Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 549.188
Filtrar
1.
Int J Nanomedicine ; 19: 4857-4875, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828195

RESUMO

Brain diseases are the most devastating problem among the world's increasingly aging population, and the number of patients with neurological diseases is expected to increase in the future. Although methods for delivering drugs to the brain have advanced significantly, none of these approaches provide satisfactory results for the treatment of brain diseases. This remains a challenge due to the unique anatomy and physiology of the brain, including tight regulation and limited access of substances across the blood-brain barrier. Nanoparticles are considered an ideal drug delivery system to hard-to-reach organs such as the brain. The development of new drugs and new nanomaterial-based brain treatments has opened various opportunities for scientists to develop brain-specific delivery systems that could improve treatment outcomes for patients with brain disorders such as Alzheimer's disease, Parkinson's disease, stroke and brain tumors. In this review, we discuss noteworthy literature that examines recent developments in brain-targeted nanomedicines used in the treatment of neurological diseases.


Assuntos
Barreira Hematoencefálica , Encéfalo , Sistemas de Liberação de Medicamentos , Nanomedicina , Humanos , Nanomedicina/métodos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Animais , Nanopartículas/química , Encefalopatias/tratamento farmacológico , Sistemas de Liberação de Fármacos por Nanopartículas/química , Sistemas de Liberação de Fármacos por Nanopartículas/farmacocinética , Doença de Parkinson/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico
2.
Biol Pharm Bull ; 47(6): 1113-1118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38839362

RESUMO

Motile cilia in the ependymal cells that line the brain ventricles play pivotal roles in cerebrospinal fluid (CSF) flow in well-defined directions. However, the substances and pathways which regulate their beating have not been well studied. Here, we used primary cultured cells derived from neonatal mouse brain that possess motile cilia and found that adenosine (ADO) stimulates ciliary beating by increasing the ciliary beat frequency (CBF) in a concentration-dependent manner, with the ED50 value being 5 µM. Ciliary beating stimulated by ADO was inhibited by A2B receptor (A2BR) antagonist MRS1754 without any inhibition by antagonists of other ADO receptor subtypes. The expression of A2BR on the cilia was also confirmed by immunofluorescence. The values of CBF were also increased by forskolin, which is an activator of adenylate cyclase, whereas they were not further increased by the addition of ADO. Furthermore, ciliary beating was not stimulated by ADO in the presence of a protein kinase A (PKA) inhibitors. These results altogether suggest that ADO stimulates ciliary beating through A2BR on the cilia, and activation of PKA.


Assuntos
Adenosina , Animais Recém-Nascidos , Encéfalo , Cílios , Proteínas Quinases Dependentes de AMP Cíclico , Receptor A2B de Adenosina , Animais , Cílios/efeitos dos fármacos , Cílios/metabolismo , Cílios/fisiologia , Receptor A2B de Adenosina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Adenosina/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Camundongos , Células Cultivadas , Transdução de Sinais/efeitos dos fármacos , Antagonistas do Receptor A2 de Adenosina/farmacologia , Colforsina/farmacologia , Epêndima/metabolismo , Epêndima/citologia
3.
Int J Nanomedicine ; 19: 4977-4994, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828204

