-Idade , Ácidos Graxos/metabolismo
9.
Fish Shellfish Immunol ; 149: 109530, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570120

RESUMO

The elongation of very long chain fatty acids (ELOVL) proteins are key rate-limiting enzymes that catalyze fatty acid synthesis to form long chain fatty acids. ELOVLs also play regulatory roles in the lipid metabolic reprogramming induced by mammalian viruses. However, little is known about the roles of fish ELOVLs during virus infection. Here, a homolog of ELOVL7 was cloned from Epinephelus coioides (EcELOVL7a), and its roles in red-spotted grouper nervous necrosis virus (RGNNV) and Singapore grouper iridovirus (SGIV) infection were investigated. The transcription level of EcELOVL7a was significantly increased upon RGNNV and SGIV infection or other pathogen-associated molecular patterns stimulation in grouper spleen (GS) cells. Subcellular localization analysis showed that EcELOVL7a encoded an endoplasmic reticulum (ER) related protein. Overexpression of EcELOVL7a promoted the viral production and virus release during SGIV and RGNNV infection. Furthermore, the lipidome profiling showed that EcELOVL7a overexpression reprogrammed cellular lipid components in vitro, evidenced by the increase of glycerophospholipids, sphingolipids and glycerides components. In addition, VLCFAs including FFA (20:2), FFA (20:4), FFA (22:4), FFA (22:5) and FFA (24:0), were enriched in EcELOVL7a overexpressed cells. Consistently, EcELOVL7a overexpression upregulated the transcription level of the key lipid metabolic enzymes, including fatty acid synthase (FASN), phospholipase A 2α (PLA 2α), and cyclooxygenases -2 (COX-2), LPIN1, and diacylglycerol acyltransferase 1α (DGAT1α). Together, our results firstly provided the evidence that fish ELOVL7a played an essential role in SGIV and RGNNV replication by reprogramming lipid metabolism.


Assuntos
Bass , Infecções por Vírus de DNA , Elongases de Ácidos Graxos , Doenças dos Peixes , Proteínas de Peixes , Metabolismo dos Lipídeos , Replicação Viral , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Bass/imunologia , Bass/genética , Elongases de Ácidos Graxos/genética , Nodaviridae/fisiologia , Regulação da Expressão Gênica , Acetiltransferases/genética , Acetiltransferases/metabolismo , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/virologia , Perfilação da Expressão Gênica/veterinária , Iridoviridae/fisiologia , Iridovirus/fisiologia , Filogenia , Alinhamento de Sequência/veterinária , Sequência de Aminoácidos , Reprogramação Metabólica
10.
Respir Investig ; 62(4): 526-530, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640569

RESUMO

Recent advances in fatty acid analysis have highlighted the links between lipid disruption and disease development. Lipid abnormalities are well-established risk factors for many of the most common chronic illnesses, and their involvement in asthma is also becoming clear. Here, we review research demonstrating the role of abnormal lipid metabolism in asthma, with a focus on saturated fatty acids and sphingolipids. High levels of palmitic acid, the most abundant saturated fatty acid in the human body, have been found in the airways of asthmatic patients with obesity, and were shown to worsen eosinophilic airway inflammation in asthma model mice on a high-fat diet. Aside from being a building block of longer-chain fatty acids, palmitic acid is also the starting point for de novo synthesis of ceramides, a class of sphingolipids. We outline the three main pathways for the synthesis of ceramides, which have been linked to the severity of asthma and act as precursors for the dynamic lipid mediator sphingosine 1-phosphate (S1P). S1P signaling is involved in allergen-induced eosinophilic inflammation, airway hyperresponsiveness, and immune-cell trafficking. A recent study of mice with mutations for the elongation of very long-chain fatty acid family member 6 (Elovl6), an enzyme that elongates fatty acid chains, has highlighted the potential role of palmitic acid composition, and thus lipid balance, in the pathophysiology of allergic airway inflammation. Elovl6 may be a potential therapeutic target in severe asthma.