RESUMO

Purpose: Exosomes are membrane vesicles secreted by various cells and play a crucial role in intercellular communication. They can be excellent delivery vehicles for oligonucleotide drugs, such as microRNAs, due to their high biocompatibility. MicroRNAs have been shown to be more stable when incorporated into exosomes; however, the lack of targeting and immune evasion is still the obstacle to the use of these microRNA-containing nanocarriers in clinical settings. Our goal was to produce functional exosomes loaded with target ligands, immune evasion ligand, and oligonucleotide drug through genetic engineering in order to achieve more precise medical effects. Methods: To address the problem, we designed engineered exosomes with exogenous cholecystokinin (CCK) or somatostatin (SST) as the targeting ligand to direct the exosomes to the brain, as well as transduced CD47 proteins to reduce the elimination or phagocytosis of the targeted exosomes. MicroRNA-29b-2 was the tested oligonucleotide drug for delivery because our previous research showed that this type of microRNA was capable of reducing presenilin 1 (PSEN1) gene expression and decreasing the ß-amyloid accumulation for Alzheimer's disease (AD) in vitro and in vivo. Results: The engineered exosomes, containing miR29b-2 and expressing SST and CD47, were produced by gene-modified dendritic cells and used in the subsequent experiments. In comparison with CD47-CCK exosomes, CD47-SST exosomes showed a more significant increase in delivery efficiency. In addition, CD47-SST exosomes led to a higher delivery level of exosomes to the brains of nude mice when administered intravenously. Moreover, it was found that the miR29b-2-loaded CD47-SST exosomes could effectively reduce PSEN1 in translational levels, which resulted in an inhibition of beta-amyloid oligomers production both in the cell model and in the 3xTg-AD animal model. Conclusion: Our results demonstrated the feasibility of the designed engineered exosomes. The application of this exosomal nanocarrier platform can be extended to the delivery of other oligonucleotide drugs to specific tissues for the treatment of diseases while evading the immune system.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Encéfalo , Antígeno CD47 , Exossomos , MicroRNAs , Presenilina-1 , Receptores de Somatostatina , Animais , Exossomos/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , MicroRNAs/genética , MicroRNAs/administração & dosagem , Presenilina-1/genética , Encéfalo/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Peptídeos beta-Amiloides/metabolismo , Camundongos , Antígeno CD47/genética , Antígeno CD47/metabolismo , Somatostatina , Humanos , Modelos Animais de Doenças
4.
Ter Arkh ; 96(5): 447-452, 2024 Jun 03.
Artigo em Russo | MEDLINE | ID: mdl-38829804

RESUMO

This article examines the role of uric acid (UA) in cognitive changes and neurodegeneration, focusing on its functions as an antioxidant and prooxidant. Research suggests that changes in serum UA levels may be associated with the development or delay of cognitive impairment, especially in the context of neurodegenerative diseases such as Alzheimer's disease. It was revealed that there is a relationship between the level of UA and the dynamics of cognitive functions, indicating the potential neuroprotective properties of UA. Particular attention is paid to the balance between the antioxidant and prooxidant properties of UA, which may play a key role in protecting neurons from damage. However, research results are not clear-cut, highlighting the need for further research to more fully understand the role of UA in cognitive processes. Determining the optimal serum UA level may be an important step in developing strategies for the prevention and treatment of cognitive impairment associated with neurodegeneration. Overall, these studies advance the understanding of the mechanisms underlying the interaction between uric acid metabolism and brain health.


Assuntos
Doenças Neurodegenerativas , Ácido Úrico , Humanos , Ácido Úrico/sangue , Ácido Úrico/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Doenças Neurodegenerativas/metabolismo , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/prevenção & controle , Transtornos Cognitivos/fisiopatologia , Antioxidantes , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Estresse Oxidativo/fisiologia
5.
Am J Bioeth ; 24(6): 4-15, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38829591

RESUMO

Organ donation after the circulatory determination of death requires the permanent cessation of circulation while organ donation after the brain determination of death requires the irreversible cessation of brain functions. The unified brain-based determination of death connects the brain and circulatory death criteria for circulatory death determination in organ donation as follows: permanent cessation of systemic circulation causes permanent cessation of brain circulation which causes permanent cessation of brain perfusion which causes permanent cessation of brain function. The relevant circulation that must cease in circulatory death determination is that to the brain. Eliminating brain circulation from the donor ECMO organ perfusion circuit in thoracoabdominal NRP protocols satisfies the unified brain-based determination of death but only if the complete cessation of brain circulation can be proved. Despite its medical and physiologic rationale, the unified brain-based determination of death remains inconsistent with the Uniform Determination of Death Act.


Assuntos
Morte Encefálica , Morte , Obtenção de Tecidos e Órgãos , Humanos , Morte Encefálica/diagnóstico , Obtenção de Tecidos e Órgãos/ética , Encéfalo , Doadores de Tecidos , Oxigenação por Membrana Extracorpórea , Estados Unidos , Circulação Cerebrovascular , Coleta de Tecidos e Órgãos/ética
10.
Sci Adv ; 10(23): eadj4735, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838150

RESUMO

Why individuals with Down syndrome (DS) are more susceptible to SARS-CoV-2-induced neuropathology remains elusive. Choroid plexus (ChP) plays critical roles in barrier function and immune response modulation and expresses the ACE2 receptor and the chromosome 21-encoded TMPRSS2 protease, suggesting its substantial role in establishing SARS-CoV-2 infection in the brain. To explore this, we established brain organoids from DS and isogenic euploid iPSC that consist of a core of functional cortical neurons surrounded by a functional ChP-like epithelium (ChPCOs). DS-ChPCOs recapitulated abnormal DS cortical development and revealed defects in ciliogenesis and epithelial cell polarity in ChP-like epithelium. We then demonstrated that the ChP-like epithelium facilitates infection and replication of SARS-CoV-2 in cortical neurons and that this is increased in DS. Inhibiting TMPRSS2 and furin activity reduced viral replication in DS-ChPCOs to euploid levels. This model enables dissection of the role of ChP in neurotropic virus infection and euploid forebrain development and permits screening of therapeutics for SARS-CoV-2-induced neuropathogenesis.


Assuntos
Encéfalo , COVID-19 , Plexo Corióideo , Síndrome de Down , Organoides , SARS-CoV-2 , Serina Endopeptidases , Plexo Corióideo/virologia , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Organoides/virologia , Organoides/metabolismo , Organoides/patologia , Humanos , SARS-CoV-2/fisiologia , COVID-19/virologia , COVID-19/patologia , COVID-19/metabolismo , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Síndrome de Down/genética , Encéfalo/virologia , Encéfalo/patologia , Encéfalo/metabolismo , Neurônios/metabolismo , Neurônios/virologia , Neurônios/patologia , Replicação Viral , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/virologia , Furina/metabolismo , Furina/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Tropismo Viral
11.
Nature ; 630(8015): 84-90, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840015

RESUMO

Direct and precise monitoring of intracranial physiology holds immense importance in delineating injuries, prognostication and averting disease1. Wired clinical instruments that use percutaneous leads are accurate but are susceptible to infection, patient mobility constraints and potential surgical complications during removal2. Wireless implantable devices provide greater operational freedom but include issues such as limited detection range, poor degradation and difficulty in size reduction in the human body3. Here we present an injectable, bioresorbable and wireless metastructured hydrogel (metagel) sensor for ultrasonic monitoring of intracranial signals. The metagel sensors are cubes 2 × 2 × 2 mm3 in size that encompass both biodegradable and stimulus-responsive hydrogels and periodically aligned air columns with a specific acoustic reflection spectrum. Implanted into intracranial space with a puncture needle, the metagel deforms in response to physiological environmental changes, causing peak frequency shifts of reflected ultrasound waves that can be wirelessly measured by an external ultrasound probe. The metagel sensor can independently detect intracranial pressure, temperature, pH and flow rate, realize a detection depth of 10 cm and almost fully degrade within 18 weeks. Animal experiments on rats and pigs indicate promising multiparametric sensing performances on a par with conventional non-resorbable wired clinical benchmarks.