Assuntos
Asma , Ceramidas , Elongases de Ácidos Graxos , Ácidos Graxos , Metabolismo dos Lipídeos , Ácido Palmítico , Esfingolipídeos , Asma/metabolismo , Asma/etiologia , Humanos , Animais , Esfingolipídeos/metabolismo , Ceramidas/metabolismo , Camundongos , Ácidos Graxos/metabolismo , Ácido Palmítico/metabolismo , Elongases de Ácidos Graxos/metabolismo , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Acetiltransferases/metabolismo , Modelos Animais de Doenças , Obesidade/metabolismo , Transdução de Sinais , Dieta Hiperlipídica/efeitos adversos
11.
Acta Neuropathol Commun ; 12(1): 66, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654316

RESUMO

The elderly frequently present impaired blood-brain barrier which is closely associated with various neurodegenerative diseases. However, how the albumin, the most abundant protein in the plasma, leaking through the disrupted BBB, contributes to the neuropathology remains poorly understood. We here demonstrated that mouse serum albumin-activated microglia induced astrocytes to A1 phenotype to remarkably increase levels of Elovl1, an astrocytic synthase for very long-chain saturated fatty acids, significantly promoting VLSFAs secretion and causing neuronal lippoapoptosis through endoplasmic reticulum stress response pathway. Moreover, MSA-activated microglia triggered remarkable tau phosphorylation at multiple sites through NLRP3 inflammasome pathway. Intracerebroventricular injection of MSA into the brains of C57BL/6J mice to a similar concentration as in patient brains induced neuronal apoptosis, neuroinflammation, increased tau phosphorylation, and decreased the spatial learning and memory abilities, while Elovl1 knockdown significantly prevented the deleterious effect of MSA. Overall, our study here revealed that MSA induced tau phosphorylation and neuron apoptosis based on MSA-activated microglia and astrocytes, respectively, showing the critical roles of MSA in initiating the occurrence of tauopathies and cognitive decline, and providing potential therapeutic targets for MSA-induced neuropathology in multiple neurodegenerative disorders.


Assuntos
Apoptose , Camundongos Endogâmicos C57BL , Neurônios , Albumina Sérica , Tauopatias , Animais , Humanos , Masculino , Camundongos , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Astrócitos/metabolismo , Astrócitos/patologia , Astrócitos/efeitos dos fármacos , Elongases de Ácidos Graxos/metabolismo , Microglia/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Neurônios/efeitos dos fármacos , Albumina Sérica/metabolismo , Albumina Sérica/farmacologia , Proteínas tau/metabolismo , Tauopatias/patologia , Tauopatias/metabolismo
12.
Mol Carcinog ; 63(6): 1079-1091, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38426809

RESUMO

This study was to explore the role of ELOVL6 in the development of head and neck squamous cell carcinoma (HNSCC). Considering its previously identified oncogenic role in hepatocellular carcinoma. ELOVL6 gene expression, clinicopathological analysis, enrichment analysis, and immune infiltration analysis were based on the data from Gene Expression Omnibus and The Cancer Genome Atlas, with additional bioinformatics analyses performed. Human HNSCC tissue microarray and cell lines were used. The expression of ELOVL6 in HNSCC was detected by quantitative polymerase chain reaction, immunohistochemistry assay, and western blot analysis. The proliferation ability of HNSCC cells, invasion, and apoptosis were evaluated using cell counting kit-8 method, Transwell assay, and flow cytometry, respectively. Based on the data derived from the cancer databases and our HNSCC cell and tissue studies, we found that ELOVL6 was overexpressed in HNSCC. Moreover, ELOVL6 expression level had a positive correlation with clinicopathology of HNSCC. Gene set enrichment analysis showed that ELOVL6 affected the occurrence of HNSCC through WNT signaling pathway. Functional experiments demonstrated that ELOVL6 knockdown inhibited the proliferation and invasion of HNSCC cells while promoting apoptosis. Additionally, compound 3f, an agonist of WNT/ß-catenin signaling pathway, enhances the effect of ELOVL6 on the progression of HNSCC cells. ELOVL6 is upregulated in HNSCC and promotes the development of HNSCC cells by inducing WNT/ß-catenin signaling pathway. ELOVL6 stands a potential target for the treatment of HNSCC and a prognosis indicator of human HNSCC.


Assuntos
Apoptose , Proliferação de Células , Progressão da Doença , Elongases de Ácidos Graxos , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Via de Sinalização Wnt , Humanos , Via de Sinalização Wnt/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Proliferação de Células/genética , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Movimento Celular/genética
13.
J Forensic Sci ; 69(3): 869-879, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308398

RESUMO

Aging is a complex process influenced by genetic, epigenetic, and environmental factors that lead to tissue deterioration and frailty. Epigenetic mechanisms, such as DNA methylation, play a significant role in gene expression regulation and aging. This study presents a new age estimation model developed for the Turkish population using blood samples. Eight CpG sites in loci TOM1L1, ELOVL2, ASPA, FHL2, C1orf132, CCDC102B, cg07082267, and RASSF5 were selected based on their correlation with age. Methylation patterns of these sites were analyzed in blood samples from 100 volunteers, grouped into age categories (20-35, 36-55, and ≥56). Sensitivity analysis indicated a reliable performance with DNA inputs ≥1 ng. Statistical modeling, utilizing Multiple Linear Regression, underscores the reliability of the primary 6-CpG model, excluding cg07082267 and TOM1L1. This model demonstrates strong correlations with chronological age (r = 0.941) and explains 88% of the age variance with low error rates (MAE = 4.07, RMSE = 5.73 years). Validation procedures, including a training-test split and fivefold cross-validation, consistently confirm the model's accuracy and consistency. The study indicates minimal variation in error scores across age cohorts and no significant gender differences. The developed model showed strong predictive accuracy, with the ability to estimate age within certain prediction intervals. This study contributes to the age prediction by using DNA methylation patterns, which can have disparate applications, including forensic and clinical assessments.


Assuntos
Envelhecimento , Amidoidrolases , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Elongases de Ácidos Graxos , Fatores de Transcrição , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Idoso , Elongases de Ácidos Graxos/genética , Modelos Lineares , Turquia , Idoso de 80 Anos ou mais , Genética Forense/métodos , Reprodutibilidade dos Testes , Modelos Estatísticos , Proteínas com Homeodomínio LIM/genética , Proteínas Musculares/genética
14.
J Biol Chem ; 300(2): 105600, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38335573

RESUMO

The condensation of acetyl-CoA with malonyl-acyl carrier protein (ACP) by ß-ketoacyl-ACP synthase III (KAS III, FabH) and decarboxylation of malonyl-ACP by malonyl-ACP decarboxylase are the two pathways that initiate bacterial fatty acid synthesis (FAS) in Escherichia coli. In addition to these two routes, we report that Pseudomonas putida F1 ß-ketoacyl-ACP synthase I (FabB), in addition to playing a key role in fatty acid elongation, also initiates FAS in vivo. We report that although two P. putida F1 fabH genes (PpfabH1 and PpfabH2) both encode functional KAS III enzymes, neither is essential for growth. PpFabH1 is a canonical KAS III similar to E. coli FabH whereas PpFabH2 catalyzes condensation of malonyl-ACP with short- and medium-chain length acyl-CoAs. Since these two KAS III enzymes are not essential for FAS in P. putida F1, we sought the P. putida initiation enzyme and unexpectedly found that it was FabB, the elongation enzyme of the oxygen-independent unsaturated fatty acid pathway. P. putida FabB decarboxylates malonyl-ACP and condenses the acetyl-ACP product with malonyl-ACP for initiation of FAS. These data show that P. putida FabB, unlike the paradigm E. coli FabB, can catalyze the initiation reaction in FAS.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase , Pseudomonas putida , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Proteína de Transporte de Acila/metabolismo , Escherichia coli/metabolismo , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos , Glicogênio Sintase , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
15.
J Biol Chem ; 300(2): 105656, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224948

RESUMO

The fatty acid (FA) elongation cycle produces very-long-chain FAs with ≥C21, which have unique physiological functions. Trans-2-enoyl-CoA reductases (yeast, Tsc13; mammals, TECR) catalyze the reduction reactions in the fourth step of the FA elongation cycle and in the sphingosine degradation pathway. However, their catalytic residues and coordinated action in the FA elongation cycle complex are unknown. To reveal these, we generated and analyzed Ala-substituted mutants of 15 residues of Tsc13. An in vitro FA elongation assay showed that nine of these mutants were less active than WT protein, with E91A and Y256A being the least active. Growth complementation analysis, measurement of ceramide levels, and deuterium-sphingosine labeling revealed that the function of the E91A mutant was substantially impaired in vivo. In addition, we found that the activity of FA elongases, which catalyze the first step of the FA elongation cycle, were reduced in the absence of Tsc13. Similar results were observed in Tsc13 E91A-expressing cells, which is attributable to reduced interaction between the Tsc13 E91A mutant and the FA elongases Elo2/Elo3. Finally, we found that E94A and Y248A mutants of human TECR, which correspond to E91A and Y256A mutants of Tsc13, showed reduced and almost no activity, respectively. Based on these results and the predicted three-dimensional structure of Tsc13, we speculate that Tyr256/Tyr248 of Tsc13/TECR is the catalytic residue that supplies a proton to trans-2-enoyl-CoAs. Our findings provide a clue concerning the catalytic mechanism of Tsc13/TECR and the coordinated action in the FA elongation cycle complex.