Assuntos
Hidrogéis , Pressão Intracraniana , Tecnologia sem Fio , Animais , Tecnologia sem Fio/instrumentação , Ratos , Suínos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Hidrogéis/química , Masculino , Ondas Ultrassônicas , Feminino , Concentração de Íons de Hidrogênio , Injeções/instrumentação , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Temperatura , Implantes Absorvíveis , Ratos Sprague-Dawley
13.
J Headache Pain ; 25(1): 93, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840235

RESUMO

BACKGROUND: Migraine is a neurological disease with a significant genetic component and is characterized by recurrent and prolonged episodes of headache. Previous epidemiological studies have reported a higher risk of dementia in migraine patients. Neuroimaging studies have also shown structural brain atrophy in regions that are common to migraine and dementia. However, these studies are observational and cannot establish causality. The present study aims to explore the genetic causal relationship between migraine and dementia, as well as the mediation roles of brain structural changes in this association using Mendelian randomization (MR). METHODS: We collected the genome-wide association study (GWAS) summary statistics of migraine and its two subtypes, as well as four common types of dementia, including Alzheimer's disease (AD), vascular dementia, frontotemporal dementia, and Lewy body dementia. In addition, we collected the GWAS summary statistics of seven longitudinal brain measures that characterize brain structural alterations with age. Using these GWAS, we performed Two-sample MR analyses to investigate the causal effects of migraine and its two subtypes on dementia and brain structural changes. To explore the possible mediation of brain structural changes between migraine and dementia, we conducted a two-step MR mediation analysis. RESULTS: The MR analysis demonstrated a significant association between genetically predicted migraine and an increased risk of AD (OR = 1.097, 95% CI = [1.040, 1.158], p = 7.03 × 10- 4). Moreover, migraine significantly accelerated annual atrophy of the total cortical surface area (-65.588 cm2 per year, 95% CI = [-103.112, -28.064], p = 6.13 × 10- 4) and thalamic volume (-9.507 cm3 per year, 95% CI = [-15.512, -3.502], p = 1.91 × 10- 3). The migraine without aura (MO) subtype increased the risk of AD (OR = 1.091, 95% CI = [1.059, 1.123], p = 6.95 × 10- 9) and accelerated annual atrophy of the total cortical surface area (-31.401 cm2 per year, 95% CI = [-43.990, -18.811], p = 1.02 × 10- 6). The two-step MR mediation analysis revealed that thalamic atrophy partly mediated the causal effect of migraine on AD, accounting for 28.2% of the total effect. DISCUSSION: This comprehensive MR study provided genetic evidence for the causal effect of migraine on AD and identified longitudinal thalamic atrophy as a potential mediator in this association. These findings may inform brain intervention targets to prevent AD risk in migraine patients.


Assuntos
Atrofia , Encéfalo , Demência , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Transtornos de Enxaqueca , Humanos , Atrofia/patologia , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/patologia , Transtornos de Enxaqueca/diagnóstico por imagem , Transtornos de Enxaqueca/complicações , Transtornos de Enxaqueca/epidemiologia , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Demência/genética , Demência/epidemiologia , Demência/patologia , Demência/etiologia , Feminino , Estudos Longitudinais , Masculino
14.
Acta Neuropathol Commun ; 12(1): 88, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840253

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the coding sequence of huntingtin protein. Initially, it predominantly affects medium-sized spiny neurons (MSSNs) of the corpus striatum. No effective treatment is still available, thus urging the identification of potential therapeutic targets. While evidence of mitochondrial structural alterations in HD exists, previous studies mainly employed 2D approaches and were performed outside the strictly native brain context. In this study, we adopted a novel multiscale approach to conduct a comprehensive 3D in situ structural analysis of mitochondrial disturbances in a mouse model of HD. We investigated MSSNs within brain tissue under optimal structural conditions utilizing state-of-the-art 3D imaging technologies, specifically FIB/SEM for the complete imaging of neuronal somas and Electron Tomography for detailed morphological examination, and image processing-based quantitative analysis. Our findings suggest a disruption of the mitochondrial network towards fragmentation in HD. The network of interlaced, slim and long mitochondria observed in healthy conditions transforms into isolated, swollen and short entities, with internal cristae disorganization, cavities and abnormally large matrix granules.