Assuntos
Ácidos Graxos Dessaturases , Esfingosina , Humanos , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Esfingosina/metabolismo
16.
J Agric Food Chem ; 72(4): 2100-2108, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38240608

RESUMO

RNA interference (RNAi) has been proposed as a promising strategy for sustainable and ecofriendly pest control. The insect cuticle lipids were deposited on the body surface and functioned as a defense against chemical xenobiotics. They consisted of aliphatic compounds, including free fatty acids (FFAs). However, elongase of very long chain fatty acids (ELOs) is essential for FFA biosynthesis; the function of ELO is still unknown in many arthropods, including Panonychus citri (P. citri). In this study, three ELOs were cloned. Developmental-specific mRNA expression results revealed that three PcELOs were highly expressed in egg and adult females. Whereas PcELO7 was dominantly expressed in adult females. Under spirobudiclofen stress, ELOs mRNA expression had different changes, and PcELO7 was down-regulated. The silencing of PcELO7 resulted in a dramatic reduction of oviposition and hatchability. Significant reduction of FFA contents was also examined within PcELO7-repressed P. citri. In addition, we found that PcELO7 mRNA levels were related to fecundity and could affect triacylglycerol (TG) contents. The findings demonstrated that the introduction of dsPcELO7 via oral feeding induced the RNA interference-mediated silencing of a special target gene and could result in mortality and reproduction. In conclusion, PcELO7 is a special RNAi target for P. citri control, and its lethal mechanism might be disturbing lipids biosynthesis.


Assuntos
Tetranychidae , Animais , Feminino , Tetranychidae/genética , Elongases de Ácidos Graxos/metabolismo , Fertilidade/genética , RNA Mensageiro/metabolismo , Lipídeos
17.
Biofactors ; 50(1): 89-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37470206

RESUMO

The synthesis rates of n-3 and n-6 polyunsaturated fatty acids (PUFAs) in rodents and humans are not agreed upon and depend on substrate availability independently of the capacity for synthesis. Therefore, we aimed to assess the activities of the enzymes for n-3 and n-6 PUFA synthesis pathways in liver, brain, testicle, kidney, heart, and lung, in relation to their protein concentration levels. Eight-week-old Balb/c mice (n = 8) were fed a standard chow diet (6.2% fat, 18.6% protein, and 44.2% carbohydrates) until 14 weeks of age, anesthetized with isoflurane and tissue samples were collected (previously perfused) and stored at -80°C. The protein concentration of the enzymes (Δ-6D, Δ-5D, Elovl2, and Elovl5) were assessed by ELISA kits; their activities were assayed using specific PUFA precursors and measuring the respective PUFA products as fatty acid methyl esters by gas chromatographic analysis. The liver had the highest capacity for PUFA biosynthesis, with limited activity in the brain, testicles, and kidney, while we failed to detect activity in the heart and lung. The protein concentration and activity of the enzymes were significantly correlated. Furthermore, Δ-6D, Δ-5D, and Elovl2 have a higher affinity for n-3 PUFA precursors compared to n-6 PUFA. The capacity for PUFA synthesis in mice mainly resides in the liver, with enzymes having preference for n-3 PUFAs.