Assuntos
Modelos Animais de Doenças , Doença de Huntington , Imageamento Tridimensional , Mitocôndrias , Animais , Doença de Huntington/patologia , Doença de Huntington/genética , Doença de Huntington/metabolismo , Mitocôndrias/ultraestrutura , Mitocôndrias/patologia , Mitocôndrias/metabolismo , Imageamento Tridimensional/métodos , Camundongos , Camundongos Transgênicos , Encéfalo/patologia , Encéfalo/ultraestrutura , Encéfalo/metabolismo , Microscopia Eletrônica/métodos , Masculino , Neurônios/patologia , Neurônios/ultraestrutura , Neurônios/metabolismo
15.
Front Cell Infect Microbiol ; 14: 1392015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841113

RESUMO

Trehalose-6-phosphate synthase (TPS1) was identified as a virulence factor for Cryptococcus neoformans and a promising therapeutic target. This study reveals previously unknown roles of TPS1 in evasion of host defenses during pulmonary and disseminated phases of infection. In the pulmonary infection model, TPS1-deleted (tps1Δ) Cryptococci are rapidly cleared by mouse lungs whereas TPS1-sufficent WT (H99) and revertant (tps1Δ:TPS1) strains expand in the lungs and disseminate, causing 100% mortality. Rapid pulmonary clearance of tps1Δ mutant is T-cell independent and relies on its susceptibility to lung resident factors and innate immune factors, exemplified by tps1Δ but not H99 inhibition in a coculture with dispersed lung cells and its rapid clearance coinciding with innate leukocyte infiltration. In the disseminated model of infection, which bypasses initial lung-fungus interactions, tps1Δ strain remains highly attenuated. Specifically, tps1Δ mutant is unable to colonize the lungs from the bloodstream or expand in spleens but is capable of crossing into the brain, where it remains controlled even in the absence of T cells. In contrast, strains H99 and tps1Δ:TPS1 rapidly expand in all studied organs, leading to rapid death of the infected mice. Since the rapid pulmonary clearance of tps1Δ mutant resembles a response to acapsular strains, the effect of tps1 deletion on capsule formation in vitro and in vivo was examined. Tps1Δ cryptococci form capsules but with a substantially reduced size. In conclusion, TPS1 is an important virulence factor, allowing C. neoformans evasion of resident pulmonary and innate defense mechanisms, most likely via its role in cryptococcal capsule formation.


Assuntos
Criptococose , Cryptococcus neoformans , Modelos Animais de Doenças , Glucosiltransferases , Pulmão , Fatores de Virulência , Animais , Cryptococcus neoformans/patogenicidade , Cryptococcus neoformans/genética , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/imunologia , Criptococose/microbiologia , Criptococose/imunologia , Camundongos , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Interações Hospedeiro-Patógeno , Encéfalo/microbiologia , Baço/microbiologia , Feminino , Camundongos Endogâmicos C57BL , Imunidade Inata , Evasão da Resposta Imune , Deleção de Genes
16.
JMIR Res Protoc ; 13: e56726, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842914

RESUMO

BACKGROUND: Progressive difficulty in performing everyday functional activities is a key diagnostic feature of dementia syndromes. However, not much is known about the neural signature of functional decline, particularly during the very early stages of dementia. Early intervention before overt impairment is observed offers the best hope of reducing the burdens of Alzheimer disease (AD) and other dementias. However, to justify early intervention, those at risk need to be detected earlier and more accurately. The decline in complex daily function (CdF) such as managing medications has been reported to precede impairment in basic activities of daily living (eg, eating and dressing). OBJECTIVE: Our goal is to establish the neural signature of decline in CdF during the preclinical dementia period. METHODS: Gait is central to many CdF and community-based activities. Hence, to elucidate the neural signature of CdF, we validated a novel electroencephalographic approach to measuring gait-related brain activation while participants perform complex gait-based functional tasks. We hypothesize that dementia-related pathology during the preclinical period activates a unique gait-related electroencephalographic (grEEG) pattern that predicts a subsequent decline in CdF. RESULTS: We provide preliminary findings showing that older adults reporting CdF limitations can be characterized by a unique gait-related neural signature: weaker sensorimotor and stronger motor control activation. This subsample also had smaller brain volume and white matter hyperintensities in regions affected early by dementia and engaged in less physical exercise. We propose a prospective observational cohort study in cognitively unimpaired older adults with and without subclinical AD (plasma amyloid-ß) and vascular (white matter hyperintensities) pathologies. We aim to (1) establish the unique grEEG activation as the neural signature and predictor of decline in CdF during the preclinical dementia period; (2) determine associations between dementia-related pathologies and incidence of the neural signature of CdF; and (3) establish associations between a dementia risk factor, physical inactivity, and the neural signature of CdF. CONCLUSIONS: By establishing the clinical relevance and biological basis of the neural signature of CdF decline, we aim to improve prediction during the preclinical stages of ADs and other dementias. Our approach has important research and translational implications because grEEG protocols are relatively inexpensive and portable, and predicting CdF decline may have real-world benefits. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/56726.