Assuntos
Ácidos Graxos Dessaturases , Ácidos Graxos Ômega-3 , Humanos , Masculino , Animais , Camundongos , Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Testículo/metabolismo , Fígado/metabolismo , Ácidos Graxos Insaturados/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Encéfalo/metabolismo , Rim/metabolismo
18.
Biochem Biophys Res Commun ; 690: 149292, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000296

RESUMO

Atherosclerosis is a chronic inflammatory disease for which hepatic steatosis and atherogenic dyslipidemia are significant risk factors. We investigated the effects of endogenously generated very-long-chain polyunsaturated fatty acids (VL-PUFAs) on dyslipidemia and atherosclerosis development using mice that lack ELOVL5, a PUFA elongase that is required for the synthesis of arachidonic acid, EPA, and DHA from the essential fatty acids linoleic and linolenic acids, and the LDL receptor (LDLR). Elovl5-/-;Ldlr-/- mice manifest increased liver triglyceride and cholesterol concentrations due to the activation of sterol regulatory element binding protein-1, a transcription factor that activates enzymes required for de novo lipogenesis. Plasma levels of triglycerides and cholesterol in VLDL, IDL, and LDL were markedly elevated in Elovl5-/-;Ldlr-/- mice fed a chow and the mice exhibited marked aortic atherosclerotic plaques. Bone marrow-derived monocytes from wild-type (WT) and Elovl5-/- mice were polarized to M1 and M2 macrophages, and the effects of ELOVL5 on inflammatory activity were determined. There were no differences in most of the markers tested for M1 and M2 polarized cells between WT and Elovl5-/- cells, except for a slight increase in PGE2 secretion in Elovl5-/- cells, likely due to elevated Cox-2 expression. These results suggest that the deletion of Elovl5 leads to hepatic steatosis and dyslipidemia, which are the major factors in severe atherosclerosis in Elovl5-/-;Ldlr-/- mice.


Assuntos
Aterosclerose , Dislipidemias , Fígado Gorduroso , Animais , Camundongos , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Dislipidemias/complicações , Dislipidemias/genética , Dislipidemias/metabolismo , Elongases de Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Camundongos Knockout , Receptores de LDL/genética , Receptores de LDL/metabolismo , Triglicerídeos/metabolismo
19.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139442

RESUMO

Colorectal cancer (CRC) cells show some alterations in lipid metabolism, including an increased fatty acid elongation. This study was focused on investigating the effect of a small interfering RNA (siRNA)-mediated decrease in fatty acid elongation on CRC cells' survival and migration. In our study, the elongase 4 (ELOVL4) and elongase 6 (ELOVL6) genes were observed to be highly overexpressed in both the CRC tissue obtained from patients and the CRC cells cultured in vitro (HT-29 and WiDr cell lines). The use of the siRNAs for ELOVL4 and ELOVL6 reduced cancer cell proliferation and migration rates. These findings indicate that the altered elongation process decreased the survival of CRC cells, and in the future, fatty acid elongases can be potentially good targets in novel CRC therapy.


Assuntos
Acetiltransferases , Neoplasias Colorretais , Humanos , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proliferação de Células/genética , Ácidos Graxos/metabolismo , Neoplasias Colorretais/genética
20.
Eur J Med Res ; 28(1): 532, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37981715

RESUMO

BACKGROUND: The very-long-chain fatty acid elongase (ELOVL) family plays essential roles in lipid metabolism and cellular functions. This comprehensive review explores the structural characteristics, functional properties, and physiological significance of individual ELOVL isoforms, providing insights into lipid biosynthesis, cell membrane dynamics, and signaling pathways. AIM OF REVIEW: This review aims to highlight the significance of the ELOVL family in normal physiology and disease development. By synthesizing current knowledge, we underscore the relevance of ELOVLs as potential therapeutic targets. KEY SCIENTIFIC CONCEPTS OF REVIEW: We emphasize the association between dysregulated ELOVL expression and diseases, including metabolic disorders, skin diseases, neurodegenerative conditions, and cancer. The intricate involvement of ELOVLs in cancer biology, from tumor initiation to metastasis, highlights their potential as targets for anticancer therapies. Additionally, we discuss the prospects of using isoform-specific inhibitors and activators for metabolic disorders and cancer treatment. The identification of ELOVL-based biomarkers may advance diagnostics and personalized medicine. CONCLUSION: The ELOVL family's multifaceted roles in lipid metabolism and cellular physiology underscore its importance in health and disease. Understanding their functions offers potential therapeutic avenues and personalized treatments.


Assuntos
Conhecimento , Doenças Metabólicas , Humanos , Elongases de Ácidos Graxos/genética , Membrana Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...