Assuntos
Atividades Cotidianas , Encéfalo , Demência , Humanos , Demência/fisiopatologia , Estudos Prospectivos , Encéfalo/patologia , Encéfalo/fisiopatologia , Idoso , Masculino , Feminino , Estudos de Coortes , Marcha/fisiologia , Eletroencefalografia , Idoso de 80 Anos ou mais
17.
J Obstet Gynaecol ; 44(1): 2361848, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38845462

RESUMO

BACKGROUND: There are several international guidelines for foetal anomalies scanning at 11-14 weeks' gestation. The aim of this study is to present our first-trimester specialist neurosonography protocol with examples of pathology in order to develop a systematic approach to evaluating the first-trimester foetal brain. METHODS: Women undergoing a first-trimester foetal medicine ultrasound scan between 2010 and 2020 for multiple indications underwent neurosonography according to a set protocol. 3D transvaginal brain examination was performed in all cases (2000 pregnancies scanned). We retrospectively reviewed all imaging to develop this protocol. RESULTS: We propose that the following five axial-plane parallel views should be obtained when performing neurosonography in the first trimester, moving from cranial to caudal: 1. Lateral ventricles; 2. Third ventricle; 3. Thalamus and mesencephalon; 4. Cerebellum; 5. Fourth ventricle. Examples of these images and abnormalities that can be seen in each plane are given. CONCLUSIONS: We have presented a specialist protocol for systematically assessing the foetal brain in the first trimester and given examples of pathology which may be seen in each plane. Further work is needed to prospectively assess detection rates of major abnormalities using this protocol and assess the reproducibility and learning curve of this technique.


This article suggests a way in which specialists scanning babies at 11­14 weeks of pregnancy can check the brain in a structured way. This involves looking at the brain at five levels or planes to view the developing structures. The suggested scan protocol is similar to images produced of the brain and heart at the second trimester (20 week) scan. We hope that specialists will find it useful to check the brain in this way if there are concerns raised at the dating (12 week) scan, and that this will lead to earlier detection of brain abnormalities or differences.


Assuntos
Imageamento Tridimensional , Primeiro Trimestre da Gravidez , Ultrassonografia Pré-Natal , Humanos , Feminino , Gravidez , Ultrassonografia Pré-Natal/métodos , Imageamento Tridimensional/métodos , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Encéfalo/embriologia , Adulto , Feto/diagnóstico por imagem
18.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38847535

RESUMO

Given the widespread use and relapse of methamphetamine (METH), it has caused serious public health burdens globally. However, the neurobiological basis of METH addiction remains poorly understood. Therefore, this study aimed to use magnetic resonance imaging (MRI) to investigate changes in brain networks and their connection to impulsivity and drug craving in abstinent individuals with METH use disorder (MUDs). A total of 110 MUDs and 55 age- and gender-matched healthy controls (HCs) underwent resting-state functional MRI and T1-weighted imaging scans, and completed impulsivity and cue-induced craving measurements. We applied independent component analysis to construct functional brain networks and multivariate analysis of covariance to investigate group differences in network connectivity. Mediation analyses were conducted to explore the relationships among brain-network functional connectivity (FC), impulsivity, and drug craving in the patients. MUDs showed increased connectivity in the salience network (SN) and decreased connectivity in the default mode network compared to HCs. Impulsivity was positively correlated with FC within the SN and played a completely mediating role between METH craving and FC within the SN in MUDs. These findings suggest alterations in functional brain networks underlying METH dependence, with SN potentially acting as a core neural substrate for impulse control disorders.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Encéfalo , Fissura , Sinais (Psicologia) , Comportamento Impulsivo , Imageamento por Ressonância Magnética , Metanfetamina , Humanos , Masculino , Transtornos Relacionados ao Uso de Anfetaminas/diagnóstico por imagem , Transtornos Relacionados ao Uso de Anfetaminas/fisiopatologia , Transtornos Relacionados ao Uso de Anfetaminas/psicologia , Adulto , Fissura/fisiologia , Comportamento Impulsivo/fisiologia , Feminino , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Metanfetamina/efeitos adversos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Adulto Jovem
19.
Comput Biol Med ; 177: 108637, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38824789

RESUMO

Radiotherapy is a preferred treatment for brain metastases, which kills cancer cells via high doses of radiation meanwhile hardly avoiding damage to surrounding healthy cells. Therefore, the delineation of organs-at-risk (OARs) is vital in treatment planning to minimize radiation-induced toxicity. However, the following aspects make OAR delineation a challenging task: extremely imbalanced organ sizes, ambiguous boundaries, and complex anatomical structures. To alleviate these challenges, we imitate how specialized clinicians delineate OARs and present a novel cascaded multi-OAR segmentation framework, called OAR-SegNet. OAR-SegNet comprises two distinct levels of segmentation networks: an Anatomical-Prior-Guided network (APG-Net) and a Point-Cloud-Guided network (PCG-Net). Specifically, APG-Net handles segmentation for all organs, where multi-view segmentation modules and a deep prior loss are designed under the guidance of prior knowledge. After APG-Net, PCG-Net refines small organs through the mini-segmentation and the point-cloud alignment heads. The mini-segmentation head is further equipped with the deep prior feature. Extensive experiments were conducted to demonstrate the superior performance of the proposed method compared to other state-of-the-art medical segmentation methods.


Assuntos
Neoplasias Encefálicas , Planejamento da Radioterapia Assistida por Computador , Humanos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Processamento de Imagem Assistida por Computador/métodos
20.
J Biomed Opt ; 29(6): 067001, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38826808

RESUMO

Significance: In the realm of cerebrovascular monitoring, primary metrics typically include blood pressure, which influences cerebral blood flow (CBF) and is contingent upon vessel radius. Measuring CBF noninvasively poses a persistent challenge, primarily attributed to the difficulty of accessing and obtaining signal from the brain. Aim: Our study aims to introduce a compact speckle contrast optical spectroscopy device for noninvasive CBF measurements at long source-to-detector distances, offering cost-effectiveness, and scalability while tracking blood flow (BF) with remarkable sensitivity and temporal resolution. Approach: The wearable sensor module consists solely of a laser diode and a board camera. It can be easily placed on a subject's head to measure BF at a sampling rate of 80 Hz. Results: Compared to the single-fiber-based version, the proposed device achieved a signal gain of about 70 times, showed superior stability, reproducibility, and signal-to-noise ratio for measuring BF at long source-to-detector distances. The device can be distributed in multiple configurations around the head. Conclusions: Given its cost-effectiveness, scalability, and simplicity, this laser-centric tool offers significant potential in advancing noninvasive cerebral monitoring technologies.


Assuntos
Circulação Cerebrovascular , Desenho de Equipamento , Análise Espectral , Humanos , Circulação Cerebrovascular/fisiologia , Análise Espectral/instrumentação , Análise Custo-Benefício , Reprodutibilidade dos Testes , Dispositivos Eletrônicos Vestíveis , Razão Sinal-Ruído , Lasers , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imagem de Contraste de Manchas a Laser/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...